A condition on a non-collatz number at the boundary of a successive collatz numbers set

Abdelghaffar Slimane
email: abdelghaffar.slimane@polymtl.ca
Ecole polytechnique de Montreal

April 9, 2017

Abstract

We give a condition that an odd number in the neighborhood of a successive collatz numbers set must verify to be a non-collatz number, and we use the result for odd numbers of the form $6 k-1$ at the boundary of a successive collatz numbers set.

1 Introduction

Since 1937, mathematicians tried to prove the conjecture of Collatz also known as the $3 x+1$ problem and Syracuse conjecture. In this paper, we prove a theorem that give another criteria on odd numbers to verify the conjecture under some conditions.

2 Definitions

We will use the modified form of Collatz's sequence defined by : $U: \mathbb{N}^{*} \longrightarrow \mathbb{N}^{*}$

$$
\begin{gathered}
U(n)=\frac{n}{2} \text { if } \mathrm{n} \text { is even } \\
U(n)=\frac{3 n+1}{2} \text { if } \mathrm{n} \text { is odd }
\end{gathered}
$$

The conjecture assumes that for every (non-zero) integer n there exists d such that: $U_{\boldsymbol{d}}(n)=1$. In this paper, we mean by:

* An odd (respectively even) collatz number: an odd (respectively even) number of \mathbb{N}^{*} verifying the Collatz conjecture.
* A non-collatz number (assumption): a number of \mathbb{N}^{*} that does not verify the Collatz conjecture.

3 Lemma

Let $\mathcal{A}_{n}=\left\{1,2,3, \ldots, E\left(\frac{2 n-1}{3}\right)\right\}$ be the set of all successive collatz numbers $\leqslant E\left(\frac{2 n-1}{3}\right)$ where n is an odd number $\geqslant 3$.
$\mathcal{A}_{n}=\left\{t \in \mathbb{N}^{*}: t\right.$ a collatz number $\left.\leqslant E\left(\frac{2 n-1}{3}\right)\right\}$.
Let \mathcal{B}_{n} be the set of all successive collatz numbers inferior or equal to $\mathrm{E}\left(\frac{n+1}{6}\right)$.
$\mathcal{B}_{n}=\left\{t \in \mathbb{N}^{*}: t\right.$ a collatz number $\left.\leqslant E\left(\frac{n+1}{6}\right)\right\}$.

Lemma 1 Let $n=2 p+1$ be an odd number $\left(p \in \mathbb{N}^{*}\right)$ with $\mathcal{A}_{n} \neq \varnothing$ n is an odd non-collatz number $\Rightarrow \forall t$ odd $\in \mathcal{A}_{n}, \frac{3 t+1}{2} \neq n$

Proof 1 Let $t \in \mathcal{A}_{n}$, where t is odd $\Rightarrow t$ is an odd collatz number $\Rightarrow U_{\mathbf{1}}(t)=\frac{3 t+1}{2}$ is a collatz number \Rightarrow if $n=\frac{3 t+1}{2}$ then $n=U_{\mathbf{1}}(t)$ is also an odd collatz number.

Then we can now state the theorem:

4 Theorem

Theorem 1 Let $n=2 p+1$ be an odd number $\left(p \in \mathbb{N}^{*}\right)$ with $\mathcal{B}_{n} \neq \varnothing$ If n is an odd non-collatz number then $n \neq 6 k-1$ (where $k=1,2,3, \cdots \in \mathcal{B}_{n}$)

Proof 2 We consider $n=2 p+1$ (where $\left.p=1,2,3, \cdots \in \mathbb{N}^{*}\right)$ as an odd non-collatz number. From Lemma 1, we can write that,

$$
\forall t \in \mathcal{A}_{n}: \frac{3 n+1}{2} \neq n \longrightarrow \frac{3 t+1}{2} \neq 2 p+1 \longrightarrow t \neq \frac{4 p+1}{3}
$$

The resolution of the equation $t=\frac{4 p+1}{3}$ giving odd numbers t, shows that it is satisfied by values of $p=2,5,8,11,14, \cdots$
Therefore p is of the form $p=2+3 \alpha$ (where $\alpha=0,1,2,3, \cdots$)
t will have values like $t=3,7,11,15,19 \cdots$, and n will have the form:

$$
n=2 p+1=2(2+3 \alpha)+1=6 \alpha+5=6 k-1\left(\text { where } k=1,2,3, \cdots \in \mathcal{B}_{n}\right)
$$

5 Conclusion

We can generalize this result on a given set of successive collatz numbers already verified $\mathcal{C}_{n}=\{1,2,3, \ldots, n=2 p\}$. Therefore if the next odd element $n+1$ is of the form $6 k-1$ then it is a collatz number.

