Conjecture on Poulet numbers of the form (q+2ⁿ)*2ⁿ⁺¹ where q prime

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I state the following conjecture: let P be a Poulet number and n the integer for which the number $(P - 1)/2^n$ is odd; then there exist an infinity of Poulet numbers for which the number $q = (P - 1)/2^n - 2^n$ is prime.

Conjecture:

Let P be a Poulet number and n the integer for which the number $(P - 1)/2^n$ is odd; then there exist an infinity of Poulet numbers for which the number $q = (P - 1)/2^n - 2^n$ is prime.

The first eighteen such Poulet numbers:

:	$561 = (19 + 2^{4}) * 2^{4} + 1;$
:	$645 = (157 + 2^2) * 2^2 + 1;$
:	$1105 = (53 + 2^4) * 2^4 + 1;$
:	$1387 = (691 + 2^{1}) * 2^{1} + 1;$
:	$1905 = (103 + 2^{4}) * 2^{4} + 1;$
:	$2047 = (1021 + 2^{1}) * 2^{1} + 1;$
:	$2821 = (701 + 2^2) * 2^2 + 1;$
:	$4369 = (257 + 2^{4}) * 2^{4} + 1;$
:	$4681 = (577 + 2^3) * 2^3 + 1;$
:	$5461 = (1361 + 2^2) * 2^2 + 1;$
:	$8481 = (233 + 2^5) * 2^5 + 1;$
:	$13747 = (6871 + 2^{1}) * 2^{1} + 1;$
:	$14491 = (7243 + 2^{1}) * 2^{1} + 1;$
:	$15709 = (3923 + 2^2) * 2^2 + 1;$
:	$15841 = (463 + 2^5) * 2^5 + 1;$
:	$16705 = (197 + 2^{6}) * 2^{6} + 1;$
:	$18705 = (1153 + 2^4) * 2^4 + 1;$
:	$19951 = (9973 + 2^{1}) * 2^{1} + 1.$

Note that, if we consider q the absolute value of the integer $(P - 1)/2^n - 2^n$, q is prime also in the case of P = 1729 and P = 12801:

: $(1729 - 1)/2^{6} - 2^{6} = -37;$

: $(12801 - 1)/2^9 - 2^9 = -487.$

Few larger such Poulet numbers:

:	999253360153	=	$(124906670011 + 2^3) * 2^3 + 1;$
:	999431614501	=	(249857903621 + 2^2) *2^2 + 1;
:	999607982113	=	(31237749409 + 2^5)*2^5 + 1;
:	999814392501	=	(249953598121 + 2^2)*2^2 + 1;
:	999855751441	=	(62490984449 + 2^4)*2^4 + 1.