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The quantum mechanics of inverse square potentials in one dimension is usually studied through
renormalization, self-adjoint extension and WKB approximation. This paper shows that such
potentials may be investigated within the framework of the position-dependent mass quantum
mechanics formalism under the usual boundary conditions. As a result, exact discrete bound
state solutions are expressed in terms of associated Laguerre polynomials with negative energy
spectrum using the Nikiforov-Uvarov method for the repulsive inverse square potential.
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1 Introduction

The problem of exact discrete bound states for strongly singular potentials has been a subject of in-
tensive analytic studies in the research field of mathematical physics. In particular, the one-dimensional
Schrödinger equation for the singular inverse square potential is well known to require a special mathemati-
cal treatment. In [1] for example, the renormalization technique has been used to study the one-dimensional
attractive inverse square potential. Recently, this potential has been analyzed in [2] in the context of renor-
malization and self-adjoint extension of the Hamiltonian operator. In [3] WKB approximation with special
mathematical treatments are used to solve the Schrödinger wave problem for the strongly repulsive poten-
tials. Such inverse square potentials are known to be used for modeling many practical problems in modern
engineering studies. The question of discrete bound state solutions for repulsive potentials is not yet com-
pletely resolved [2, 4, 5]. In such a situation, there appears logic to investigate the quantum mechanics of
strongly repulsive singular inverse square potentials under usual boundary conditions. In this work, the
position-dependent mass formalism is shown to have the ability to remedy some inherent difficultes related
to the naturel domain of this potential. Due to its applications for the quantum control [6] the Schrödinger
equation with position-dependent mass has fast become an important research field from mathematical as
well as physical point of view. Many problems have been solved in various areas of science on the basis of
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quantum harmonic oscillators with position-dependent mass approach [7]. To apply this approach to the
singular repulsive inverse square potential, there appears convenient to consider the oscillator equation

ẍ+
l − 2γ

x
ẋ2 +

ω2

l + 1
x4γ+1 = 0 (1.1)

where the dot over a symbol denotes the time derivative, and l, γ and ω > 0, are arbitrary parameters.
The equation (1.1) belongs to the class of quadratic Liénard type differential equation recently introduced
by some authors of this work [8]. The parametric choice l = 2γ 6= 0, reduces this equation for l 6= −1 , to
the free particle Duffing equation

ẍ+
ω2

l + 1
x2l+1 = 0

which has been intensively studied in the literature [9] for l 6= −1. For γ = l = 0 , the equation (1.1)
reduces to the linear harmonic oscillator equation with well known exact trigonometric solution. According
to [8], the equation (1.1) may be mapped into the linear harmonic oscillator equation so that exact periodic
solutions may be exhibited for the equation (1.1). Using the non-local transformation introduced by some
authors of the present paper in [8].

y(τ) =
1

l + 1
xl+1, dτ = x2γdt, l 6= −1 (1.2)

the equation (1.1) reduces to the linear oscillator equation

y′′(τ) + ω2y(τ) = 0

where the prime denotes the differentiation with respect to τ . On making y(τ) = A0sin(ωτ + α), where
A0 and α are arbitrary parameters, the exact analytical solution to (1.1) reads

x(t) = [(l + 1)A0]
1
l+1 [sin(ωφ(t) + α)]

1
l+1 (1.3)

where the function τ = φ(t) satisfies

dτ

dt
= [(l + 1)A0sin(ωφ(t) + α)]

2γ
l+1

that is

[(l + 1)A0]
2γ
l+1 (t− t0) =

∫
dφ(t)

[sin(ωφ(t) + α)]
2γ
l+1

(1.4)

where t0 is a constant of integration. The integral from the right hand side may be explicitly computed
once the parametric choice is defined. Having demonstrated that the equation (1.1) under consideration
admits exact analytical periodic solution [8], the problem to be investigated in this work is to know whether
this equation may exhibit an exact solvable position-dependent mass Schrödinger equation with a singular
repulsive inverse square potential. More precisely the question to be addressed is: Is the quantization of
(1.1) leads to an exact solvable Schrödinger wave equation with a repulsive inverse square potential in terms
of discrete bound states under the position-dependent mass approach? The present research contribution
predicts that the quantization of (1.1) yields exact discrete bound state solutions to the Schrödinger
equation for the repulsive inverse square potential and negative energy spectrum under the context of
usual boundary conditions. This prediction is physically interesting since it allows the investigation not
only under usual boundary conditions of quantum features of singular potentials but also in terms of exact
eigensolutions which are quite suitable for engineering calculations. In this perspective, to demonstrate the
preceding prediction, there is convenient to first establish the Schrödinger wave equation associated to the
equation (1.1) and secondary to transform the obtained equation to apply the Nikiforov-Uvarov method [10]
well known to yield eigenvalue problem solutions in terms of classical orthogonal polynomials.The predicted
results are finally discussed and a conclusion is drawn for the paper.
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2 Schrödinger eigenvalue problem

The one-dimensional Schrödinger wave equation is an eigenvalue problem that requires the mathematical
formulation of the Hamiltonian operator associated to the classical oscillator differential equation under
study. By defining the mass function

M(x) = e2
∫ x f(s)ds

According to (1.1), f(s) = l−2γ
s , thus the function M(x) takes the form

M(x) = e2
∫ x l−2γ

s ds

or

M(x) = m0x
2(l−2γ) (2.1)

where m0 is the integration constant, and the potential energy

V (x) =

∫ x

g(s)M(s)ds,

where M(s) = m0s
2(l−2γ) and g(s) = ω2

l+1s
4γ+1 after (1.1) takes the following form

V (x) =
m0

l + 1
ω2

∫ x

s2l+1ds.

Thus, one obtains

V (x) =
m0ω

2

2(l + 1)2
x2l+2 (2.2)

and the classical Hamiltonian

H(x, p) =
p2

2M(x)
+ V (x)

associated to (1.1) reads

H(x, p) =
1

2m0
p2x2(2γ−l) +

m0ω
2

2(l + 1)2
x2l+2 (2.3)

In this work, the von Roos expression of quantum Hamiltonian [11] associated to (2.3) for harmonic
oscillator with position-dependent mass may be suitably used.

2.1 Schrödinger equation

The Schrödinger equation for bound states ψ(x) with the energy eigenvalue E and potential V (x), according
to [12,13], may read

ψ′′(x)− M ′(x)

M(x)
ψ′(x) + 2M(x) [E − V (x)]ψ(x) = 0 (2.4)

which becomes in the context of equations (2.1) and (2.2)

ψ′′(x)− 2(l − 2γ)

x
ψ′(x) +

[
2Ex2l−4γ − ω2

(l + 1)2
x4l−4γ+2

]
ψ(x) = 0 (2.5)

where m0 = ~ = 1, and the prime means differentiation with respect to x. Now, it becomes possible to
clearly state the Schrödinger eigenvalue problem to solve.
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2.2 Mathematical problem

Let us consider the parametric choice l = −2, and γ = − 3
2 . The potential energy (2.2) becomes

V (x) =
m0ω

2

2

1

x2
(2.6)

with m0 = 1, which is a singular repulsive inverse square potential, as ω2 > 0 , such that (2.5) becomes

d2ψ(x)

dx2
− 2

x

dψ(x)

dx
+ [2Ex2 − ω2]ψ(x) = 0

that is in the self-adjoint form

d

dx

(
ψ′(x)

x2

)
+

(
2E − ω2

x2

)
= 0 (2.7)

The equation (2.7) may then read as a Schrödinger equation for repulsive inverse square potential under
the formalism of position-dependent mass. Therefore, the mathematical eigenvalue problem to be solved
may read: Find the discrete bound state solutions to (2.7) over the semi-infinite interval [0,+∞[ with the
requirement that ψ(x) −→ 0 as x −→ 0 and x −→ +∞, that is ψ(x) ∈ L2([0,+∞[) . The solution to this
problem needs to perform coordinate transformation to apply the Nikiforov-Uvarov method [10].

3 Exact discrete bound state solutions

The NU method applies to the generalized hypergeometric type equation of the form

Z ′′(s) +
τ̃(s)

σ(s)
Z ′(s) +

σ̃(s)

σ(s)2
Z(s) = 0 (3.1)

where
Z(s) = φ(s)yn(s) (3.2)

the prime means differentiation with respect to s, such that the hypergeometric type function yn(s) satisfies

σ(s)y′′n(s) + τ(s)y′n(s) + λyn(s) (3.3)

with
φ′(s)

φ(s)
=
π(s)

σ(s)
(3.4)

The coefficients σ(s) and σ̃(s) are polynomials at most of second degree whereas the parameters τ(s) and
τ̃(s) are polynomials at most of first degree. λ is a constant. The function

π(s) =

(
σ′(s)− τ̃(s)

2

)
±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s) (3.5)

is a polynomial at most of first degree that obeys

τ(s) = τ̃(s) + 2π(s) (3.6)

The coefficient k satisfies
λ = k + π′(s) (3.7)

so that

λ = λn = −nτ ′(s)− n(n− 1)

2
σ′′(s), n = 0, 1, 2, 3, ... (3.8)

According to (3.3) the expression of the hypergeometric type function yn(s) which is a polynomial of degree
n may be given by the Rodrigues formula

yn(s) =
An
ρ(s)

dn

dsn
[σ(s)nρ(s)] (3.9)

4



and the weight function ρ(s) should satisfy

d

ds
[σ(s)ρ(s)] = τ(s)ρ(s) (3.10)

where An designates a normalization constant. In this perspective the application of these calculations to
(2.7) requires its transformation into the form (3.1).

3.1 Mapping of the Schrödinger wave equation into the hypergeometric type
equation

The application of the variable transformation

ψ(x) = xZ(x) (3.11)

maps the equation (2.7), after a few mathematical manipulations

dψ(x)

dx
= Z(x) + x

dZ(x)

dx

and
d2ψ(x)

dx2
= 2

dZ(x)

dx
+ x

d2Z(x)

dx2
,

into the differential equation

d2Z

dx2
+

[
2Ex2 − 2

x2
− ω2

]
Z = 0 (3.12)

Now, consider the coordinate transformation
s = x2 (3.13)

with 0 6 s 6∞. Using (3.13), one may compute

dZ(x)

dx
= 2s

1
2
dZ(s)

ds

from which it follows after a few algebraic manipulations

d2Z(x)

dx2
= 2

dZ(s)

ds
+ 4s

d2Z(s)

ds2

The substitution of the above expression into (3.12) yields

d2Z(s)

ds2
+

1

2s

dZ(s)

ds
+

[
(E2 )s2 − (ω

2

4 )s− 1
2

s2

]
Z(s) = 0 (3.14)

at which the preceding calculations may immediately be applied to compute the discrete bound state
solutions under consideration.

3.2 Exact discrete bound state energy spectrum

The comparison of (3.14) with (3.1) gives τ̃(s)= 1
2 , σ̃(s)= (E2 )s2 − (ω

2

4 )s − 1
2 and σ(s) = s, so that the

requirement that the derivative of τ(s) must be negative imposes to choose

π(s) =
1

4
−
√
−E

2
s2 + (k +

ω2

4
)s+

9

16
(3.15)

The requirement that the expression under the square root sign must be the square of a polynomial yields

k = −ω
2

4
+

3

2

√
−E

2
(3.16)
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so that π(s) becomes

π(s) = 1− s
√
−E

2
(3.17)

with E 6 0 and

τ(s) =
5

2
− 2s

√
−E

2
(3.18)

The comparison of (3.7) with (3.8) gives

k = (2n+ 1)

√
−E

2
(3.19)

so that by taking into account (3.16) one may obtain the discrete bound state energy spectrum

En = − ω4

2(4n− 1)2
, n = 0, 1, 2, 3, ... (3.20)

So with that, one may deduce the discrete bound state wave functions ψn(x).

3.3 Exact discrete bound state wave functions

Using the functions σ(s) and τ(s) previously defined, the function φ(s) becomes

φ(s) = s exp

(
− ω2

2(4n− 1)
s

)
(3.21)

and ρ(s) reads

ρ(s) = s
3
2 exp

(
− ω2

(4n− 1)
s

)
(3.22)

such that

yn(s) =
An

s
3
2 exp

(
− ω2

(4n−1)s
) dn

dsn

(
sn+

3
2 exp

(
− ω2

(4n− 1)
s

))
(3.23)

Therefore, the function Z(s) may be written as

Zn(s) = s exp

(
− ω2

2(4n− 1)
s

)
An

s
3
2 exp

(
− ω2

(4n−1)s
) dn

dsn

(
sn+

3
2 exp

(
− ω2

(4n− 1)
s

))
(3.24)

Using the identity s = x2, one may obtain

Zn(x2) = Anx
−1 exp

(
ω2

2(4n− 1)
x2
)

dn

d(x2)n

(
x2n+3 exp

(
− ω2

(4n− 1)
x2
))

(3.25)

so that the variable transformation (3.11) yields immediately the desired wave functions

ψn(x) = An exp

(
ω2

2(4n− 1)
x2
)

dn

d(x2)n

(
x2n+3 exp

(
− ω2

(4n− 1)
x2
))

(3.26)

which may be written in terms of associated Laguerre polynomials as

ψn(x) = Cnx
3 exp

(
− ω2

2(4n− 1)
x2
)
L

3
2
n

(
ω2

(4n− 1)
x2
)

(3.27)

where Cn is the new normalization constant which must satisfy the normalization condition.

C2
n

∫ +∞

0

x6e−εx
2
(
L

3
2
n (εx2)

)2
dx = 1 (3.28)

where

ε =
ω2

4n− 1

That being so a discussion of the developed singular inverse square potential theory may be performed.
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4 Discussion

The problem of singular inverse square potentials in one dimension has been in general studied using the
self-adjoint extension and renormalization or WKB approximation technique due to problem related to is
natural domain. The discrete negative energy states for the repulsive potentials are still a question under
discussion in the fields of quantum mechanics and mathematical physics. In this work the study of the
repulsive inverse square potential in the framework of the position-dependent mass formalism has been
proposed. Under this formalism it has been possible to predict discrete negative energy eigensolutions
to the Schrödinger equation for the singular repulsive square potential. A major advantage is that the
integration of the Schrödinger wave equation has been effected under the usual boundary conditions.
Another interesting advantage results from the application of the Nikiforov-Uvarov method which led to
express the discrete bound state eigenfunctions in terms of associated Laguerre polynomials which are
intensively investigated in the literature. The Nikiforov-Uvarov method shows also that the repulsive
inverse square potential may exhibit discrete bound state negative energy eigenvalues with zero as upper
value in the usual boundary conditions. In this regard the ground state energy is found to be finite and
different from zero.

5 Conclusion

The investigation of the inverse square potentials is usually effected by means of renormalization, self-
adjointness and WKB approximation. The repulsive inverse square potential is shown in this work to
exhibit exact discrete bound state solutions within the framework of position-dependent mass quantum
mechanics under usual boundary conditions. The discrete bound state energy eigenvalues showed that the
ground state energy is finite with a non-zero value and eigenfunctions were expressed in terms of associated
Laguerre polynomials using the Nikiforov-Uvarov method.
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[13] J. Akande, D. K. K. Adjäı, L. H. Koudahoun, Y. J. F. Kpomahou, M. D. Monsia, Prolate spheroidal
wave function as exact solution of the Schrödinger equation, Math.Phys.,viXra.org/1701.0166v1.pdf
(2017).

8


