Conjecture on Poulet numbers of the form $\left(q+2^{\wedge} n\right) * 2^{\wedge} n+1$ where q prime

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I state the following conjecture: let P be a Poulet number and n the integer for which the number ($\mathrm{P}-1$)/2^n is odd; then there exist an infinity of Poulet numbers for which the number $q=(P-1) / 2^{\wedge} n-2^{\wedge} n$ is prime.

Conjecture:

Let P be a Poulet number and n the integer for which the number $(P-1) / 2^{\wedge} n$ is odd; then there exist an infinity of Poulet numbers for which the number $q=(P-1) / 2^{\wedge} n-2^{\wedge} n$ is prime.

The first eighteen such Poulet numbers:
$: \quad 561=\left(19+2^{\wedge} 4\right) * 2^{\wedge} 4+1$;
$: \quad 645=\left(157+2^{\wedge} 2\right) * 2^{\wedge} 2+1$;
$: \quad 1105=\left(53+2^{\wedge} 4\right) * 2^{\wedge} 4+1$;
$: \quad 1387=\left(691+2^{\wedge} 1\right) * 2^{\wedge} 1+1$;
$: \quad 1905=\left(103+2^{\wedge} 4\right) * 2^{\wedge} 4+1$;
$: \quad 2047=\left(1021+2^{\wedge} 1\right) * 2^{\wedge} 1+1$;
$: \quad 2821=\left(701+2^{\wedge} 2\right) * 2^{\wedge} 2+1$;
$: \quad 4369=\left(257+2^{\wedge} 4\right) * 2^{\wedge} 4+1$;
$: \quad 4681=\left(577+2^{\wedge} 3\right) * 2^{\wedge} 3+1$;
$: \quad 5461=\left(1361+2^{\wedge} 2\right) * 2 \wedge 2+1$;
$: \quad 8481=\left(233+2^{\wedge} 5\right) * 2^{\wedge} 5+1$;
$: \quad 13747=\left(6871+2^{\wedge} 1\right) * 2^{\wedge} 1+1$;
$: \quad 14491=\left(7243+2^{\wedge} 1\right) * 2^{\wedge} 1+1$;
$: \quad 15709=\left(3923+2^{\wedge} 2\right) * 2^{\wedge} 2+1$;
$: \quad 15841=\left(463+2^{\wedge} 5\right) * 2^{\wedge} 5+1$;
$: \quad 16705=\left(197+2^{\wedge} 6\right) * 2^{\wedge} 6+1 ;$
$: \quad 18705=\left(1153+2^{\wedge} 4\right) * 2^{\wedge} 4+1$;
$: \quad 19951=\left(9973+2^{\wedge} 1\right) * 2^{\wedge} 1+1$.
Note that, if we consider q the absolute value of the integer (P - 1) $/ 2^{\wedge} n-2^{\wedge} n$, q is prime also in the case of P $=1729$ and $\mathrm{P}=12801$:

$$
\begin{array}{ll}
: & (1729-1) / 2^{\wedge} 6-2^{\wedge} 6=-37 \\
: & (12801-1) / 2^{\wedge} 9-2^{\wedge} 9=-487 .
\end{array}
$$

Few larger such Poulet numbers:

$$
\begin{array}{ll}
: & \\
: & 999253360153=\left(124906670011+2^{\wedge} 3\right) * 2^{\wedge} 3+1 ; \\
: & 999431614501=\left(249857903621+2^{\wedge} 2\right) * 2^{\wedge} 2+1 ; \\
: & 999607982113=\left(31237749409+2^{\wedge} 5\right) * 2^{\wedge} 5+1 ; \\
: & 999814392501=\left(249953598121+2^{\wedge} 2\right) * 2^{\wedge} 2+1 ; \\
& 999855751441=\left(62490984449+2^{\wedge} 4\right) * 2^{\wedge} 4+1 .
\end{array}
$$

