Creatio Ex Nihilo: The Evolution Equation

D. Chakalov
chakalov.net

Abstract

It seems possible to suggest a hypothetical evolution equation in cosmology, which permits unlimited creatio ex nihilo of mass and energy from the quantum vacuum, yet does not lead to any catastrophic event.

1. Introduction

The idea (noêma) of ‘nothing’ means ‘something that has no inherent properties’, such as an empty set (if any). You can’t get something from nothing. In Latin, ex nihilo nihil fit, or ‘out of nothing, nothing becomes’. (In Mandarin, I suppose it reads 在阿里巴巴买东西.)

Well, it depends on what we mean by ‘nothing’. For example, if we look at a flat line, we can say that, obviously, there are no waves in it, although we know that waves can cancel each other completely due to destructive interference, leading to a flat line. Taking this example further, imagine that back in 19th century, long before Max Planck was born, some philosopher tried to relate the concept of ‘nothingness’ with the example of a flat line that contains no waves whatsoever: his argument will be logically correct, as even today people strive to explain (not define) the concept of ‘nothingness’ as ‘something that is not there’, like an empty set (if any). He may even try to speculate that the ancient ideas of ‘atom’ and ‘point’ (―that which has no part‖, Euclid) may be related to this kind of ‘nothingness’ or ‘vacuum’. I believe it is safe to assume that nobody from the established scientific community in 19th century would have paid attention to such metaphysical exercise, yet it might have helped in our understanding of the quantum vacuum and its zero-point energy.

I would like to offer a similar metaphysical exercise (see Path II below), based on a new relativistic vacuum (Fig. 2), and will try to explain a new evolution equation (I have to avoid the generic case of ‘zero’ as The Noumenon, which is not present in Fig. 2, because it cannot be a set in principle, not even an “empty” one). The equation (Sec. 3) presumes specific coupling of matter (res extensa) to its potential states (res potentia), and offers conceptual solutions to many problems in our understanding of cosmology, gravity, and the alleged “dark energy” How was the Universe created? And why is it larger than a football?

Let’s take a closer look at res potentia in the form of quantum vacuum. To quote Sir Arthur Eddington,

A star is drawing on some vast reservoir of energy by means unknown to us. This reservoir can scarcely be other than the subatomic energy which, it is known exists abundantly in all matter; we sometimes dream that man will one day learn how to release it and use it for his service. The store is well-nigh inexhaustible, if only it could be tapped. (...) If, indeed, the sub-atomic energy in the stars is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent power for the well-being of the human race—or for its suicide.
I will argue that the inexhaustible “reservoir of energy” is related to gravity as well, because the genuine gravitational energy is not directly observable, much like the genuine “quantum state”, as stressed by Erwin Schrödinger in 1935. In a nutshell, the conservation of energy, including the input from gravity, is perpetually violated in the physical world, yet it is always conserved in the Platonic world of res potentia: have our cake and eat it. How could this be possible? With a new evolution equation.

Now let me briefly mention two approaches to cosmology, dubbed Path I and Path II.

Consider the topological dimensions of 4D spacetime: if we look at a clock, we will always pinpoint an instant of the cosmic time, and if we look along any direction in 3D space, we can see as far as we like. Yet if we apply our current mathematical models to The Beginning of spacetime (Path I), we will hit an insurmountable problem: “long time ago, there was a brief period of time during which there was still no time at all” (Yakov Zeldovich, private communication, 1986; translation mine). With Path I, we inevitably hit some “very special state” of the universe, which was perfectly smooth and gravity was still absent, and prior to such “very special” proto-state, there was “no time at all.” One would need some Biblical “miracle” to reproduce the world from “no time at all.”

We believe that Path I, despite being based on mathematical models, is not acceptable. Thus, we will pursue Path II by suggesting a phenomenological theory of spacetime, which is free from any problems and inadmissible errors, Biblical “miracles” included. Our goal is to suggest conceptual solutions to conceptual problems, such as “the worst theoretical prediction in the history of physics!” On the flip side, Path II still lacks mathematical description, firstly because the so-called hyperimaginary numbers are not yet unraveled.

2. Path II: Vacuum Energy

There is something truly peculiar about the vacuum: we can observe only its energy differences. If we could somehow gain access to the complex phase of quantum waves and tweak their destructive interference leading to “vacuum”, we could perhaps evoke real physical stuff to emerge at macroscopic level as ‘free lunch’, like creatio ex nihilo. But of course, we need quantum gravity in the first place, to eventually fulfill “our dream of controlling this latent power for the well-being of the human race — or for its suicide”.

The point here is that we can never observe the vacuum itself, so the expression ‘vacuum energy’ is false. To explain the puzzle, I suggested in September 2000 the parable of John’s jackets.

Suppose you chase somebody on the street (let’s call him John), and any time you catch him, he leaves his jacket in your hands. You can’t catch John himself. Only his jacket. You believe that John has a set (or is it strictly a set?) of physical jackets with different probabilities for catching, and you deeply believe that this set can be normalized, i.e., the sum of probabilities for catching his jackets is unity. Yet John does not wear any jacket by default — neither before nor after you catch his current jacket (Schrödinger, Slide 6). John is simply the Platonic Idea and ‘the true monad without windows’ (Leibniz, Slide 13).

The parable of John’s jackets applies to gravity as well — we certainly observe various gravitational ‘jackets’ in the right-hand side of Einstein’s field equations, despite the fact that there is no gravitational “spring or sink for matter energy-momentum anywhere in spacetime”: if we try to present John himself with a tensor, as we do it for matter and
fields in classical physics, we have to admit that there is no gravitational stress-energy tensor10 to describe John-the-Gravity. We can only observe his physicalized ‘jackets’, say, from “positive energy density of about 6×10^{-10} joules per cubic meter”7 to 8.8×10^{47} joules (app. 4.9 times the sun’s mass turned to energy), in the case of GRB 080916C.

To cut the long story short, in our theory of quantum gravity we offer a common ‘John’ (res potentia) for all quantum-gravitational ‘jackets’ (res extensa), stressing that ‘John’ cannot be physically observed due to the “speed” of light (FAQ, Slide 191). If people insist on modeling ‘John’ as some physical stuff, they will immediately hit “the worst theoretical prediction in the history of physics!”6. To explain why, let me offer a simple explanation, starting with the opposite case in which ‘John’ did not exist, only his ‘jackets’.

Suppose that you have €1000 in your bank account, and decide to withdraw €80 from it. You go to some cash machine on the street, insert your debit card, dial your password, and get your €80: the total amount of your €1000 remains conserved; you just have €80 less in your bank account, matching the same €80 in your wallet. All your money and those in the bank are physical stuff. Also, you can’t withdraw more than €1000 with your debit card, and the total amount of money in the bank is, say, €1.000.000.000. Simple and clear.

Now, suppose your money in the bank (not in your wallet) and bank’s money are ‘John’s jackets’ (Res potentia, Slide 131), and the requirements for withdrawing physical money (physical ‘jackets’) from your bank are that (i) you must possess the initial physical ‘quantum of money’ (similar to ‘one drop of petrol’6) in your wallet, which is one cent (€0.01), and (ii) you can withdraw only ‘money differences’ (akin to energy differences7). This case is totally different from the one above, because now you can withdraw indefinite amount of physicalized money, as long as the latter has some finite value, neither “zero” nor “infinite”. It doesn’t matter if you withdraw €80 or crack the lottery jackpot of €80M.

Notice that there can be no conservation of physical money, because your money in the bank (not in your wallet) and bank’s money are indefinite, just like the “total amount” of “vacuum energy”. Thus, you may withdraw a colossal amount of physicalized money, say, €1B (similar to 8.8×10^{47} joules from GRBs in the example above), provided you already have the initial physical ‘quantum of money’ in your wallet. Even more: you may create a physicalized universe of ‘money’ with what some people call “inflation” (Slide 121). There will be no “violation” of the “initial amount” of money, simply because one cannot violate something that does not exist. Simple and clear, isn’t it?

The big puzzle, however, is the initial physical ‘quantum of energy’ in cosmology, which should coincide with The Beginning. It is tempting to associate the ‘quantum of energy’ with the primordial “push” by the self-acting physicalized universe along the so-called Arrow of Space (see p. 10 in Hyperimaginary Numbers1). It should be capable of producing work, so one can expect that the ‘quantum of energy’ has astonishingly small, yet not zero, value, say, “positive energy density of about 6×10^{-10} joules per cubic meter”7.

But what is ‘negative energy density’? It is John’s jackets with respect to Res extensa (Slide 131), as you may have already anticipated. Which brings us to the evolution equation and the bundle of unsolved challenges related to the three types of mass — positive, negative, and imaginary (see p. 7 in Hyperimaginary Numbers1).

3. The Evolution Equation
The evolution equation, proposed previously\(^1\), reads
\[|w|^2 = |m|^2 + |m_i|^2 \quad \text{(Eq. 1)}. \]

Regrettably, it is still a symbolic equation (see Path II above). Let me start with explaining the right-hand side: there is no physical metric there, and the proper time of the two hyperimaginary waves with *hypercomplex* phases and amplitudes (+/- m and +/- m\(_i\), Fig. 1) will be “frozen” or “stand still”\(^1\) to all physical clocks (not to the human brain).

Also, the term \(|m|^2 \) presents the real (positive and negative) mass, whereas \(|m_i|^2 \) shows the positive/negative *imaginary* mass. The prototype of Eq. 1 is
\[0 = (+1) + (-1) \quad \text{(Eq. 2)}. \]

Say, \(0 = 3/3 - 5/5 \) or \(0 = 9/9 - 25/25 = 1 - 1 \). Notice that (+/-3)\(^2\) or \(|3|^2 = 9 \) and (+/-5)\(^2\) or \(|5|^2 = 25 \). We postulate that the real and imaginary terms in the right-hand side of Eq. 1 belong to two entirely different worlds\(^1\), and that the ratio of their amplitudes (Fig. 1) is always equal to unity, e.g., \(9/9 (+/- m) = 25/25 (+/- m_i) \).

Suppose that at \(t_1 \) we have \(0 = 9/9 - 9/9 \) (Eq. 2), and later at \(t_2 \) the imaginary term has increased, for whatever reason, to 25/25. Now there is more negative mass from *squared* imaginary mass \(|m_i|^2 \) to feed (Sic!) the negative mass in \(|m|^2 \) (Eq. 1): \(|w|^2 = |5|^2 + |5_i|^2 \), and we will have *more physicalized* or “positive” mass – \(|5|^2 > |3|^2 \).

It’s all in the phase (Fig. 1). We can also produce the so-called “inflation” (Slide 12\(^1\)) and no “violation” of mass-energy “conservation” can occur, ever.

\[\text{Fig. 1} \]

The evolution equation works in the opposite way (destructive interference) as well: if at \(t_1 \) we have \(0 = 9/9 - 9/9 \), and later at \(t_2 \) the imaginary term has decreased to 4/4, there will be less negative mass from *squared* imaginary mass \(|m_i|^2 \) to feed (Sic!) the negative mass in \(|m|^2 \), and the physicalized or “positive” mass-energy will decrease – \(0 = 4/4 - 4/4 \) (Eq. 2) or \(|w|^2 = |2|^2 + |2_i|^2 \) (Eq. 1). Again, it’s all in the phase, and no “violation” of mass-energy “conservation” can occur. Hence we can think about gravitational radiation, and maybe even try one day to reproduce it with spacetime engineering. *Mark my words.*

As of today, however, Eq. 1 is not at all clear, firstly because we instructed \(|w|^2 = 0 \), where \(w \) involves the so-called hyperimaginary unit\(^1\). We claim that, relative to the platform, time on the train “completely stops” (Fig. 2) and is “stand still”\(^1\), which means that the train has entered the *atemporal* realm of *Res potentia* (Slide 13\(^1\)) along +/- \(w \).
4. Questions and Answers

Q1: What do you mean by “increased” and “decreased” stuff?

A1: Right, there is no metric in the Platonic realm of hyperimaginary waves (Fig. 1). Think about the idea of a tree and the idea of a mountain: there is no metric in the human memory, yet the idea of a tree corresponds to lighter physical object, compared to a mountain. Likewise with $|m|^2$ and $|m_i|^2$: you operate with Platonic objects as well, and should be able, for example, to reduce the weight of your body (switch from ‘mountain’ to ‘tree’) and even cancel it for a few minutes, in order to fly in the air. Many people can fly, but most of them unfortunately prefer to present it as some “magic”, for profit.

Q2: I don’t understand your “waves”. What are they?

A2: Two standing hyperimaginary waves, corresponding to two potential (cf. Res potentia in Slide 131) mirror worlds11. At every 4D instant ‘here and now’ in the physical universe, made exclusively by positive mass-energy, the waves have already (cf. A2 in Slide 191) interacted and “squared” their amplitudes, yielding positive mass-energy, $|m|^2$ in Eq. 1.

Q3: What do you mean by ‘quantum of energy’? Is it related to Planck constant?

A3: I can only try to answer your first question. By ‘quantum of energy’ I mean the minimal “push” by the self-acting physicalized universe: see ref. [9] in Hyperimaginary Numbers1. As Banesh Hoffmann suggested in 1964, “If the universe is such that negative-mass particles can, on balance, “escape to infinity” (Sic! - D.C.) there will be an effect of continual creation of positive energy in the observed region” (pp. 95-96). Even in 1920, Sir Arthur S. Eddington spoke about ‘etheral energy’ and explained that “though ether waves are not usually classed as material, they have the chief mechanical properties of matter – viz., mass and momentum” (p. 345). Thus, the “creation field” in Eq. 1 is always producing gravitational radiation ($|m|^2$ in Eq. 1), but because Sir Arthur could not trace it back to some physical process known in 1920, he opted for ‘ether waves’ and ‘etheral energy’.

In conclusion, I have to stress that I am by no means satisfied with my evolution equation. It might look a bit more “substantial” than the symbolic Einstein’s equation, but I of course cannot apply it for deriving proton’s mass (Slide 101) or for calculating the “dark” effects of the quantum-gravitational vacuum6.

1Hyperimaginary Numbers

11Mirror worlds

6Quantum-gravitational vacuum
Strangely enough, Eq. 1 nevertheless works tremendously well for practical purposes – check out the story about a large yellow button on p. 15 in Hyperimaginary Numbers¹. More information is available upon request.

March 24, 2017, 18:15 GMT

References and Notes

4. Lee Smolin, Three Roads to Quantum Gravity, Phoenix, London, 2000, p. 205: “One of the biggest mysteries is that we live in a world in which it is possible to look around, and see as far as we like.”

5. Robert M. Wald, The Arrow of Time and the Initial Conditions of the Universe. Talk given at Seven Pines “Arrows of Time” meeting, December 2004. 21 July 2005, arXiv:gr-qc/0507094v1, p. 5: “It seems to me to be far more plausible that the answer to the above question as to why the very early universe was in a very low entropy state is that it came into existence in a very special state. Of course, this answer begs the question, since one would then want to know why it came into existence in a very special state, i.e., what principle or law governed its creation. I definitely do not have an answer to this question.”

6. M. P. Hobson, G. P. Efstathiou, A. N. Lasenby, General Relativity: An Introduction for Physicists, Cambridge University Press, 2006, see p. 187 at this http URL. To explain the “dark” puzzle, suppose you have only one drop of petrol in the tank of your car, yet you bravely run the car and push the accelerator. As your car accelerates, you obtain more and MORE petrol in the tank, and at the instant you are reading these lines, the “dark” petrol has increased to nearly 68.3% from the total petrol in the tank. Such perpetual ‘free lunch’ is not permitted in the geodesic hypothesis, as energy “conservation” is postulated in the current GR, to suggest geodesic motion based on (non-tensorial) Christoffel symbols.

7. John Baez, What’s the Energy Density of the Vacuum? Online paper, Sec. 4, 10 June 2011, available at this http URL.

Since a mere minus sign distinguishes space from time, the remaining case \((n,m) = (1, 3)\) is mathematically equivalent to the case where \((n,m) = (3, 1)\) and all particles are tachyons [14] with imaginary rest mass.

Footnote 4: The only remaining possibility is the rather contrived case where data is specified on a null hypersurface. To measure such data, an observer would need to “live on the light cone”, i.e., travel with the speed of light, which means that it would subjectively not perceive any time at all (its proper time would stand still). (Emphasis mine; see also A2 in Slide 19)