Squares of primes that can be written as (p-q-1)*p-q-1 where p and q are successive primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In this paper I conjecture that there are an infinity of primes which can be written as sqr ((p - q 1)*p - q - 1), where p and q are successive primes, p > q.

Conjecture:

There are an infinity of primes which can be written as sqr (p - $q-1$)*p - $q-1)$, where p and q are successive primes, p > q .

The first sixteen such primes:
(ordered by the size of p and q)

```
: 5 = sqr ((11 - 7 - 1)*11 - 7 - 1) = sqr 25;
: 7 = sqr ((23-19 - 1)*23-19 - 1) = sqr 49;
: 11 = sqr ((29 - 23 - 1)*29 - 23 - 1) = sqr 121;
: 13 = sqr ((83 - 79 - 1)*83 - 79 - 1) = sqr 169;
: 19 = sqr ((89 - 83-1)*89 - 83-1) = sqr 361;
: 31 = sqr ((239 - 233 - 1)*239 - 233 - 1) = sqr 961;
: 47 = sqr ((367-359 - 1)*367-359 - 1) = sqr 2209;
: 79 = sqr ((1559 - 1553 - 1)*1559 - 1553 - 1) = sqr
    6241;
: 97 = sqr ((1567 - 1559 - 1)*1567 - 1559 - 1) = sqr
    9409;
: 89 = sqr ((1979 - 1973 - 1)*1979 - 1973 - 1) = sqr
    7921;
: 157 = sqr ((2053 - 2039 - 1)*2053 - 2039 - 1) = sqr
    24649;
    67 = sqr ((2243 - 2239 - 1)*2243 - 2239 - 1) = sqr
    4489;
: 101 = sqr ((2549 - 2543 - 1)*2549 - 2543 - 1) = sqr
    10201;
        73 = sqr ((2663 - 2659 - 1)*2663 - 2659 - 1) = sqr
        5329;
        109 = sqr ((2969 - 2963 - 1)*2969 - 2963 - 1) = sqr
        11881;
        179 = sqr ((3203 - 3191 - 1)*3203 - 3191 - 1) = sqr
        32041.
```

The first twelve primes which can't be written in the manner described:

$$
: \quad 2,3,17,23,37,41,43,53,59,61,71,79 .
$$

