An Elementary Proof of Goldbach's Conjecture

Chongxi Yu

Techfields Inc.
1679 S Dupont HYW, Dover, Delaware, USA

Abstract

Prime numbers are the basic numbers and are crucially important. There are many conjectures concerning primes that have been challenging mathematicians for hundreds of years. Goldbach's conjecture is one of the oldest and most well-known unsolved problems in number theory and in all of mathematics. A kaleidoscope can produce an endless variety of colorful patterns and it looks like magic, but when you open one and examine it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Humans are very easily cheated by 2 words, infinite and anything, because we never see infinite and anything, and so we always make a simple thing complex. Goldbach's conjecture is about all very simple numbers, with the pattern of prime numbers similar to a "kaleidoscope" of numbers. If we divided all even numbers into 5 groups and primes into 4 groups, Goldbach's conjecture becomes much simpler. Here we give a clear proof for Goldbach's conjecture based on the fundamental theorem of arithmetic, the prime number theorem, and Euclid's proof that the set of prime numbers is endless.

Key words: Goldbach's conjecture, fundamental theorem of arithmetic, Euclid's proof of infinite primes, the prime number theorem

\section*{Introduction}

Prime numbers ${ }^{1}$ are the basic numbers of mathematics and are crucially important. There are many conjectures concerning primes that have challenged mathematicians for hundreds of years and many "advanced mathematical tools" are used to solve them, but they still remain unsolved.

I believe that prime numbers are the "basic building blocks" of the natural numbers and that they must follow some very simple basic rules and do not need "advanced mathematical tools" to solve them. Two of the basic rules are the "fundamental theorem of arithmetic" and Euclid's proof of endless prime numbers.

Fundamental theorem of arithmetic:

The crucial importance of prime numbers to number theory and mathematics in general stems from the fundamental theorem of arithmetic ${ }^{[1]}$, which states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors. ${ }^{[2]}$ Primes can thus be considered the "basic building blocks" of the natural numbers.

Euclid's proof ${ }^{[2]}$ that the set of prime numbers is endless

The proof works by showing that if we assume that there is an explicit prime number larger than all other prime numbers, then there is a contradiction.

We can number all the primes in ascending order, so that $P_{1}=2, P_{2}=3, P_{3}=5$ and so on. If we assume that there are just \mathbf{n} primes, then the biggest prime will be labeled \mathbf{P}_{n}. Now we can form the number Q by multiplying together all these primes and adding 1, so

$$
\mathbf{Q}=\left(\mathbf{P}_{1} \times \mathbf{P}_{2} \times \mathbf{P}_{3} \times \mathbf{P}_{4} \ldots \times \mathbf{P}_{\mathbf{n}}\right)+\mathbf{1}
$$

Now we can see that if we divide Q by any of our n primes there is always a remainder of 1 , so Q is not divisible by any of the primes, but we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be a prime or Q must be divisible by primes that are larger than P_{n}.

Our assumption that P_{n} is the largest prime has led us to a contradiction, so this assumption must be false. Thus, there is no largest prime and the set of prime numbers is endless.

Discussions

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. It states:
Every even integer greater than 2 can be expressed as the sum of two primes.

A kaleidoscope can produce an endless variety of colorful patterns and looks like magic, but when you open it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Goldbach's conjecture is about all very simple numbers,
with the pattern of prime numbers similar to a "kaleidoscope" of numbers. If we divided all even numbers into 5 groups and primes into 4 groups, Goldbach's conjecture becomes much simpler.

If a large number N is not divisible by 3 or any prime which is smaller or equal to $N / 3$, it must be a prime. $1 / 3$ of all numbers that are divisible by 7 can be divisible by $3,1 / 3$ of all numbers that are divisible by 11 can be divisible by 3 and $1 / 7$ of all numbers that are divisible by 11 can be divisible by $7,1 / 3$ of all numbers that are divisible by 13 can be divisible $3,1 / 7$ of all numbers that are divisible by 13 can be divisible by 7 , and $1 / 11$ of all numbers that are divisible by 13 can be divisible by 11 , so on, so we have terms: $1 / 3$, $1 / 7 \times 2 / 3,1 / 11 \times 2 / 3 \times 6 / 7,1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11 \ldots$,

Let N_{o} represent any odd number, the chance of N_{o} to be a non-prime is: $[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)$
$+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)$
$+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$
$(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$
$(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \times 2 / 3 \mathrm{x} 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43)+$
$(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47)+$
$(1 / 59 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53)+$
$(1 / 61 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \times 40 / 41 \times 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \times 58 / 59)+$
$(1 / 67 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$
$(1 / 71 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \mathrm{x} 66 / 67)+$
$(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)+$
$(1 / 79 \times 2 / 3 x 6 / 7 \times 10 / 11 \times 12 / 13 x 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71 \mathrm{x} 72 / 73)$

+ ...] ----------Formula 1

Any odd number cannot be divisible by 2 and any odd number with 5 as its last digit is not a prime except 5 , and so these primes are omitted.

Let \sum represent the sum of the infinite terms and $\Delta=1-\sum$, according to Euclid's proof ${ }^{[2]}$ that the set of prime numbers is endless. Δ is the chance of any odd number to be a prime. \sum may be very close to 1 when N is growing to ∞, but is always less than 1 . Let $\Delta=1-\sum$, when N is approaches ∞, Δ may be very close to 0 , but always more than 0 according to Euclid's proof that the set of prime numbers is endless. If Δ is 0 , then there is no prime, and we know that is not true.
The sum of first 20 terms $=[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)$
$+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23)$
$+(1 / 31 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 37 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31)+$
$(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47)+$ $(1 / 59 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53)+$ $(1 / 61 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59)+$ $(1 / 67 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61)+$ $(1 / 71 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \mathrm{x} 66 / 67)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)+$ $(1 / 79 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \mathrm{x} 70 / 71 \times 72 / 73)$ $=[0.333333+0.095238+0.051948+0.039960+0.028207+0.023753+0.018590+0.014102+0.012738+0.010328+0.009069+$ $0.008436+0.007538+0.006543+0.005766+0.005483+0.004910+0.004564+0.004377+0.003989]=0.688872$

For the first 20 term: $\sum=0.688872, \Delta=1-\sum=0.311128$
The chance of N_{o} to be a prime is: $\Delta=1-[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)$ $+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)$ $+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ $(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+$

```
(1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
(1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) +
(1/61x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59) +
(1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) +
(1/71x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67) +
(1/73\times2/3x6/7\times10/11\times12/13x16/17x18/19x22/23\times28/29\times30/31x36/37x40/41\times42/43\times46/47x52/53\times58/59x60/61x66/67x70/71) +
(1/79x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41\times42/43\times46/47x52/53x58/59x60/61\times66/67x70/71x72/73)
+ ...] ------------Formula 2
```

Let $\$ 1$ represent a prime with 1 as its last digit, such as $11,31,41,61,71,101,131,151,181,191, \ldots$; let $\$ 3$ represent a prime with 3 as its last digit, such as $3,13,23,43,53,73,83,103,113,163,193 \ldots$; let $\$ 7$ represent a prime with 7 as its last digit, such as, 7,17 , $37,47,67,97,107,127,137,157,167,197 \ldots$; and let $\$ 9$ represent a prime with 9 as its last digit, such as $19,29,59,79,89,109,139$, $149,179,199, \ldots$.

Let O 1 represent an odd number with 1 as its last digit, such as $11,21,31,41,51,61,71, \ldots$; let O 3 represent an odd number with 3 as its last digit, such as $3,13,23,33,43,53,63,73, \ldots$; let O 7 represent an odd number with 7 as its last digit, such as, $7,17,27,37,47$, $57,67,77 \ldots$; and let O 9 represent an odd number with 9 as its last digit, such as $9,19,29,39,49,59,69,79, \ldots$.

The fundamental theorem of arithmetic states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors.

Every odd number (O1) with 1 as its last digit is a product of unlimited terms, such as $\$ 1 \times \$ 1, \$ 3 \times \$ 7, \$ 9 \times \$ 9, \$ 1 \times \$ 1 \times \$ 1, \ldots, \$ 1 \times$ $\$ 3 \times \$ 7, \ldots, \$ 3 \times \$ 3 \times \$ 3 \times \$ 3, \ldots ., \$ 7 x \$ 7 x \$ 7 x \$ 7 \ldots$, but we can only consider $\$ 1, \$ 7$, and $\$ 9$ because they decide how large other $\$ 1 \mathrm{~s}$, $\$ 3 \mathrm{~s}, \$ 7 \mathrm{~s}$, and $\$ 9 \mathrm{~s}$ can be. Let the number 600 be the example. For $\$ 1 \mathrm{x} \$ 1$, the smallest $\$ 1$ is 11 which means that another $\$ 1$ cannot be larger than $41(11 \times 41=451<600$, but $11 \times 61=671>600$ and $11 \times 11 \times 11=1331>600)$; for $\$ 3 \times \$ 7$, the smallest $\$ 7$ is 7 which means that $\$ 3$ cannot be more than $83(7 \times 83=581<600,7 \times 3 \times 31=651>600), \ldots$; for $\$ 9 \times \$ 9$, the smallest $\$ 9$ is $9(3 \times 3)$ which means that another $\$ 9$ cannot be more than $59(3 \times 3 \times 59=531<600)$, so the smallest $\$ 1, \$ 7$, and $\$ 9$ decide the largest possible $\$ 1, \$ 3, \$ 7$, and $\$ 9$ for any O1 and the largest possible $\$ 1, \$ 3$, and $\$ 9$ determine the chance of O1 being a prime

```
The chance of any odd number O1 to be a prime is: }\mp@subsup{\Delta}{1}{}=1-\mp@subsup{\sum}{1}{}=1-[(1/3)+(1/11\times2/3\times6/7)+(1/13\times2/3\times6/7\times10/11
++(1/19\times2/3\times6/7\times10/11\times12/13\times16/17)+(1/23\times2/3x6/7x 10/11x12/13\times16/17x18/19)
+(1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) +(1/31x2/3x6/7x10/11x 12/13x16/17x18/19x22/23x28/29) +
(1/41x2/3\times6/7x10/11x12/13\times16/17x18/19x22/23x28/29x30/31x36/37) +
(1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
(1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
(1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) +
(1/61x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59) +
(1/71x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67) +
(1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) +
(1/79x2/3x6/7x10/11x12/13\times16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43\times46/47x52/53x58/59x60/61x66/67x70/71x72/73)
+ ...] -------------Formula 3.
```

For $\mathrm{N}=600$, the number of primes with 1 as its last digit $=600 / 10-600 / 10[(1 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)$ $+(1 / 31 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29)+(1 / 41 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47)+$ $(1 / 59 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)+$ $(1 / 83 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 7$ $8 / 79)]=60-60[0.333333+0.051948+0.039960+0.023753+0.018590+0.014102+0.012738+0.009069+0.008436+0.006543+$ $0.005766+0.004377+0.003597]=60-60 \times 0.532212=28$. There are 25 primes with 1 as its last digit, if we count 1 . Thus, the difference between real number and the calculated number is only 2 (please see the next 5 primes: 601, 607, 613, 617, and 619, 601 just after 600). The distribution of primes is not uniform and 600 is not a big number, so the difference is reasonable. When the number N becomes larger, the difference will be ≤ 1.

Every odd number with 3 as its last digit is a product of unlimited terms, such as, $\$ 3 \mathrm{x} \$ 1, \$ 7 \mathrm{x} \$ 9, \$ 3 \times \$ 1 \times \$ 1, \ldots, \$ 7 \times \$ 3 \mathrm{x} \$ 3, \ldots, \$ 1$ $x \$ 7 x \$ 9, \ldots$ but we can only consider $\$ 1$ and $\$ 9$. Let the number 600 be the example. For $\$ 1 \mathrm{x} \$ 3$, the smallest $\$ 1$ is 11 which means that $\$ 3$ cannot be more than 53 ($11 \times 53=483<600$, but $11 \times 11 \times 13=1573>600$ and $3 \times 3 \times 3 \times 3 \times 13=1053>600$); for $\$ 7 \times \$ 9$, the smallest $\$ 9$
is $9(3 \times 3)$ which means $\$ 7$ cannot be more than $47(3 \times 3 \times 47=423<600$, but $3 \times 3 \times 67=603>600,19 \times 37=703>600), \ldots$; thus, the smallest $\$ 1$ and $\$ 9$ decide the largest possible $\$ 1, \$ 3, \$ 7$, and $\$ 9$ for any O 3 and the largest possible $\$ 3$, and $\$ 7$ determine the chance of O3 being a prime

The chance of any odd number O3 being a prime is: $\Delta_{3}=1-\sum_{3}=1-[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47)+$ $(1 / 67 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47 \mathrm{x} 52 / 53 \times 58 / 59 \mathrm{x} 60 / 61)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)+\ldots]-$ -------Formula 4

For $\mathrm{N}=600$, the number of primes with 3 as their last digit $=600 / 10-600 / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + $(1 / 53 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47)+$ $(1 / 67 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)=60-$ $60[0.333333+0.095238+0.039960+0.028207+0.018590+0.010328+0.008436+0.007538+0.006543+0.004910+0.004377]$ $=60-60 \times 0.55746=26.6$. There are 26 primes with 3 as their last digit. Hence the difference between the actual number and the calculated number is 0.6 , which is ≤ 1.

Every odd number with 7 as its last digit is a product of unlimited terms, such as $\$ 7 \mathrm{x} \$ 1, \$ 3 \mathrm{x} \$ 9, \$ 3 \mathrm{x} \$ 9 \mathrm{x} \$ 1, \$ 7 \mathrm{x} \$ 1 \mathrm{x} \$ 1, \ldots$, $\$ 3 x \$ 3 x \$ 3, \ldots, \$ 1 x \$ 3 x \$ 9, \ldots$. but we can only consider $\$ 1$ and $\$ 9$. Let the number 600 be the example. For $\$ 1 x \$ 7$, the smallest $\$ 1$ is 11 which means that $\$ 7$ cannot be more than 47 ($11 \times 47=517<600$, but $11 \times 11 \times 7=847>600,3 \times 3 \times 3 \times 31=837>600$, and $3 \times 19 \times 11=627>600$); for $\$ 3 \times \$ 9$, the smallest $\$ 9$ is $9(3 \times 3)$ which means $\$ 3$ cannot be more than $53(3 \times 3 \times 53=477<600$, but
$7 \times 3 \times 3 \times 19=1197>600), \ldots$; thus, the smallest $\$ 1$ and $\$ 9$ decide the largest possible $\$ 1, \$ 3, \$ 7$, and $\$ 9$ for any 07 and the largest possible $\$ 3$, and $\$ 7$ determine the chance of 07 being a prime

The chance of any odd number O7 to be a prime is: $\Delta_{7}=1-\sum_{7}=1-[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47)+$ $(1 / 67 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 66 / 67 \times 70 / 71)+\ldots]-$ -------Formula 4

For $\mathrm{N}=600$, the number of primes with 7 as its last digit $=600 / 10-600 / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$
$(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19)$
$(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43)+$
$(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47)=60-60[0.333333+0.095238+0.039960$
$+0.028207+0.018590+0.010328+0.008436+0.007538+0.006543]=60-60 \times 0.548173=27.1$. There are 28 primes with 7 as their
last digit. Thus, the difference between the actual number and the calculated number is 0.9 , which is ≤ 1.
Every odd number (O9) with 9 as their last digit is a product of unlimited terms, such as $\$ 1 \mathrm{x} \$ 9, \$ 7 \times \$ 7, \$ 3 \times \$ 3, \$ 1 \times \$ 1 \times \$ 9, \ldots, \$ 1$ $x \$ 7 \times \$ 7, \ldots, \$ 3 \times \$ 3 \times \$ 1, \ldots ., \$ 3 x \$ 3 x \$ 3 x \$ 7 \ldots$, but we can only consider $\$ 1, \$ 7$, and $\$ 3$ because they decide how large other $\$ 1 \mathrm{~s}, \$ 3 \mathrm{~s}$, $\$ 7 \mathrm{~s}$, and $\$ 9 \mathrm{~s}$ can be. Let the number 600 be the example. For $\$ 1 \mathrm{x} \$ 9$, the smallest $\$ 1$ is 11 which means that another $\$ 1$ cannot be more than $29(11 \times 29=319<600$, but $11 \times 59=649>600$ and $11 \times 11 \mathrm{x} 3 \times 3=1089>600)$; for $\$ 7 \times \$ 7$, the smallest $\$ 7$ is 7 which means another $\$ 7$ cannot be more than $67(7 x 67=469<600$, but $7 x 97=679>600), \ldots$; for $\$ 3 x \$ 3$, the smallest $\$ 3$ is 3 which means that $\$ 9$ cannot be more than 193 ($3 \times 193=579<600$). And so, the smallest $\$ 9, \$ 7$, and $\$ 3$ decide the largest possible $\$ 1, \$ 3, \$ 7$, and $\$ 9$ for any O 9 and so the largest possible $\$ 3, \$ 7$, and $\$ 9$ determine the chance of O 9 being a prime

The chance of any odd number O9 being a prime is: $\Delta_{9}=1-\sum_{9}=1[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)$ $+(1 / 29 \times 2 / 3 \mathrm{x} 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23)+(1 / 37 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \mathrm{x} 28 / 29 \mathrm{x} 30 / 31)+$ (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + $(1 / 47 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47)+$ $(1 / 59 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47 \mathrm{x} 52 / 53)+$ $(1 / 67 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \times 58 / 59 \times 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71)+$ $(1 / 79 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \times 58 / 59 \times 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71 \mathrm{x} 72 / 73)$ + ...]------------Formula 5.

For $\mathrm{N}=600$, the number of primes with 9 as their last digit $=600 / 10-600 / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)$ $+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47)+$ $(1 / 67 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71)+$ $(1 / 83 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73)+$ (1/103x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/10 1) +
$(1 / 113 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 82 / 83 \times 96 / 97 \times 100 / 10$ $1 \mathrm{x} 106 / 107)+$
($1 / 163 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 82 / 83 \times 96 / 97 \times 100 / 10$ $1 \mathrm{x} 106 / 107 \mathrm{x} 112 / 113 \times 126 / 127 \times 130 / 131 \times 136 / 137 \mathrm{x} 150 / 151 \mathrm{x} 156 / 157)+$
$(1 / 193 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 82 / 83 \times 96 / 97 \times 100 / 10$ $1 \times 106 / 107 \times 112 / 113 \times 126 / 127 \times 130 / 131 \times 136 / 137 \times 150 / 151 \times 156 / 157 \times 162 / 163 \times 166 / 167 \times 172 / 173 \times 180 / 181 \times 190 / 191)]=60-60[0.333333$

```
+0.095238+0.039960 +0.028207+0.023753+0.018590 + 0.014102 + 0.010328 + 0.008436 + 0.007538 + 0.006543 + 0.004910 +
0.004377 +0.004222+0.003294+0.002974+0.001972+0.001618] =60-60x0.609395=23.4.There are 25 primes with 9 as their last
digit, and so the difference is }1.6\mathrm{ (please see the next 5 primes: 601,607,613,617, and 619,619 is farther behind 600 than other
primes with 1, 3, or 7 as its last digit). When N becomes larger, the difference will be }\leq1
```

The results above show there are almost an equal number of $\$ 1 \mathrm{~s}, \$ 3 \mathrm{~s}, \$ 7 \mathrm{~s}$, and $\$ 9 \mathrm{~s}$. $\sim 1 / 4$ of all primes are $\$ 1, \sim 1 / 4$ of all primes are $\$ 3$, $\sim 1 / 4$ of all primes are $\$ 7$, and $\sim 1 / 4$ of all primes are $\$ 9$. As Euclid proved primes are infinite, and an infinite number $\mathrm{x} 1 / 4$ is still infinite, $\$ 1, \$ 3, \$ 7$, and $\$ 9$ are consequently infinite. We can also prove $\$ 1, \$ 3, \$ 7$, and $\$ 9$ are infinite with Euclid's proof: We can number all the primes in ascending order (excluding 2 and 5), so that $\mathrm{P}_{11}=11, \mathrm{P}_{12}=31, \mathrm{P}_{13}=41, \mathrm{P}_{31}=3, \mathrm{P}_{32}=13, \mathrm{P}_{33}=23, \mathrm{P}_{71}=7$, $\mathrm{P}_{72}=27, \mathrm{P}_{73}=47, \mathrm{P}_{91}=19, \mathrm{P}_{92}=29, \mathrm{P}_{93}=59$, and so on. If we assume that there are just \mathbf{n} primes with 1 as their last digit, \mathbf{n} primes with 3 as their last digit, \mathbf{n} primes with 7 as their last digit, and \mathbf{n} primes with 9 as their last digit, then the largest primes with $1,3,7$ or 9 as their last digit will be labeled $\mathbf{P}_{1 \mathbf{n}}, \mathbf{P}_{\mathbf{3 n}}, \mathbf{P}_{7 \mathbf{n}}$, and $\mathbf{P}_{\mathbf{9}}$. Now we can form the number Q by multiplying all of these primes together and adding 10, the difference between primes with 1,3 , 7 , or 9 as their last digit is at least 10 , if $\left(\mathbf{P}_{11} \times \mathbf{P}_{31} \times \mathbf{P}_{71} \times \mathbf{P}_{91} \ldots \times \mathbf{P}_{1 \mathbf{n}} \times \mathbf{P}_{3 n} \times\right.$ $\left.\mathbf{P}_{7 \mathbf{n}} \times \mathbf{P}_{\mathbf{9 n}_{\mathbf{n}}}\right)$ is a number with 1 as its last digit, $\mathrm{Q}+10$ is also with 1 as its last digit, if $\left(\mathbf{P}_{\mathbf{1 1}} \times \mathbf{P}_{\mathbf{3 1}} \times \mathbf{P}_{\mathbf{7 1}} \times \mathbf{P}_{\mathbf{9 1}_{1} \ldots} \times \mathbf{P}_{\mathbf{1 n}} \times \mathbf{P}_{3 \mathrm{n}} \times \mathbf{P}_{7 \mathbf{n}} \times \mathbf{P}_{\mathbf{9 n}_{\mathbf{n}}}\right)$ is a number with 3 as its last digit, $\mathrm{Q}+10$ is also with 3 as its last digit, if $\left(\mathbf{P}_{\mathbf{1 1}} \times \mathbf{P}_{\mathbf{3 1}} \times \mathbf{P}_{71} \times \mathbf{P}_{91} \ldots \times \mathbf{P}_{1 \mathbf{n}} \times \mathbf{P}_{3 \mathrm{n}} \times \mathbf{P}_{7 \mathbf{n}} \times \mathbf{P}_{9 \mathbf{n}}\right)$ is a number with 7 as its last digit, $\mathrm{Q}+10$ is also with 7 as its last digit, or if $\left(\mathbf{P}_{11} \times \mathbf{P}_{31} \times \mathbf{P}_{71} \times \mathbf{P}_{91} \ldots \times \mathbf{P}_{1 \mathrm{n}} \times \mathbf{P}_{3 \mathrm{n}} \times \mathbf{P}_{7 \mathbf{n}} \times \mathbf{P}_{9 n}\right)$ is a number with 9 as its last digit, $\mathrm{Q}+10$ is also with 9 as its last digit, for

$$
\mathbf{Q}=\left(\mathbf{P}_{11} \times \mathbf{P}_{31} \times \mathbf{P}_{71} \times \mathbf{P}_{91} \ldots \times \mathbf{P}_{1 \mathrm{n}} \times \mathbf{P}_{3 \mathrm{n}} \times \mathbf{P}_{7 \mathrm{n}} \times \mathbf{P}_{\mathbf{9}_{\mathrm{n}}}\right)+\mathbf{1 0}
$$

Now we can see that if we divide Q by any of our 4 n primes there is always a remainder of 10 , and so Q is not divisible by any of the primes. However, we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be a prime or if Q is a number with 1 as its last digit, Q must be divisible by a prime that is larger than $\mathbf{P}_{\mathbf{1 n}}$, if Q is a number with 3 as its last digit, Q must be divisible by a prime that is larger than $\mathbf{P}_{\mathbf{3 n}}$, if Q is a number with 7 as its last digit, Q must be divisible by a prime that is larger than $\mathbf{P}_{7 \mathbf{n}}$, or if Q is a number with 9 as its last digit, Q must be divisible by a prime that is larger than $\mathbf{P}_{9 \mathbf{n}}$, thus our assumption that $\mathbf{P}_{\mathbf{1 n}}, \mathbf{P}_{\mathbf{3 n}}, \mathbf{P}_{\mathbf{7 n}}$, or $\mathbf{P}_{\mathbf{9 n}}$ are the largest prime numbers with $1,3,7$, or 9 as their last digit has led us to a contradiction. Therefore, this assumption must be false, and so there is no largest prime number with $1,3,7$, or 9 as its last digit and the set of prime numbers with $1,3,7$, or 9 as their last digit is endless.

1. When any even integer (N) has 0 as its last digit, such as $10,20,30,40,50,60,70,80,90,100,110,120, \ldots$,
$\mathrm{N}-\$ 3=\mathrm{O}$, if we can prove at least one of these O 7 s is $\$ 7$, then N is the sum of 2 primes; or $\mathrm{N}-\$ 7=\mathrm{O} 3$. Further, if we can prove at least one of these O 3 s is $\$ 3$, then N is the sum of 2 primes as shown in table 1 .

Table 1.

$\$ 7$	\ldots	137	127	107	97	67	47	37	17	7
$\mathrm{~N}-\$ 7$	\ldots	$\mathrm{~N}-137$	$\mathrm{~N}-127$	$\mathrm{~N}-107$	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$
$\$ 3$	\ldots	113	103	83	73	53	43	23	13	3
$\mathrm{~N}-\$ 3$	\ldots	$\mathrm{~N}-113$	$\mathrm{~N}-103$	$\mathrm{~N}-83$	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

From Formulas $3,4,5$, and 6 , we know there are similar numbers of primes with $1,3,7$, or 9 as their last digit.
According to the prime number theorem, the number of prime numbers less than N is approximately given by $\mathrm{N} / \ln (\mathrm{N})$. Thus, for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ primes with 7 as their last digit (the first line of table $1,4 \mathrm{x}$ is due to the fact that only $1 / 4$ of total primes with 7 as its last digit). Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 3(\mathrm{~N}-\$ 7$, the second line of table 1) which should be approximately $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number $\mathrm{N}>200$, there are more than 4 pairs of primes in which one prime ($\$ 7$) has 7 as its last digit and another prime ($\mathrm{N}-\$ 7$) has 3 as its last digit. When N with 0 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For $\$ 3$ and $\mathrm{N}-\$ 3$ pairs (the bottom 2 lines of table 1), this is also true.

Table 2.

$\$ 1$	\ldots	151	131	101	71	61	41	31	11
$\mathrm{~N}-\$ 1$	\ldots	$\mathrm{~N}-151$	$\mathrm{~N}-131$	$\mathrm{~N}-101$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-11$
$\$ 9$	\ldots	149	139	109	89	79	59	29	19
$\mathrm{~N}-\$ 9$	\ldots	$\mathrm{~N}-149$	$\mathrm{~N}-139$	$\mathrm{~N}-109$	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 1 as their last digit (the first line of table 2). Correspondingly, we have $N /[4 x \ln (N)]$ of $O 9(N-\$ 1$, the second line of table 2$)$ which should be approximately $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $\mathrm{N}>200$, $\{\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]\} / \ln \{\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]\}>4$, so for any number N , there are more than 4 pairs of primes in which one prime (\$1) has 1 as its last digit and another prime ($\mathrm{N}-\$ 1$) has 9 as its last digit. When N with 0 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For $\$ 9$ and $\mathrm{N}-\$ 9$ pairs (the bottom 2 lines of table 2) is also true.

For $N=600$ (see table 3), $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}=\{600 /[4 x \ln (600)]\} / \ln \{600 /[4 x \ln (600)]\}=23.449 / \ln (23.449)=23.449 / 3.155$ $=7.43$. so there may be $7.43 \$ 7$ and $\mathrm{N}-\$ 7$ prime pairs, and $7.43 \$ 3$ and $\mathrm{N}-\$ 3$ prime pairs, total14.86. In fact, 600 can be expressed as the sum of 15 pairs of primes in which one prime has 3 as its last digit and another prime has 7 as its last digit. That should be true for $\$ 1$ and $\mathrm{N}-\$ 1$ prime pairs and $\$ 9$ and $\mathrm{N}-\$ 9$ prime pairs, in fact, 600 can be expressed as the sum of 16 pairs of primes in which one prime with 1 has its last digit and another prime 9 as its last digit.

Table 3.

2. When any even integer (N) has 2 as its last digit, such as $12,22,32,42,52,62,72,82,92,102,112,122, \ldots$,

Table 4.

$\$ 3$	\ldots	103	83	73	53	43	23	13	3
$\mathrm{~N}-\$ 3$	\ldots	$\mathrm{~N}-103$	$\mathrm{~N}-83$	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$
$\$ 9$	\ldots	149	139	109	89	79	59	29	19
$\mathrm{~N}-\$ 9$	\ldots	$\mathrm{~N}-149$	$\mathrm{~N}-139$	$\mathrm{~N}-109$	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$. Consequently, for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 3 as their last digit (the first line of table 4).
Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 9(\mathrm{~N}-\$ 3$, the second line of table 4$)$, in which case there should be approximately $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. Moreover, for any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pair of primes in which one prime (\$3) has 3 as its last digit and another prime ($\mathrm{N}-\$ 3$) has 9 as its last digit. When N with 2 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For $\$ 9$ and $\mathrm{N}-\$ 9$ pairs (the bottom 2 lines of table 4) is also true.

Table 5.

$\$ 1$	\ldots	151	131	101	71	61	41	31	11

N-\$1	\ldots	N-151	N-131	N-101	N-71	N-61	N-41	N-31	N-11

According to the prime number theorem, the number of prime numbers less than N is approximately given by $\mathrm{N} / \ln (\mathrm{N})$. Therefore, for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 1 as their last digit (the first line of table 5). Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 1(\mathrm{~N}-\$ 1$, the second line of table 5$)$, which should correspond approximately
to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime ($\$ 1$) has 1 as its last digit and another prime ($\mathrm{N}-\$ 3$) has 1 as its last digit. Consequently, when N has 2 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.
3. When any even integer (N) has 4 as its last digit, such as $14,24,34,44,54,64,74,84,94,104,114, \ldots$.

Table 6.

$\$ 7$	\ldots	127	107	97	67	47	37	17	7
$\mathrm{~N}-\$ 7$	\ldots	$\mathrm{~N}-127$	$\mathrm{~N}-107$	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of primes with 7 as their last digit (the first line of table 6). Correspondingly, we have $N /[4 x \ln (N)]$ of $O 7(N-\$ 7$, the second line of table 6$)$ which should correspond approximately to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$7) has 7 as its last digit and another prime (N-\$7) has 7 as its last digit. Therefore, when N has 4 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 7.

$\$ 3$	\ldots	153	113	103	83	53	43	23	13	3
$\mathrm{~N}-\$ 3$	\ldots	$\mathrm{~N}-153$	$\mathrm{~N}-113$	$\mathrm{~N}-103$	$\mathrm{~N}-83$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$
$\$ 1$	\ldots	181	151	131	101	71	61	41	31	11
$\mathrm{~N}-\$ 1$	\ldots	$\mathrm{~N}-181$	$\mathrm{~N}-151$	$\mathrm{~N}-131$	$\mathrm{~N}-101$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-11$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 3 as their last digit (the first line of table 7). Correspondingly, we have $N /[4 x \ln (N)]$ of $O 1(N-\$ 3$, the second line of table 7) which should correspond approximately to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$3) has 3 as its last digit and another prime ($\mathrm{N}-\$ 3$) has 1 as its last digit. We just showed that when N has 4 as its last digit, Goldbach's Conjecture is true if the prime number theorem is true. Now, we know that for $\$ 1$ and $\mathrm{N}-\$ 1$ pairs (the bottom 2 lines of table 7), this is also true.
3. When any even integer (N) has 6 as its last digit, such as 6 ,
4. $16,26,36,46,56,66,76,86,96,106,116, \ldots$.

Table 8.

$\$ 3$	\ldots	153	113	103	83	73	53	43	23	13	3
$\mathrm{~N}-\$ 3$	\ldots	$\mathrm{~N}-153$	$\mathrm{~N}-113$	$\mathrm{~N}-103$	$\mathrm{~N}-83$	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})$] prime numbers with 3 as their last digit (the first line of table 8). Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 3(\mathrm{~N}-\$ 3$, the second line of table 8$)$ which should correspond approximately to $\{\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]\} / \ln \{\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$3) has 3 as its last digit and another prime ($\mathrm{N}-\$ 3$) has 3 as its last digit. Therefore, when N has 6 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 9.

\$9	\cdots	149	139	109	89	79	59	29	19
N-\$9	\cdots	N-149	N-139	N-109	N-89	N-79	N-59	N-29	N-19
\$7	\cdots	127	107	97	67	47	37	17	7
N-\$7	\cdots	N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 9 as their last digit (the first line of table 9). Correspondingly, we have $N /[4 x \ln (N)]$ of $O 7(N-\$ 9$, the second line of table 9$)$ which should correspond approximately to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200$, $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$9) has 9 as its last digit and another prime ($\mathrm{N}-\$ 9$) has 7 as its last digit. Therefore, when N has 6 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. Moreover, for $\$ 7$ and $\mathrm{N}-\$ 7$ pairs (the bottom 2 lines of table 9), this is also true.
5. When any even integer (N) has 8 as its last digit, such as $8,18,28,38,48,58,68,78,88,98,108,118, \ldots$.

Table 10.

$\$ 9$	\ldots	149	139	109	89	79	59	29	19
$\mathrm{~N}-\$ 9$	\ldots	$\mathrm{~N}-149$	$\mathrm{~N}-139$	$\mathrm{~N}-109$	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 9 as their last digit (the first line of table 10). Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 9(\mathrm{~N}-\$ 9$, the second line of table 10) which should correspond approximately to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$9) has 9 as its last digit and another prime ($\mathrm{N}-\$ 9$) has 9 as its last digit. Thus, when N has 8 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 11.

$\$ 7$	\ldots	127	107	97	67	47	37	17	7
$\mathrm{~N}-\$ 7$	\ldots	$\mathrm{~N}-127$	$\mathrm{~N}-107$	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$
$\$ 1$	\ldots	151	131	101	71	61	41	31	11
$\mathrm{~N}-\$ 1$	\ldots	$\mathrm{~N}-151$	$\mathrm{~N}-131$	$\mathrm{~N}-101$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-11$

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N / \ln (N)$, and so for any number N , there are approximately $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ prime numbers with 7 as their last digit (the first line of table 11). Correspondingly, we have $\mathrm{N} /[4 \mathrm{x} \ln (\mathrm{N})]$ of $\mathrm{O} 1(\mathrm{~N}-\$ 7$, the second line of table 11) which should correspond approximately to $\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}$. For any number $N>200,\{N /[4 x \ln (N)]\} / \ln \{N /[4 x \ln (N)]\}>4$, and so for any number N, there are more than 4 pairs of primes in which one prime (\$7) has 7 as its last digit and another prime ($\mathrm{N}-\$ 7$) has 1 as its last digit. We already know that when N has 8 as its last digit, we have proven Goldbach's Conjecture is true if the prime number theorem is true. For $\$ 1$ and $\mathrm{N}-\$ 1$ pairs (the bottom 2 lines of table 11), this is also true.

So we have now proven that Goldbach's Conjecture is true if the prime number theorem is true for any even number N and N is bigger, the number of pairs of primes whose sum is N is more.

When N is infinity (∞), do we have infinite pairs of primes in which their sum is N ? Let's re-organize table 1 to table 12:
Table 12.

\$7	\ldots	The first \$7>N/9	\ldots	137	127	107	97	67	47	37	17	7
N-\$7	\ldots	N - The first $\$ 7>\mathrm{N} / 9$	\ldots	N-137	N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7
\$3	\cdots	The first \$7>N/9	\ldots	113	103	83	73	53	43	23	13	3
N-\$3	\cdots	N - The first \$7>N/9		N-113	N-103	N-83	N-73	N-53	N-43	N-23	N-13	N-3

In the first 2 lines in table 12, when $\$ 7>\mathrm{N} / 9, \mathrm{~N}-\$ 7$ cannot be divided by $\$ 7>\mathrm{N} / 9$ (because the smallest $\$ 9$ is $9(3 \times 3)$, so $\$ 9 \mathrm{x}$ $\$ 7(>\mathrm{N} / 9)>\mathrm{N})$. Let $\$ 7_{1}, \$ 7_{2}, \$ 7_{3}, \ldots \$ 7_{\mathrm{n}}$, represent the primes $>\mathrm{N} / 9$ in the order.

The chance for all N-\$7 (O3 or \$3) being a prime is: $\Delta_{3}=\mathrm{N} / 10-(\mathrm{N} / 10) \sum_{3}=\mathrm{N} / 10-\{(\mathrm{N} / 10)[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \times 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43)+$
$(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47)+$
$(1 / 67 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 18 / 19 \mathrm{x} 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 58 / 59 \mathrm{x} 60 / 61)+$
($1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 x 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 58 / 59 \times 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71$)
$\left.+\ldots]\}-\left[1 / \$ 7_{1}+1 / \$ 7_{2}+1 / \$ 7_{3}, \ldots+1 / \$ 7_{n}\right]\right\}$ Let assume the pair, $\$ 7_{x}$ is the largest prime which is less than $\mathrm{N} / 9$, and that ($\$ 7_{\mathrm{x}}, \mathrm{N}-\$ 7 \mathrm{x}$) is the biggest pair of primes whose sum is N . When N is infinite, $\$ 7$ is infinite, and when the number of $\$ 7_{1}, \$ 7_{2}, \$ 7_{3}, \ldots . \$ 7_{\mathrm{n}}$ (all>N/9) is $\geq \$ 7_{1}$, thus $\left[\$ 7_{1} / \$ 7_{1}+1 / \$ 7_{2}+1 / \$ 7_{3}, \ldots+1 / \$ 7_{n}\right]>1$, one more pair of primes larger than $\$ 7_{x}, N-\$ 7_{x}$ will occur.. Our assumption that $\$ 7_{x}, \mathrm{~N}-\$ 7_{x}$ is the biggest prime has led us to a contradiction, and so this assumption must be false. Thus, there is no largest pair of primes $\left(\$ 7_{x}, N-\$ 7_{x}\right)$ and the pair of primes $\$ 7_{x}, N-\$ 7_{x}$ is endless when N is infinite. For other groups, we can easily prove they are true in the same fashion. We proved not only that every even integer greater than 2 can be expressed as the sum of two primes, but also proved that larger even integers (N) have more prime pairs that have a sum equal to the even integer (N). Hence, if N is an infinite even integer, then there are infinite prime pairs that sum to equal the even integer (N).

References:

1. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Theorem 2. (https://en.wikipedia.org/wiki/Prime_number).
2. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Lemma 5. (https://en.wikipedia.org/wiki/Prime_number).
