A condition on a non-collatz number at the boundary of a successive collatz numbers set

Abdelghaffar Slimane email: abdelghaffar.slimane@polymtl.ca Ecole polytechnique de Montreal

April 9, 2017

Abstract

We give a condition that an odd number in the neighborhood of a successive collatz numbers set must verify to be a non-collatz number, and we use the result for odd numbers of the form 6k - 1 at the boundary of a successive collatz numbers set.

1 Introduction

Since 1937, mathematicians tried to prove the conjecture of Collatz also known as the 3x+1 problem and Syracuse conjecture. In this paper, we prove a theorem that give another criteria on odd numbers to verify the conjecture under some conditions.

2 Definitions

We will use the modified form of Collatz's sequence defined by : $U: \mathbb{N}^* \longrightarrow \mathbb{N}^*$

$$U(n) = \frac{n}{2}$$
 if n is even
 $U(n) = \frac{3n+1}{2}$ if n is odd

The conjecture assumes that for every (non-zero) integer n there exists d such that : $U_d(n) = 1$. In this paper, we mean by: * An odd (respectively even) collatz number: an odd (respectively even) number of \mathbb{N}^* verifying the Collatz conjecture.

* A non-collatz number (assumption): a number of \mathbb{N}^* that does not verify the Collatz conjecture.

3 Lemma

Let $\mathcal{A}_n = \{1, 2, 3, ..., E(\frac{2n-1}{3})\}$ be the set of all successive collatz numbers $\leq E(\frac{2n-1}{3})$ where n is an odd number ≥ 3 . $\mathcal{A}_n = \{t \in \mathbb{N}^* : t \text{ a collatz number } \leq E(\frac{2n-1}{3})\}.$ Let \mathcal{B}_n be the set of all successive collatz numbers inferior or equal to $E(\frac{n+1}{6}).$ $\mathcal{B}_n = \{t \in \mathbb{N}^* : t \text{ a collatz number } \leq E(\frac{n+1}{6})\}.$

Lemma 1 Let n = 2p + 1 be an odd number $(p \in \mathbb{N}^*)$ with $\mathcal{A}_n \neq \emptyset$

n is an odd non-collatz number $\Rightarrow \forall t \text{ odd} \in \mathcal{A}_n, \frac{-3t+1}{2} \neq n$

Proof 1 Let $t \in \mathcal{A}_n$, where t is odd \Rightarrow t is an odd collatz number $\Rightarrow U_1(t) = \frac{3t+1}{2}$ is a collatz number \Rightarrow if $n = \frac{3t+1}{2}$ then $n = U_1(t)$ is also an odd collatz number.

Then we can now state the theorem:

4 Theorem

Theorem 1 Let n = 2p + 1 be an odd number $(p \in \mathbb{N}^*)$ with $\mathcal{B}_n \neq \emptyset$

If n is an odd non-collatz number then $n \neq 6k - 1$ (where $k = 1, 2, 3, \dots \in \mathcal{B}_n$)

Proof 2 We consider n = 2p + 1 (where $p = 1, 2, 3, \dots \in \mathbb{N}^*$) as an odd non-collatz number. From Lemma 1, we can write that,

$$\forall t \in \mathcal{A}_n : \frac{3n+1}{2} \neq n \longrightarrow \frac{3t+1}{2} \neq 2p+1 \longrightarrow t \neq \frac{4p+1}{3}$$

The resolution of the equation $t = \frac{4p+1}{3}$ giving odd numbers t, shows that it is satisfied by values of $p = 2, 5, 8, 11, 14, \cdots$

Therefore p is of the form $p = 2 + 3\alpha$ (where $\alpha = 0, 1, 2, 3, \cdots$)

t will have values like $t = 3, 7, 11, 15, 19 \cdots$, and n will have the form:

 $n = 2p + 1 = 2(2 + 3\alpha) + 1 = 6\alpha + 5 = 6k - 1 \ (where \ k = 1, 2, 3, \dots \in \mathcal{B}_n)$

5 Conclusion

We can generalize this result on a given set of successive collatz numbers already verified $C_n = \{1, 2, 3, ..., n = 2p\}$. Therefore if the next odd element n + 1 is of the form 6k-1 then it is a collatz number.