
Unsuccessful attempt to speed-up numerical integration of functions with
peaks and some related topics:
*Monte Carlo “area” integration

*Speed-up of a real uniform random number generator

Andrej Liptaj∗

Abstract

An (unsuccessful) attempt to use “damping” functions for sharp peak integration is made. Some related comments
about Monte Carlo “area” integration and speeding a uniform random number generator are made.

Introductory note: This text was previously published on Scribd1.

1 Introduction
Reading about numerical integration methods, one notices that sharp peaks are difficult to integrate. My idea was to
trade a sharp peak integration for several flat-function integrations. The idea is wrong, still I write this text to keep
memory of what I have done. A clever person might probably see from the beginning that the method does not speed up
the integration, unfortunately it was not my case.

2 Damping method
Method is simple: use a damping function together with Taylor expansion to integrate a sharp-peaked function. By
damping function I understand a function that makes large numbers small, for example logarithm. Let g be a damping
function and G its inverse G [g (x)] = g [G (x)] = x and suppose g is bijective. The damping integration approach uses the
Maclaurin expansion of the inverse damping, G (y) =

∑∞
i=0 ciy

i and some standard numerical integration method that
performs well for flat functions, let me note it

´
Std

. The method then looks like:
ˆ

f (x) dx =

ˆ
G {g [f (x)]} dx

=

ˆ (∞∑
i=0

ci {g [f (x)]}i
)
dx,

=
∞∑
i=0

ci

ˆ
Std

{g [f (x)]}i dx.

For the expression in the last line I will use the label “integral series”. In the Table 1 I present my choice of different
damping functions together with related properties. Note please: the statements in the table ale based only on numerical
observations! The presented method does not need to be much more slowly then the “standard method”: the value of
g [f (x)] needs to be calculated only once, then recursively multiplied. The integral summation (within the “standard
method”) for every integration in the series needs, of course, to be done separately.

∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk
I am willing to publish any of my ideas presented through free-publishing services in a journal, if someone (an editor) judges them interesting
enough. Journals in the “Current Contents” database are strongly preferred.

1https://www.scribd.com/document/261720474/Unsuccessful-attempt-to-speed-up-numerical-integration-of-functions-with-peaks-and-some-
related-topics-Monte-Carlo-area-integration-Speed-up-of-a

1

Damping g tanh (x) x√
x2+1

asinh (x) 2
π arctan (x) ln (x+ 1) erf (x)

G = inv (g) atanh (x) x√
1−x2 sinh (x) tan

(
π
2x
)
[1] ex − 1 erf−1 (x)

ith odd Maclaurin
coefficient of G
(even coefficients
are zero for odd

functions)

ai =
1

2i+1

b0 = 1
bi =bi−1

× (2i+ 1)
× (2i− 1)
ai =

bi
(2i+1)!

ai =
1

(2i+1)!

b0 = 1
bi =

1
2i+1

×
∑i−1

k=0(bk
×bi−1−k)

ai =(
π
2

)2i+1
bi

a0 = 0
an>0 = 1

n!
For all

coefficients
(even

included)

b0 = 1
bi =∑i−1
k=0[bk

×bi−1−k

× 1
(k+1)

× 1
(2k+1)]
ai =(√
π
2

)2i+1

× bi
2i+1

Convergence of the
Maclaurin series Converges Converges Converges Converges Converges Converges

Convergence of the
“integral series” Diverges Diverges Converges

rapidly
Converges

slowly
Converges
rapidly Diverges

Table 1: Studied damping functions and related issues (unproven statements based on numerical observations).

3 Results and conclusion
I used two test peak functions (rational and exponential) on the 0− 1 interval:

f1 (x) =
100

[100 (x− 0.1415926)] 4 + 1
,

1ˆ

0

f1 (x) = 2.221323519290568,

f2 (x) = 10 exp
[
−1000(x− 0.71828182)2

]
,

1ˆ

0

f2 (x) = 0.560499121639793.

I tested two standard methods: Simpson integration rule and Monte Carlo method. It turns out that for the Simpson rule
the damping method gives the same result as the standard one, only it is expressed in series. The damping procedure and
Simpson approach obviously commute:

ˆ
Simpson

f (x) dx =

∞∑
i=0

ci

ˆ
Simpson

{g [f (x)]}i dx.

The damping method is useless - it produces the same results with additional computations. I assume the situation is
analogical for all other methods based on summation over function values.

In case of the Monte Carlo approach I base my conclusions on numerical observations. The value of the integral is the
product of the average function value Avg on an interval and the integral length:

I = (b− a)×Avg,

Avg =
1

N

N∑
i=1

f(xrnd.
i),

where xrnd. stands for a random number obtained from a uniform distribution over the interval (a, b). I let run both
methods for same time and I observe that both methods are competitive, without possibility to claim that damping
method is better. Let me notice that for all integrals in the series I used only one random number, so the integrals are in
some way correlated. The results suggest the damping method commutes with the MC integration procedure and thus is
of no use.

4 Some related ideas

4.1 MC “area” integration
I suppose that mostly for pedagogical reasons the “area” MC integration method is sometimes presented in an introduction
to MC integration (for positive functions). It differs from the standard method described in the Section 3, it requires an

2

Figure 1: MC “area” integration to estimate the integral
´ 1
0
f (x) dx, f (x) =

√
1− x2.

additional random number to obtain the coordinate of a random point in the “value” direction. The method relates the
area (volume) under the integrand to the number of randomly generated points there and estimates the integral using
the fraction of this number to the total number of points in a rectangle, which contains the whole function graph, see the
Figure 1. The formula looks like:

I =
#(points under)

(all points)
× (rectangle area) ,

=
#(points under)

(all points)
× (b− a)× (rectangle height) .

This method is less effective then the “standard” MC integration and honestly I see no reason why it might be preferred.
However, if for any reason someone sticks to this method, he encounters a problem: the maximal value of the function is,
in general, unknown, so one cannot tune the rectangle height universally and write down a general code that would work
with any function. In this very specific situation the damping method helps - one simply chooses a damping function
bounded from above by one, for example 2

π arctan (x). Then the rectangle height can be universally fixed to one and the
value of the integral calculated using integral series, where “standard” method is the area MC method (in each term the
value remains under one, since 0 < x < 1 ⇒ xn < 1).

4.2 Method of almost doubling the speed of a real uniform random number generator
This paragraph is almost unrelated to the topic of the article, however the idea came to me when considering the additional
random number needed in case of the area MC integration. Suppose you have some random number generator that provides
you with a random number. A new one could be quickly obtained from a previous one by inverting the order of its digits.
Let me be more precise: imagine a random number (in some numeral system) from uniform distribution between 0 and 1
written in the following way:

xRND = 0.a1a2a3 . . . aN−1aN

where ai represents a digit and the number of digits N is limited because of practical reasons (length of a computer
register). Then a second number

y = 0.aNaN−1 . . . a3a2a1

is very few correlated with the first one. The argument is simple: a random number means random digits. Since random
number is mostly used by its value (size, magnitude) and not its digits, only first few digits play a role in the use. When
the order of digits is inverted then some other random digits, before negligible, play a role. The method of course supposes
a sufficient number of digits for a random number.

I did an internet search and it seems that processors do not have order-inversion of bits in a register as basic instruction,
thus this would need to be programmed on a higher level. Such an instruction should be however easy to hard-wire into
a processor.

References
[1] Raymond Manzoni, http://math.stackexchange.com/questions/286529/how-to-expand-tan-x-in-taylor-order-to-ox6

3

