Creatio Ex Nihilo: The Evolution Equation

D. Chakalov
chakalov.net

Abstract

It seems possible to suggest an evolution equation in cosmology, which permits unlimited creatio ex nihilo from the quantum vacuum, yet may not lead to catastrophic events.

1. Introduction

The idea (noêma) of ‘nothing’ means ‘something that has no inherent properties’, such as an empty set (if any). You can’t get something from nothing. In Latin, ex nihilo nihil fit, or ‘out of nothing, nothing becomes’. (In Mandarin, I suppose it reads 有關詳細資訊驗證.)

Well, it depends on what we mean by ‘nothing’. For example, if we look at a flat line, we can say that, obviously, there are no waves in it, although we know that waves can cancel each other completely due to destructive interference, leading to a flat line. Taking this example further, imagine that back in 19th century, long before Max Planck war born, some philosopher tried to relate the concept of ‘nothingness’ with the example of a flat line that contains no waves whatsoever: his argument will be logically correct, as even today people strive to explain (not define) the concept of ‘nothingness’ as ‘something that is not there’, like an empty set (if any). He may even try to speculate that the ancient ideas of ‘atom’ and ‘point’ (“that which has no part”, Euclid) may be related to this kind of ‘nothingness’ or ‘vacuum’. I believe it is safe to assume that nobody from the established scientific community in 19th century would have paid attention to such metaphysical exercise, yet it might have helped in our understanding of the quantum vacuum\(^2\) and its zero-point energy.

I would like to offer a similar metaphysical exercise (Path II), based on a new relativistic vacuum (Fig. 3), and will try to explain a new evolution equation (I have to avoid the generic case of ‘zero’ as The Noumenon’, which is not explicitly present in Fig. 1, because
it cannot be a set in principle, not even an “empty” one). The equation (Sec. 3) presumes specific coupling of matter (res extensa) to its potential states (res potentia), and offers conceptual solutions to many problems in our understanding of cosmology, gravity, and the alleged “dark energy”. How was the Universe created? And why is it larger than a football?

Let’s take a closer look at res potentia in the form of quantum vacuum (Slide 13). To quote Sir Arthur Eddington,

> A star is drawing on some vast reservoir of energy by means unknown to us. This reservoir can scarcely be other than the subatomic energy which, it is known exists abundantly in all matter; we sometimes dream that man will one day learn how to release it and use it for his service. The store is well-nigh inexhaustible, if only it could be tapped. (...) If, indeed, the sub-atomic energy in the stars is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent power for the well-being of the human race — or for its suicide.

I will argue that the inexhaustible “reservoir of energy” is related to gravity as well, because the genuine gravitational energy is not directly observable, much like the genuine ‘quantum state’, as stressed by Erwin Schrödinger in 1935. In a nutshell, the conservation of energy, including the input from gravity, is perpetually violated in the physical world, yet it is always conserved in the Platonic world of res potentia: have our cake and eat it. How could this be possible? With a new evolution equation (Sec. 3). The initial idea comes from Plato, with some minor modifications (Fig. 4), such as ‘chained Eskimos’ (Slide 14).

Now let me briefly mention two approaches to cosmology, dubbed Path I and Path II.

Consider the topological dimensions of 4D spacetime: if we look at a clock, we will always pinpoint an instant of the cosmic time, and if we look along any direction in 3D space, we can see as far as we like. Yet if we apply our current mathematical models to The Beginning of spacetime (Path I), we will hit an insurmountable problem: “Long time ago, there was a brief period of time during which there was still no time at all” (Yakov Zeldovich, private communication, 1986; translation mine). With Path I, we inevitably hit some “very special state” of the universe, which was perfectly smooth and gravity was still (Sic!) absent, and prior to such “very special” proto-state, there was “no time at all.” One would need some Biblical “miracle” to reproduce the world from “no time at all.”

We believe that Path I, despite being based on mathematical models, is not acceptable. Thus, we will pursue Path II by suggesting a phenomenological theory of spacetime, which is free from any problems and inadmissible errors, Biblical “miracles” included. Our goal is to suggest conceptual solutions to conceptual problems, such as “the worst theoretical prediction in the history of physics!” On the flip side, Path II still lacks mathematical description, firstly because the so-called hyperimaginary numbers are not yet unraveled.

2. Path II: Vacuum Energy

There is something truly peculiar about the vacuum: we can observe only its energy differences (Fig. 5). If we could gain access to the complex phase of quantum waves and tweak their destructive interference leading to “vacuum”, perhaps we could evoke real physical stuff to emerge at macroscopic level as ‘free lunch’, like creatio ex nihilo. But of course, we need quantum gravity in the first place, to eventually fulfill “our dream of controlling this latent power for the well-being of the human race — or for its suicide.”
The point here is that we can never observe the vacuum itself, so the expression ‘vacuum energy’ is false. To explain the puzzle, I suggested in September 2000 the parable of John’s jackets.

Suppose you chase somebody on the street (let’s call him John), and any time you catch him, he leaves his jacket in your hands. You can’t catch John himself. Only his jacket. You believe that John has a set (or is it strictly a set?) of physical jackets with different probabilities for catching, and you deeply believe that this set can be normalized, i.e., the sum of probabilities for catching his jackets is unity. Yet John does not wear any jacket by default — neither before nor after you catch his current jacket (Schrödinger, Slide 6¹). John is simply the Platonic Idea and ‘the true monad without windows’ (Leibniz, Slide 13¹).

The parable of John’s jackets applies to gravity⁸ as well — we certainly observe various gravitational ‘jackets’ in the right-hand side of Einstein’s field equations, despite the fact that there is no gravitational “spring or sink for matter energy-momentum anywhere in spacetime”⁹: if we try to present John himself with a tensor, as we do it for matter and fields in classical physics, we have to admit that there is no gravitational stress-energy tensor¹⁰ to describe John-the-Gravity. We can only observe his physicalized ‘jackets’, say, from “positive energy density of about 6×10⁻¹⁰ joules per cubic meter”⁷ to 8.8×10⁴⁷ joules (app. 4.9 times the sun’s mass turned to energy), in the case of GRB 080916C.

To cut the long story short, in our theory of quantum gravity we offer a common ‘John’ (res potentia) for all quantum-gravitational ‘jackets’ (res extensa), stressing that ‘John’ cannot be physically observed due to the “speed” of light (A2 in Slide 19¹¹). If people insist on modeling ‘John’ as some physical stuff, they will immediately hit “the worst theoretical prediction in the history of physics!”⁶. To explain why, let me offer a simple explanation, starting with the opposite case in which ‘John’ did not exist, only his ‘jackets’.

Suppose that you have €1000 in your bank account, and decide to withdraw €80 from it. You go to some cash machine on the street, insert your debit card, dial your password, and get your €80: the total amount of your €1000 remains conserved; you just have €80 less in your bank account, matching the same €80 in your wallet. All your money and those in the bank are physical stuff. Also, you can’t withdraw more than €1000 with your debit card, and the total amount of money in the bank is, say, €1.000.000.000. Simple and clear.

Now, suppose your money in the bank (not in your wallet) and bank’s money are ‘John’s jackets’ (Res potentia, Slide 13¹), and the requirements for withdrawing physical money (physical ‘jackets’) from your bank are that (i) you must possess the initial physical ‘quantum of money’ (similar to ‘one drop of petrol’⁶) in your wallet, which is one cent, and (ii) you can withdraw only ‘money differences’ (Fig. 5), akin to energy differences⁷. This case is totally different from the one above, because now you can withdraw indefinite amount of physicalized money, provided that the latter has finite value, neither “zero” nor “infinite”. It doesn’t matter if you withdraw €80 or crack the lottery jackpot of €80M.

Notice that there can be no conservation of physical money, because your money in the bank (not in your wallet) and bank’s money are indefinable, just like the “total amount” of “vacuum energy”. Thus, you may withdraw a colossal amount of physicalized money, say, €1B (similar to 8.8×10⁴⁷ joules from GRBs in the example above), provided that you have the initial physical ‘quantum of money’ (+/- 0 in Fig. 5) in your wallet. Even more: you may create a physicalized universe of ‘money’ with what some people call “inflation”
There can be no “violation” of the “initial amount” of money, simply because one cannot violate something that does not exist. Simple and clear, isn’t it?

The big puzzle, however, is the initial physical ‘quantum of energy’ in cosmology, which should coincide with The Beginning. It is tempting to associate the ‘quantum of energy’ with the elementary transition of the self-acting physicalized universe along the Arrow of Space (see p. 10 in Hyperimaginary Numbers), from any given instant/frame to the next one (Fig. 4). The elementary transition $dt$ (Fig. 1) equates to work, and we expect that the ‘quantum of energy’ has extremely small finite value, perhaps many orders of magnitude smaller than “positive energy density of about $6 \times 10^{-10}$ joules per cubic meter”.

But what is ‘negative energy density’? It is John’s jackets with respect to Res extensa (Slide 13) viz. the “nose” (Slide 14) made of positive energy density, which brings us to the evolution equation and the huge bundle of unsolved challenges related to the three types of mass — positive, negative, and imaginary (see p. 7 in Hyperimaginary Numbers).

3. The Evolution Equation

The evolution equation, proposed previously, reads

$$|w|^2 = |m|^2 + |m_i|^2$$  \hspace{1cm} (Eq. 1).

It is a symbolic equation (see Path II above) about two atemporal offer and confirmation waves, producing the elementary transition $dt$, $AB = dt$, depicted in Fig. 1 below.

![Fig. 1](image)

There is no physical metric in Eq. 1 and Fig. 1, and the proper “time” of the offer and confirmation waves with hypercomplex phases and amplitudes ($+/- m$ and $+/- m_i$) will be “frozen” or “stand still” to all physical clocks (not to the human brain).

The term $|m|^2$ presents the real (positive and negative) mass produced “after” the confirmation wave, whereas $|m_i|^2$ shows the imaginary mass. The prototype of Eq. 1 is

$$0 = (+1) + (-1)$$  \hspace{1cm} (Eq. 2).
Say, \(0 = 3/3 - 5/5\) or \(0 = 9/9 - 25/25 = 1 - 1\). Notice that \((+/\cdot 3)^2\) or \(\mid 3\mid^2 = 9\) and \((+/\cdot 5)^2\) or \(\mid 5\mid^2 = 25\). We postulate that the real and imaginary terms in the right-hand side of Eq. 1 belong to two entirely different worlds\(^1\), and that the ratio of their amplitudes (Fig. 2) is always equal to unity, e.g., \(9/9 (+/\cdot m) = 25/25 (+/\cdot m)\).

Suppose that at \(t_1\) we have \(0 = 9/9 - 9/9\) (Eq. 2), and later at \(t_2\) the imaginary term has increased, for whatever reason, to 25/25. Now there is more negative mass from squared imaginary mass \(\mid m_i\mid^2\) to feed (Sic!) the negative mass in \(\mid m\mid^2\) (Eq. 1): \(\mid w\mid^2 = \mid 5\mid^2 + \mid 5i\mid^2\), and we will have more physicalized or “positive” mass – \(\mid 5\mid^2 > \mid 3\mid^2\).

It’s all in the phase (Fig. 2). We can also produce the so-called “inflation” (Slide 12\(^1\)) and no “violation” of mass-energy “conservation” can occur, ever.

![Fig. 2](image1)

The evolution equation works in the opposite way (destructive interference) as well: if at \(t_1\) we have \(0 = 9/9 - 9/9\), and later at \(t_2\) the imaginary term has decreased to 4/4, there will be less negative mass from squared imaginary mass \(\mid m_i\mid^2\) to feed (Sic!) the negative mass in \(\mid m\mid^2\), and the physicalized or “positive” mass-energy will decrease – \(0 = 4/4 - 4/4\) (Eq. 2) or \(\mid w\mid^2 = \mid 2\mid^2 + \mid 2i\mid^2\) (Eq. 1). Again, it’s all in the phase, and no “violation” of mass-energy “conservation” can occur. Hence we can think about gravitational radiation\(^8\) and perhaps try to reproduce it with spacetime engineering (Fig. 8). Mark my words.

As of today, however, Eq. 1 and Fig. 7 are not clear, in addition to the condition \(\mid w\mid^2 = 0\), where \(w\) involves the so-called hyperimaginary unit\(^1\). We claim that, relative to the platform, time on the train completely stops and is “stand still”\(^1\), which means that the train has entered the atemporal realm of Res potentia (Slide 13\(^1\)) along +/- \(w\). This is a new relativistic vacuum, which is hidden by the “speed” of light (A2 in Slide 19\(^1\)). You cannot look twice at the same river (Heraclitus). Panta rei conditio sine qua non est.

![Fig. 3](image2)
We are like chained Eskimos (Slide 15) and the “speed” of light (A2 Slide 19) does not allow us to ‘turn around’ and see the Platonic world (Fig. 4) “inside” \( dt \) (Fig. 1).

Fig. 4

To make the real line/film reel \textit{perfectly} smooth (see Fig. 7 in Hyperimaginary Numbers) or “\textit{infinitely differentiable}”, and speculate that every point/frame from it corresponds to a ‘number’, the current math textbooks offer two and only two alternatives: the \textit{dark strip} separating any neighboring points/frames (Fig. 4) is either (i) “zero” or (ii) non-zero. Case (i) leads to only one point/frame, and no change in time is possible. Bad idea. Case (ii) will insert a non-zero gap \( dt \) between all points/frames. Bad idea, too.

The only possible solution to the fundamental \textit{flow of events} \( A \neq B \neq C \neq D, \ldots \) (Fig. 4) is combination of (i) and (ii), meaning that every 4D event ‘here and now’, pertaining to the physical world (\textit{Res extensa}, Slide 13), must pass through a \textit{gap} “during” which there is no \textit{spacetime at all} (compare with Yakov Zeldovich \textit{above}), so at the \textit{next} ‘tick of time’ \( dt \), the \textit{next} 4D ‘here and now’ \textit{can} and will be \textit{different}: the \textit{flow of events} requires \textit{change}. Thus, we suggest to place the horizontal \textit{dark gaps} in Fig. 4 along the hyperimaginary axis \( W \) erected on null spacetime distances, and to treat \( W \) as \textit{non-event} — The Beginning is eternally residing “inside” us (John 1:1; Luke 17:21).

Let me reiterate that we introduce (Slide 13) fundamental \textit{flow of events} (“you cannot look twice at the same river”, \textit{Heraclitus}), as a result of which the atom of geometry (“\textit{that which has no part}”, Euclid) is endowed with internal structure (Fig. 1): check out Sec. 2 and Fig. 7 in Hyperimaginary Numbers, and A2 in Slide 19. Many “intuitively clear” axioms used in constructing the \textit{topological manifold} and the differentiable or “\textit{smooth}” manifold need painstaking revision, starting with the “intuitively clear” axiom of \textit{mapping numbers to points}: the hyperimaginary numbers cannot be mapped to ‘points’ from a line; only their \textit{physicalized “jackets”} can cast their \textit{physicalized} footprints on the points from the \textit{number line}, as they belong to the \textit{irreversible} past (Slide 13). Recall Plato’s \textit{allegory of the cave}’s: the world is not just what we can see (Fig. 4).

We are ‘Eskimos’ (Slide 14) and need new Mathematics to present three ontologically different ‘elements of reality’: (i) points mapped to \textit{numbers}, as in classical physics, (ii) points mapped to ‘John’s jackets’ with hyperimaginary numbers, and (iii) \textit{John (not his...}
‘jackets’) mapped to the Noumenon with hyperimaginary numbers (hi-numbers, in addition to q-numbers and c-numbers).

4. Questions and Answers

Q1: What do you mean by “increased” and “decreased” stuff?

A1: Right, there is no metric in the Platonic realm of hyperimaginary waves (Fig. 2). Think about the idea of a tree and the idea of a mountain: there is no metric in the human memory, yet the idea of a tree corresponds to lighter physical object, compared to a mountain. Likewise with $|m|^2$ and $|m|^2$: you operate with Platonic objects as well, and should be able, for example, to reduce the weight of your body (switch from ‘mountain’ to ‘tree’) and even cancel it for a few minutes, in order to fly in the air. Many people can fly, but most of them unfortunately prefer to present it as some “magic”, for profit.

Q2: I don’t understand your “waves”. What are they?

A2: Two hyperimaginary waves, corresponding to two potential (Res potentia in Slide 13) mirror worlds. At every 4D instant ‘here and now’ in the physical universe (A2 in Slide 19) made exclusively by positive mass-energy, the offer and confirmation waves (Fig. 1) have already “squared” their amplitudes, yielding positive mass-energy, $|m|^2$ in Eq. 1.

Q3: What do you mean by ‘quantum of energy’? Is it related to Planck constant?

A3: I can only try to answer your first question. By ‘quantum of energy’ I mean the minimal “push” by the self-acting physicalized universe: see ref. [9] in Hyperimaginary Numbers. As Banesh Hoffmann suggested in 1964, “If the universe is such that negative-mass particles can, on balance, “escape to infinity” (Sic! - D.C.) there will be an effect of continual creation of positive energy in the observed region” (pp. 95-96). Even in 1920, Sir Arthur S. Eddington spoke about ‘etheral energy’ and explained that “though ether waves are not usually classed as material, they have the chief mechanical properties of matter — viz., mass and momentum” (p. 345). Thus, the “creation field” in Eq. 1 is always producing gravitational radiation ($|m|^2$ in Eq. 1), but because Sir Arthur could not trace it to some physical process known in 1920, he opted for ‘ether waves’ and ‘etheral energy’. Nowadays we can interpret Eq. 1 as quantum-gravitational “creation field” emerging from some kind of hyperimaginary plasma composed of positive and negative propensities (cf. A1 and A2 above), which supposedly fluctuate about their mean values of zero (Eq. 2).

As to your second question — sorry, I don’t know the origin of Quantum Inequalities (QIs).

Needless to say, I am by no means satisfied with the evolution equation. It might look a bit more “substantial” than the symbolic Einstein’s equation, but it is still a symbolic equation (Path II) and cannot be used for calculating proton’s mass (Slide 10) or the “dark” effects of quantum-gravitational vacuum. I can only argue that what was called here ‘quantum of energy’ is related to work (see above), referring to the self-acting human brain — check out the experiment on p. 2 in Hyperimaginary Numbers and those in Slide 11. If the physicalized universe ($|m|^2$ in Eq. 1) is designed as the Brain of the Universe, it should possess self-acting faculty as well, and therefore could act on itself to produce the elementary ‘tick of time’ $dt$ (Fig. 1) matching the quantum of energy.

One major corollary is that if the human brain is indeed part and parcel of the Brain of the Universe, we should be able to access (Fig. 8) the atemporal quantum vacuum and
practice *spacetime engineering* — effortlessly, because it’s all in the *phase* (Fig. 2). Check out the story about the yellow button on p. 15 in Hyperimaginary Numbers\(^1\). The ‘yellow button’ is not made by “*magic*” but by exploring the quantum spacetime\(^20\).

References and Notes

1. D. Chakalov, Hyperimaginary Numbers, 31 December 2016. Available at [this http URL](http://example.com).


   One of the biggest mysteries is that we live in a world in which it is possible to look around, and see as far as we like.


   It seems to me to be far more plausible that the answer to the above question as to why the very early universe was in a very low entropy state is that it came into existence in a very special state. Of course, this answer begs the question, since one would then want to know *why* it came into existence in a very special state, i.e., what principle or law governed its creation. I definitely do not have an answer to this question.

6. M. P. Hobson, G. P. Efstathiou, A. N. Lasenby, *General Relativity: An Introduction for Physicists*, Cambridge University Press, 2006, see p. 187 at [this http URL](http://example.com). To explain the “dark” puzzle, suppose you have only one drop of petrol in the tank of your car, yet you bravely run the car and push the accelerator. As your car accelerates, you obtain more and MORE petrol in the tank, and at the instant you are reading these lines, the “dark” petrol has increased to nearly 68.3% from the total petrol in the tank. Such perpetual ‘free lunch’ is not permitted in the geodesic hypothesis, as energy “conservation” is postulated in the current GR, to suggest geodesic motion based on (non-tensorial) Christoffel symbols.


Since a mere minus sign distinguishes space from time, the remaining case \((n,m) = (1, 3)\) is mathematically equivalent to the case where \((n,m) = (3, 1)\) and all particles are tachyons \([14]\) with imaginary rest mass.

Footnote 4: The only remaining possibility is the rather contrived case where data is specified on a null hypersurface. To measure such data, an observer would need to “live on the light cone”, i.e., travel with the speed of light, which means that it would subjectively not perceive any time at all (its proper time would stand still). (Emphasis mine; see A2 in Slide 19 - D.C.)


If such fields are truly physical, then why does Nature bother to enforce QIs at all? The fascinating mysteries and subtleties of negative energy should keep us all busy for a while yet.

13. According to Aristotle \([Poetics VII 1450b27-29]\), The Beginning is that which does not have anything necessarily before it, but does have something necessarily following from it. The Beginning is believed to possess self-acting faculty, since it is also the Unmoved Mover (that which moves without being moved). Thus, it (not “He”) can only be presented as purely mathematical object residing “between” (cf. the dark strips in Fig. 4) any two primary events connected by cause-and-effect relations, but without being an intermediate event – The Beginning is not an event. It is both “no time at all” (Yakov Zeldovich) and the
causal horizon of spacetime\textsuperscript{20}, a “boundary” for causal influence and processes. It is also \textit{The Noumenon} and \textit{John 1:1}: check out ‘John’s jackets’ above, endowed with \textit{infinitesimal} ‘quantum of energy’. The latter must have some finite, albeit extremely small, positive energy, because it cannot be dead zero: \textit{ex nihilo nihil fit}. As an analogy, recall that we widely speculate about some minimal \textit{Planck length}, app. $1.6 \times 10^{35}$m, which may be interpreted here as the \textit{infinitesimal} ‘quantum of length’, although we \textit{cannot} reproduce \textit{1m} with $1.6 \times 10^{35} \times 1.6 \times 10^{35} = 1$. Ditto to the buildup of $|m|^2$ in Eq. \textit{1}. Example: proton’s mass\textsuperscript{14}, depicted in Fig. 5 with $AB = 938$ Mev; the cutoff $Z$ stands for “zero”\textsuperscript{2} in Eq. \textit{2}.

\textbf{Fig. 5}

Now comes some advanced math: $(B - Z) - (A - Z) = AB +/ - 0 = 938$ Mev “with precision of one part to $10^{45}$”\textsuperscript{14} (Slide 10\textsuperscript{1}) – “one of the greatest mysteries of Nature”\textsuperscript{14}. We cannot speculate that the error margin here matches the \textit{infinitesimal} ‘quantum of energy’, which in the case of proton’s mass is effectively “zero”\textsuperscript{2} or $10^{-45}$.


15. \textit{Mathematical Cosmology and Extragalactic Astronomy}, ed. by Irving Ezra Segal, Academic Press, 1976; read an excerpt from pp. 8-9 at this http URL and notice my note at the end. The alleged “smooth” or “infinitely differentiable” manifold is a joke\textsuperscript{20}, for reason explained with the film reel above. It shows \textit{different} points/frames from the \textit{real number line}: time requires \textit{change}, $A \neq B \neq C \neq D$, ... (Fig. 4), as read with a clock.

We need new Mathematics to unravel the so-called hyperimaginary numbers\textsuperscript{1} with which we can address, and hopefully solve, various problems in the existence of \textit{limit}, \textit{interval}, \textit{infinity}, the \textit{Thomson lamp paradox}, \textit{point-set topology}, \textit{set theory}, and \textit{number theory}. Detailed information is available upon request.

If the reader of these lines is interested in \textit{quantum gravity}, I would suggest to compare the interpretation of the “time-dependent” Schrödinger equation\textsuperscript{16} by Britain’s greatest \textit{quantum gravity expert} to Slide 7\textsuperscript{1}. Then all pieces of the jigsaw puzzle should snap to their unique places, effortlessly.

Just keep in mind that no \textit{physical} clock\textsuperscript{17} (GR included) can read the time in the \textit{flow of events} (Fig. 4) composed by \textit{identical} (Sic!) timelike displacements\textsuperscript{18} $AB = dt$ (Fig. 1): the universal “drummer”\textsuperscript{18} is \textit{not} physical phenomenon (Fig. 3); see the example with ‘international second’ on p. 3 and the discussion on p. 10 in Hyperimaginary Numbers\textsuperscript{1}.


The background \textit{Newtonian time} appears explicitly in the time-dependent Schrödinger equation (3), but it is pertinent to note that such a time is truly an abstraction in the sense that no \textit{physical} clock can provide a precise measure of it.
[UW89]: there is always a small probability that a real clock will sometimes run backwards (D ≠ C ≠ B ≠ A, cf. Fig. 4 - D.C.) with respect to Newtonian time.


The problem is, for physically realistic Hamiltonians H one can prove there is no operator T with

\[ [H,T] = i \hbar \]

In other words, there is no time observable!


The existence of an intrinsic time interval associated to any timelike displacement is another deep mystery. The fact is that, in Nature, there are systems that can serve as clocks. It seems to be the case that fundamental systems all march to the beat of the same drummer.


Most natural philosophers from Aristotle to Descartes held that material entities can influence each other only by coming into direct contact, i.e., “an object cannot act where it is not”. However, Newton’s theory of gravity undermined confidence in the doctrine of “direct contact”, because in Newton’s theory gravity is represented as an instantaneous universal force of attraction between every pair of objects, regardless of the distance between them, and regardless of whether the space between them contains any material substance.

According to this picture, a completely free massless particle - if such a thing existed - might just be represented by an entire null-cone, but a real photon is necessarily emitted and absorbed as a quantum of action, so it corresponds to a bounded null interval in spacetime (Fig. 1 - D.C.). (The quantum phase of a photon does not advance while in transit between its emission and absorption, unlike massive particles; the oscillatory nature of electromagnetic waves arises from the advancing phase of the source, rather than from any phase activity of a photon “in flight”.) Thus the field excitation corresponding to a massless particle propagates at the speed of light and has no rest frame (Fig. 3 - D.C.). In contrast, a massive particle has a rest frame, following a time-like path through spacetime.

The “surface area” of this locus (the intersection of the two cones) is necessarily zero (cf. Fig. 1 - D.C.), corresponding to the fact that these interactions represent the transits of massless particles.

In addition to the usual 3+1 dimensions, one could argue that spacetime operationally entails two more “curled up” dimensions of angular orientation to represent the possible directions in space. The motivation for treating these as dimensions in their own right arises from the non-transitive topology of the pseudo-
Riemannian manifold. Each point \([t,x,y,z]\) actually consists of a two-dimensional orientation space, which can be parameterized (for any fixed frame) in terms of ordinary angular coordinates \(q\) and \(f\). Then each point in the six-dimensional space with coordinates \([x,y,z,t,q,f]\) is a terminus for a unique pair of spacetime rays, one forward and one backward in time. We might imagine a tiny computer at each of these points, reading its input from the two rays and sending (matched conservative) outputs on the two rays, as illustrated below in the xyt space:

The point at the origin of these two views is on the **mediating surface** of events A and B. Each point in this space acts purely locally on the basis of purely local information. Specifying a preferred polarity for the two null rays terminating at each point in the 6D space, we automatically preclude causal loops and restrict information flow to the future null cone, while still preserving the symmetry of wave propagation.

Both components of a wave-pair could be regarded as “advanced”, in the sense that they originate on a spherical surface, one emanating forward and one backward in time, but both **converge inward** on the particles involved in the interaction.

According to this view, the “unoccupied points” of spacetime are elements of the 6D space, whereas an event or particle is an element of the 4D space \((t,x,y,z)\). In effect an event is the union of all the pairs of rays terminating at each point \((x,y,z)\).

One possible objection to the idea that quantum interactions occur locally between null-separated points is based on the observation that, although every point on the mediating surface is null-separated from each of the interacting events, they are **spacelike-separated** from each other, and hence unable to communicate or coordinate the generation of two equal and opposite outgoing quantum waves (one forward in time and one backward in time). However, communication between those events may not be required, because the “coordination” might arise naturally from the context (e.g., the holomovement of fish - D.C.).

**Note:** I tried many times to contact Kevin Brown\(^{19}\), but he did not reply. My model of causality, dubbed ‘biocausality’ (January 1990), requires two **modes** of spacetime: local (time-like) mode and global atemporal mode along null intervals. Example: the school of fish in ref. [11] in Hyperimaginary Numbers\(^1\) and pp. 89-90 in gravity.pdf.

Dead matter makes quantum jumps; the living-and-quantum matter is smarter.

Addendum
I argued above that the so-called “smooth” or “infinitely differentiable” manifold (\(C^\infty\)) is a joke. Why? Because we all know, very well indeed, that neither option (i) nor option (ii) in Fig. 4 could work — people acknowledge the fundamental problem of the continuum even in textbooks (e.g., Karel Hrbacek and Thomas J. Jech, *Introduction to Set Theory*, 3rd ed., Marcel Dekker, Basel, 1999, p. 269; excerpt at this http URL).

To understand the continuum made by ‘atoms of geometry’ \(dt\) (Fig. 1), consider the causal horizon of spacetime, which acts as a “boundary” for causality, denoted with AB in the drawing at this http URL: how “large” is the dark strip \(dt\) in Fig. 4 viz. Fig. 1?

It cannot be dead zero, due to Planck’s constant. So if we instruct A to tend asymptotically (potential infinity) toward \(Z\) in Fig. 5, then \(ZA = dt\) in Fig. 4. Likewise if we instruct B to tend asymptotically (potential infinity) toward \(Z\) in Fig. 6 below, \(BZ = dt\) in Fig. 4 as well.

![Fig. 6](http://example.com/fig6.png)

We can picture the atom of geometry \(dt\) as \([dt (\ldots) dt]\), as shown in the drawing at this http URL. In Fig. 6 and Fig. 7 below, \(Z\) denotes The Beginning & The End (John 1:1; Luke 17:21) at the intersection \(Z\) of \(-w\) and \(+w\) (shown in Fig. 9.2). The two hyperimaginary waves \(-w\) and \(+w\) pertain to the two mirroring worlds in Eq. 1, and are erected along \(W\) on null spacetime distances at every physical point \(dt\) (Fig. 1) in Fig. 6.

![Fig. 7](http://example.com/fig7.png)

Imagine a water lily with four leaves having two modes: open (Fig. 7) and closed leading to two squared terms in the right-hand side of Eq. 1. This atemporal phenomenon is also known as the “breathing” of the Universe: Inhaling (open leaves, Fig. 7) and Exhaling (closed leaves, Fig. 1). The latter leads to squared parameters in the invariant spacetime interval, including squared “speed” of light \(c^2\), which makes it impossible in principle to
detect any physical aether endowed with the fundamental asymmetry of the Heraclitean flow of events (Fig. 4). If we could, the theory of relativity will be proven wrong.

For example, we face two equally important ‘components’ in the definition of causality, and we can only label one of them with “future pointing” and the other with “past pointing” to present the obvious “time-orientability” of causality. See also ref. [13] and p. 191: we have spatial inside-out symmetry (Fig. 8 and Fig. 9.2), exactly like the temporal symmetry in causality — the physicalized 3D space is squared (Eq. 1) as well.

It is hard to overestimate the fact that the human brain (Slide 11) can reach the “non-squared” atemporal global mode of spacetime: if we place ourselves along the circle in Fig. 8 viz. along -w/+w in Fig. 6, we can “look” simultaneously along -t/+t, like the ancient god Janus, and “see” all points of 3D space as well, including the inner structure of solid objects, e.g., “all six sides of an opaque box simultaneously, and in fact, what is inside the box at the same time, just as we can see the interior of a square on a piece of paper” (Wikipedia). Physically, such atemporal approach to the intact quantum world (Slide 14), located “inside” dt (Fig. 1), is banned by energy conditions and QIs12: the propellantless propulsion may be achieved only with REIM.

The hyperimaginary numbers, needed to define the brand new “phase space” (Fig. 7) of Res potentia (Slide 13), are expected to be derived from 4D sphere ⇔ saddle transitions (Fig. 9.1) passing through God (Fig. 9.2) at every infinitesimal instant dt (Fig. 1).
The horizontal line in Fig. 9.2 marks the sphere ⇔ saddle transition (Fig. 9.1) at the instant at which the 4D hyperimaginary sphere and torus are inflated exactly to infinity. The physical spacetime, endowed with positive mass-energy only, is tending asymptotically (Fig. 7) toward the horizontal line in Fig. 9.2, from both directions along W, from “south” (hyperimaginary sphere) and from “north” (hyperimaginary torus). Hence the physical, asymptotically flat 4D spacetime is the arena at which the hyperimaginary sphere and torus “clash” into each other, like two waves (Fig. 2), leading to their cancellation in the physical world at \( dt \) (Fig. 1) and explication of only one physicalized ‘jacket’ from them — one re-created 4D ‘jacket’ at a time, as read with a clock. There is no need for “tangent vectors” and “curvature of spacetime” to model gravity, because the physicalized clocks and rulers are also ‘jackets’ (p. 14 in spacetime.pdf) and they can slow down or speed up viz. shrink or expand (ref. [63] on p. 41 in rs_spacetime.pdf).

To practice spacetime engineering (A1 and Sec. 4 in Hyperimaginary Numbers\(^1\)), keep in mind that the only way to “predict” the future is to create it, for the future is not fixed but flexible and open to brand new events, including ‘the unknown unknown’. Then in addition to working as Janus (Fig. 8), you have to overcome at least two challenges from the Brain of the Universe.

Firstly, use only the Law of Reversed Effort: “To the mind that is still, the whole universe surrenders” (Lao Tzu). Allow your preferred state in the future to unfold toward you. If you choose to apply your free will and volition in the opposite “direction”, you will inevitably block the Law of Reversed Effort and will move toward the dead end of parapsychology. And secondly, design and build your preferred state in the future only with the Law of Reversed Effort. Metaphorically, you have to swing — effortlessly — the flexible “carrot” (Fig. 10) toward your desired destination, and the “donkey” will carry you there (not effortlessly, but this is not your problem).

![Fig. 10](image.jpg)

The second non-action does not require physical work either: it’s all in the phase (Fig. 2). The “carrot”, however, is very tricky and fragile stuff, and you may need years of hard work to learn how to handle the “breathing” of the Universe (Fig. 7) and its infinitesimal quantum of energy.

How do you know whether you have learned to practice spacetime engineering with the Law of Reversed Effort? Your subjective passage of time will slow down for a few seconds,
and you will be able to “see” yourself and your potential state with astonishing clarity, as if you watch a video clip in slow motion. As Michael Flaherty explained, “high levels of concentration and meditation can influence the subjective passage of time. Various athletes, for example, perceive time to pass slowly when they are “in the zone.” Yet people who are adept at meditation can produce comparable effects”.

Well, I was never able to learn any meditation or “magic”, only spacetime engineering (Sec. 4 in Hyperimaginary Numbers¹). In my opinion, parapsychology relates to spacetime engineering like astrology to astronomy. Most importantly, spacetime engineering cannot be misused, like for example nuclear energy — not only because it is based on God as Love (1 John 4:8), but also because if you are entangled with people, you could not hurt them without hurting you as well, at the same instant you wish to hurt them. So you are either disentangled from people and can do whatever you want (say, flip your glasses), or you are entangled with them and cannot even think of acting against them — not because you are some super ethical guy with super high moral standards, but because the “boomerang” from your intended action will hit you as well, at the same instant $dt$ (Fig. 1) you wish to hurt them. This is utterly important issue based on the phenomenon called entanglement (Verschränkung) by Erwin Schrödinger — “the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.” If we use concepts derived from the inanimate world at the length scale of tables and chairs, we cannot even imagine the quantum nature of entanglement, firstly because our imagination will require some additional stuff to “entangle” two or more objects, say, additional bridges connecting river’s banks or cables connecting computers. But the quantum “waves” (Fig. 11) are not physical stuff (Slide 6¹), just as there are no “computers” and “cables” in your brain to EPR-like correlate your 100+ trillion synapses (p. 2 in HBP.pdf), so that you can read these lines.

I can offer very specific facts about the entanglement of ‘John’s jackets’, but since no mathematician or physicist showed any interest in my work in the past forty-five years (cf. p. 81 and p. 93 in gravity.pdf), I will stop here. I wish my readers — if any — all the best.

April 11, 2017, 16:38 GMT
Questions and Answers

I have so far only one question, from a friend of mine (ref. [54] on p. 34 in spacetime.pdf).

Q1: Why do you say that space is “squared”?

A1: The physical space (not the alleged Finsler space) is “squared” in the sense that all spacetime parameters in the invariant spacetime interval, including the “speed” of light, are squared, after the Pythagorean Theorem. Hence Janus (Fig. 8) is depicted with the red vertical axis -w/+w in Fig. 6 and Fig. 9,2 as well. Imagine AB in Fig. 6 as the diameter of 3D balloon shown with the circle in Fig. 8: Janus will occupy the circle and will simultaneously see the shrinking of the 3D balloon along all inward-pointing directions and the inflation of the 3D balloon along all outward-pointing directions in Fig. 8, like the running guys in Fig. 12 below.

![Fig. 12](image)

From the perspective of the running guys (Fig. 12) located in the local mode of spacetime, their “final” endpoint Z will look like the Beginning and the End of their spacetime, because they are confined “in the train” and cannot escape from it by switching to their massless luxonic state along null intervals (ref. [54] on p. 34 in spacetime.pdf).

Notice also that, in the local mode of spacetime (cf. the Archimedean topology, ref. [31] on p. 18 in Hyperimaginary Numbers), the guys in Fig. 12 run with potential infinity and can only approach asymptotically (Fig. 7) their “final” endpoint Z, but if they use actual or completed infinity they can calculate the sliding values of Z in Fig. 5 and in Fig. 6 as the minimal quantum of energy at ’time zero’ and the largest volume of 4D spacetime “bounded” by the causal horizon. Yet the Beginning & End of spacetime is always located at Z, according to the so-called dual age cosmology (p. 4 in Hyperimaginary Numbers and p. 67 in gravity.pdf): once created (John 1:1; 1 John 4:8), the Universe is already eternal and can never reach its Beginning & End residing inside us (Luke 17:21), inside dt (Fig. 1).

Please don’t hesitate to submit your questions to dchakalov@gmail.com, until Easter 2017.

If you keep quiet because you believe spacetime engineering is difficult, recall Henry Ford: “Whether you believe you can do a thing or believe you can’t, you are right.”

D. Chakalov
April 11, 2017, 22:00 GMT