Title of the article

On the dimensional characteristics and interpretation of vectors

Author: Gaurav S. Biraris 1*
Affiliation 1: KalpaSruti, Pimpalner, Dist- Dhule, Maharashtra, India

Abstract

The paper proposes a generalization of geometric notion of vectors concerning dimensionality of the configuration space. In certain dimensional spaces, certain types of ordered directions exist along which elements of vector spaces can be interpreted. Scalars along the ordered directions form Banach spaces. Different types of geometrical vectors are algebraically identical, the difference arises in the configuration space geometrically. In the universe four types of vectors exists. Thus any physical quantity in the universe comes in four types of vectors. Though All the types of vectors belong to different Banach spaces (& their directions can’t be compared), their magnitudes can be compared. A gross comparison between the magnitudes of the different typed geometric vectors is obtained at end of the paper.

Keywords: Vectors, Banach spaces, spacetime

* Corresponding Author: Gaurav Biraris, Gayatri, Shivaji Nagar, Pimpalner 424306 (India)

Phone- +91 0 9764793679, Fax- +91 02561 223373, e-mail: gauravbiraris@live.com
1. Introduction

The objective of this paper is to provide generally possible interpretations of the vectors and corresponding vector spaces. The geometrical generalization of vectors based on dimensionality of the configuration space is discussed. Actually the starting point of the proposed theory is dimensional characteristics associated with the configuration space. The intrinsic characteristics of a specific numbered dimensional space have intrinsic analytical importance. The intrinsic dimensional characteristics those come with every number of dimension are conventionally called as n-volume and n-plane. Both these characteristics imply classes of length, area, volume and point, line, plane respectively. There is another important dimensional characteristic—geometrical relation meaning class of distance, angle & solid angle. We found such characteristics useful for defining notion of vector. In the initial section we make mathematical propositions and prove the useful theorems amenable to provide a general interpretation of vectors & vector spaces. It will be proved that every number of dimensions comes with a type of ordered direction, facilitating definition of corresponding dimensional vector. Hence different types of vectors can be constructed or identified based on the dimension of underlying ordered direction. It is also that different types of vectors can be interpreted to be elements of arbitrary vector space. The theorems in section 2 regard general n-dimensional spaces. Then in the successive section 3, special case of the universe as 4-dimensional space locally having time evolution & three spatial dimensions is considered. In that section, the types of vectors existing in the universe and their properties are discussed. The theory model is developed in section 2 and applied to a case in section 3. Results from the paper are to be used for a theory with consolidation about physics, proposing in [1].

In the paper, dimension is to be referred as Euclidean dimension. In the article, n-dimensional space or geometrical space means the Euclidean space unless specified.

2. Dimensional Characteristics

In geometrical sense a dimension is a linearly independent direction. Thus the dimension has associated geometrical characteristics those have certain realization in certain number of dimensions. An m-dimensional space embedded in and n-dimensional space with n>m leads to specific realization for each m; point, line, plane are the examples. Further, the Lebesgue measures on such embedded spaces also serve as a geometrical characteristic with respect to the number of dimensions concerned. Let’s denote set of all points in m-dimensional space which may be embedded in higher spaces by \(I_m \) i.e. \(I_m = \{(x_1,x_2,...,x_m) | x_i \in \mathbb{R}\} \). With this notation, points are identical with \(I_0 \)s, lines with \(I_1 \)s and planes are with \(I_2 \)s. In this paper, the highest dimensional space concerned for analysis (in which different \(I_m \)s can be identified) will be denoted by \(X_n \) and being the highest number of dimensions. For specific choice of \(m \) except \(m=n \), there are infinitely many \(I_m \)s existing in \(X_n \); \(I_m \) & \(I_n \) such that \(m \neq m' \) are different types of \(I_m \)s; in general the \(I_m \)s can be classified depending on number of dimensions spanned by them. In other words, \(I_m \)s can be classified on different values of \(m \).

Definition 1: An observer in \(X_n \) is defined as any entity in \(X_n \) that can identify open neighborhoods of all the points in \(X_n \) along all the n dimensions for purpose of analysis.

The observer can identify points in \(X_n \) and is amenable to do the mathematical analysis.

Lemma 1: An observer in n-dimensional space can manifest \(n+1 \) types of \(I_m \)s.

Proof: An observer in n-dimensional space \(X_n \) can draw at most n number of mutually perpendicular lines at a point identifying the n dimensions. Also, she can consider m lines only out of the m; the subspace of \(X_n \) consisting the m mutually perpendicular lines is nothing but the \(I_m \). Hence she can manifest \(I_m \) such that \(0 < m < n \). In this way she can manifest n types of \(I_m \)s differing by number of dimensions. Additionally the one can manifest points as \(I_0 \)s; thus in total manifests \(n+1 \) types of \(I_m \)s in \(X_n \).
For fruitful analysis on the spaces, quantification of subsets of the space is required. In any space X_n, we can identify different I_ms in it. Quantification of subsets of the I_ms then would provide us a useful tool for quantitative analysis. Any quantification in X_n is possible through quantifications of subsets of I_ms only. We can quantify subsets of I_ms by defining appropriate measures on them. Lebesgue measure provides trivial quantification of subsets of the I_ms.

Let’s denote the quantification of a proper subset E of I_m given by Lebesgue measure on it by $L_m(E)$. For ease of expression, we can omit the E in bracket as long as possible i.e. $L_m(E)$ can be written hereafter as just L_m.

Thus length, area and volume are L_1, L_2 & L_3 respectively. I_0s being just a point don’t have any proper subset. Hence we can’t define Lebesgue measure on I_0; hence there is no existence L_0.

Going a step forward with the lemma 1, an n-dimensional geometrical object i.e. proper subset of X_n will have n types of L_ms obtained by Lebesgue measures on all the types of corresponding I_ms except on I_0. For instant, a 3-dimensional object has length (or perimeter), area (or surface area) and volume. We can regard the L_ms as trivial geometrical properties (or quantifications); in X_n any subset would have at most n types of geometrical properties.

Definition 2: In X_n $n \geq m$, $m+1$ points as relative positions of m points with respect to a point can be specified by single real valued function defined as m-dimensional Geometrical Relation (R_m) of the m points about the point i.e. $R_m : X_{n \geq m} \rightarrow \mathbb{R}$

For instance, let’s assume that such function exists for each m. Soon we will make a conjecture about detail of the function. But such functions do exist in Euclidean geometry; we can check that distance and angle are the functions which fit in definition 2.

Distance is R_1 which specifies positions of two points i.e. relative position of a point with respect to another point yields distance. Angle is R_2 obtained by relative positions of three points as of two points about a point. In similar fashion solid angle is R_3 obtained from four points (relative positions of three points about a point).

Distance, angle & solid angle are defined by using concept of the dimensional spheres. Hence spheres seem to be useful for defining R_ms. Topology can be induced on X_n by considering collection of all the open subsets of X_n. Spheres exist in general topological space. Let’s denote an m-sphere in X_n by S_m i.e. $S_m \equiv \{x \in \mathbb{R}^m : \|x\| = r\}$. By a sphere about a point we will mean the sphere having centre at the point.

R_ms are most important dimensional characteristics for dynamical analysis as they facilitate specification of relative positions. Here we propose a useful conjecture.

Conjecture: The m-dimensional geometrical relation (R_m) of m points about a point is given by

$$R_m = \frac{L_{m-1}(E)}{r^{m-1}}$$

(1)

Where, E is the m vertex open set formed by projections of the m points on a S_{m-1} having the point (about which R_m is defined) at centre. And r is the radius of the S_{m-1} on which E is realized.
m-dimensional geometrical relation of an open set (E) formed by the m points of interest on the sphere can be signified as: \(R_m(E) \) with respect to centre point of the sphere. Further, for consideration of E and quantification \(R_m \) a frame in \(X_n \) is essential. The frame should facilitate \(S_{m-1} \) with the point at centre.

Lemma 2: \(R_m \) defined by the conjecture is a measure in \(X_n \) such that \(n \geq m \)

Proof: In \(n \)-dimensional space \(X_n \), embedding of \(S_{m-1} \) is possible. Hence there exists \(S_{m-1} \) about each point (i.e. considering it to be centre). Further, any point can be projected on a \(S_{m-1} \) about a point along the radial direction.

Thus any \(m \) points can be projected on a \(S_{m-1} \) about a point, so that on the spherical surface they lead to an open set \(E \) (analogous curved polygon) fixed by the projections as vertices. Let \(\Sigma \) be a \(\sigma \)-ring of open sets over the \(S_{m-1} \); then the \(R_m \) given by (1) is function from \(\Sigma \) to \(\mathbb{R} \). \(L_{m-1} \) of any \(E \) is non-negative and therefore \(R_m \) is non-negative as \(r \) too is non-negative. i.e for all sets \(E \) on the \(S_{m-1} \),

\[
R_m(E) \geq 0
\]
(2)

As we are considering open sets \(E \), an empty set would be that which has no point excluding the boundary points. For the empty set \(\emptyset \) containing no points \(L_{m-1}(\emptyset) = 0 \), thus by (1) \(R_m \) of empty set is zero

i.e. \(R_m(\emptyset) = 0 \)
(3)

For all countable collections \(\{E_i\}_{i \in N} \) of pair wise disjoint sets in \(\Sigma \), by the conjecture:

\[
\sum_{i=1}^{m} R_m \left(E_i \right) = \sum_{i=1}^{m} \frac{L_{m-1} \left(E_i \right)}{r^{m-1}}
\]

As the sets in \(\{E_i\}_{i \in N} \) are disjoint & \(L_{m-1} \) is a measure,

\[
\sum_{i=1}^{m} \frac{L_{m-1} \left(E_i \right)}{r^{m-1}} = \frac{L_{m-1} \left(\bigcup_{i=1}^{m} E_i \right)}{r^{m-1}}
\]

Hence rewriting the RHS by using the conjecture,

\[
\sum_{i=1}^{m} R_m \left(E_i \right) = R_m \left(\bigcup_{i=1}^{m} E_i \right)
\]
(4)

Essential conditions for a function to be measure are non-negativity, null empty set and countable additivity (or \(\sigma \)-additivity) which are proved by (2), (3) and (4) respectively. Hence the conjecture is a measure on \(S_{m-1} \) embedded in \(X_n \).

\(S_{n-1} \) about the centre point exists in \(X_n \). \(R_m \) is defined for \(m \) points about the centre point (the centre point is fixed by the frame). And any \(m \) points in \(X_n \) can be radially projected on a \(S_{m-1} \) about the point. \(S_{m-1} \) is subset of same centered \(S_{n-1} \); hence any \(S_{m-1} \) needed to realize radial projections of the \(m \) points exists on the \(S_{n-1} \). Thus \(R_m \) can be used for any \(m+1 \) points in \(X_n \) by proper choice of the \(S_{m-1} \); hence it is measure in \(X_n \).
For every value of an \(R_m \), because of continuity of \(S_{m-1} \) & \(L_{m-1} \) we can find at least one corresponding point in \(X_n \) in fixed frame (i.e. given centre point of \(S_{m-1} \) and the fixed \(m \) points). Hence \(R_m \) is surjective map from \(S_{m-1} \) to real numbers \(R_m : S_{m-1} \to \mathbb{R} \).

For \(m=1 \), the conjecture is meaningless due to geometry of \(S_0 \). It is fact that end points of a diameter (arbitrary line segment) represent \(S_0 \); but there is no existence of proper subsets of \(S_0 \). This makes \(L_{m-1}(E) \) in (1) meaningless. Hence the conjecture is meaningless for \(m=1 \). However, we can indeed identify \(R_1 \) by using \(S_0 \) & obeying definition 2. The \(R_1 \) should be amenable to specify relative positions of two points. We can conjecture \(R_0 \) to be diameter of \(S_0 \) on which the two points lie. \(S_0 \) lies on a line i.e. \(I_1 \) thus it is embedded in higher dimensional spaces; and any two points can be considered to lie on a \(S_0 \). Thus what we conventionally know as distance is nothing but \(R_1 \). \(R_1 \) too is a measure in \(X_n \).

\(R_m \) and \(L_m \), both are measures in \(X_n \). \(L_m \) is measure of proper subset in the space and \(R_m \) is measure of relative positions of points about a point. For a dynamical analysis where changes happen with time, essential characteristic of a measure to be parameter is that continuous variation in its magnitude is possible in certain reference frame. Existence of Cauchy sequences is essential for this. \(R_m \) is better measure for studying dynamics where out of \(m+1 \) points, \(m \) can be fixed as the references frame and variation in positions of a point object can be analyzed as variation in its \(R_m \) in the frame.

As \(n \) types of spheres exist in \(X_n \), the \(n \) types of geometrical relations such that \(m \leq n \) are evident. Variation in position of a point object with respect to certain reference frame can be measured in form of its varying \(R_m \)s. Thus in \(n \)-dimensional space, a motion can be characterized by any of \(n \) types of \(R_m \)s as suitable. In 3-dimensional space a motion can be described in terms of variation in distance or that in angle or even in solid angle whichever is suitable. Here we can make difference between general direction and ordered direction. Direction is the manifestation of variation in positions of a point object in its neighborhood in a reference frame. It can be configured by variation of \(R_m \)s in the frame. An ordered direction is special in a sense that it is realized in ordered pattern and can be configured by single type of \(R_m \).

Definition 3: In \(X_n \), a continuous path \(\Gamma \) is defined as an \(m \)-dimensional ordered direction (\(D_m \)) if in a frame, there exists an isomorphism \(R_m : x_\Gamma \to \mathbb{R} \) for every point \(x_\Gamma \in \Gamma \) such that \(m \leq n \).

When all points on a path are described by values of single typed geometrical relation in a frame, then the direction described by the path is to be called as ordered direction. Rectilinear path is a set of points that can be analyzed by concerning only distances in a frame. Curvilinear path is a set of points that can be analyzed by concerning distances and angles in a frame. While angular path is the set that can be analyzed by concerning only angles in a frame. Thus rectilinear and angular are ordered directions, while curvilinear isn’t. It is easy to identify rectilinear direction as \(D_1 \) & angular direction as \(D_2 \).

Lemma 3: In a frame in \(X_n \), Cauchy sequence along a \(D_m \) exists converging to a point along the \(D_m \).

Proof: Consider a sequence of points \(\{x_i\} = x_1, x_2, x_3, \ldots \) along an \(m \)-dimensional ordered direction \(D_m \) in \(X_n \). Then the sequence \(\{x_i\} \) is identified by varying values of \(R_m \) in a constant frame. The points are identified by values of \(R_m \) in the frame i.e. \(x_i = \frac{L_{m-1}(E_i)}{I^{m-1}} \) where, \(E_i \) is the set defined by the point \(x_i \) & the reference points on the \(S_{m-1} \) of the frame. As the \(m \) points are fixed due to frame, only \(x_i \) determines \(E_i \). As range of \(L_{m-1}(E_i) \) is \(\mathbb{R} \), for any positive real number \(\varepsilon \) and \(N < i, j, N \in \mathbb{N} \) we can obtain \(| L_{m-1}(E_i) - L_{m-1}(E_j) | \leq \varepsilon \). This ensures existence of
the Cauchy sequence \(\{ L_{m-1}(E_i) \} \). And as \(R_m \) is division of \(L_{m-1}(E_i) \) by just a positive number \(r^{m-1} \), for any positive real number \(\varepsilon \) and \(N < i, j, N \in \mathbb{N} \) we have \(\left| \frac{L_{m-1}(E_i)}{r^{m-1}} - \frac{L_{m-1}(E_j)}{r^{m-1}} \right| \leq \varepsilon \), equivalently we have \(|R_m(x_i) - R_m(x_j)| \leq \varepsilon \).

This proves that Cauchy sequence on the range of \(R_m \) exists. And as \(R_m \) is surjective map, Cauchy sequence for \(R_m \) in \(X_n \) exists.

As all the points along a \(D_m \) are described by single type of geometrical relation i.e. \(R_m \), such direction can be parameterized by the \(R_m \) in the frame. As Cauchy sequences for the \(R_m \)s exist, their continuous variations are possible. In fact \(D_m \) is manifestation of varying \(R_m \) in \(X_n \), thus the Cauchy sequence along \(D_m \) exists.

If a point object is taking different positions \(x_i \in \Gamma \) varying with time, then the path \(\Gamma \) describes the motion. Thus the motions of point objects along the \(D_m \)s can simply be defined as ordered motions. Then according to definition 3, an observer in \(n \)-dimensional space can manifest \(m \)-dimensional ordered motions such that \(m \leq n \). Hence in \(n \)-dimensional space, one can manifest at most \(n \) types of ordered motions (\& directions). Thus in 3-dimensions one can manifest 3 types viz. rectilinear (\(D_1 \)), angular (\(D_2 \)) & solid angular (\(D_3 \)) of ordered motions.

There is no unique geometric interpretation of vectors. But it is clear that a vector has magnitude & direction. Here we will generalize notion of vector while preserving all the algebraic properties. The directions \(D_m \)s would be useful for interpreting/identifying vectors in \(X_n \). Let’s proceed with primary theorems.

Theorem 1: In a frame in \(X_n \) \(m \leq n \), continuous variation in \(R_m \) signifies direction along the \(I_m \).

Proof: In a frame in \(X_n \) the \(R_m \) is map from a \(S_{m-1} \), defined for all points on the \(S_{m-1} \). Recognize that the reference points needed for \(R_m \) are fixed by the frame.

\[
R_m = \frac{L_{m-1}(E)}{r^{m-1}} \quad E \text{ is the set formed by the m points on the } S_{m-1} \text{. } L_{m-1}(E_i) \text{ is conventionally called } (m-1)\text{-surface area. It for entire } S_{m-1} \text{is given [2] as}
\]

\[
L_{m-1}(S_{m-1}) = \frac{2\pi^{m/2}}{\Gamma\left(\frac{m}{2}\right)} r^{m-1} \tag{5}
\]

Where, \(\Gamma \) denotes gamma function and \(r \) is the radius. For a set formed on the sphere, the \(L_{m-1}(E_i) \) will be fraction of (5).

\[
i.e. \quad L_{m-1}(E_i) = \frac{2f_i \pi^{m/2}}{\Gamma\left(\frac{m}{2}\right)} r^{m-1}, \quad 0 \leq f_i \leq 1
\]

Putting this in the conjecture (1) we get

\[
R_m = \frac{2f_i \pi^{m/2}}{\Gamma\left(\frac{m}{2}\right)} \tag{6}
\]
This new expression (6) of the R_m indicates that in a frame, R_m is defined irrespective of radius of the sphere. As S_{m-1} exists in m-dimensional space (and concentric S_{m-1}s cover the m-dimensional space), now R_m can be thought as a function on whole m-dimensional space spanned by the S_{m-1}s. But m-dimensional space embedded in higher dimensional space is nothing but an I_m. Thus R_m is morphism from the I_m to \mathbb{R}.

Thus any point x in an I_m can be identified by a value of R_m as the $R_m(x)$ in the frame. Due to existence of Cauchy sequence for R_m in a neighborhood of x, for each neighboring point the R_m will either increase or decrease (or may be unchanged). We can assign directions to such variations, suppose we assign direction \mathcal{D}_m to manifestation of increasing R_m, then $-\mathcal{D}_m$ will be manifestation of decreasing R_m. No change in R_m of neighboring point will not lead to manifestation of the direction \mathcal{D}_m as on the ordered path R_m is isomorphism according to definition 3. Conclusively, any change in R_m manifests single direction \mathcal{D}_m in (or along) the I_m. And, no change in R_m manifests no \mathcal{D}_m.

\mathcal{D}_m is actually algebraic notion of direction realized by varying R_m. For manifestation of direction along the I_m, there should be continuous variation in R_m so that \mathcal{D}_m is continuously manifested. If R_m value of neighboring points remain same, then no \mathcal{D}_m is realized during the variation.

I_m is collection of points that is equivalent to m-dimensional space. Thus co-ordinate chart on an I_m is possible by identifying points in I_m with elements of \mathbb{R}^m as $C: I_m \to \mathbb{R}^m$. But Theorem 1 & (6) suggest that points in I_m can be identified by R_m with elements of \mathbb{R} i.e. $C_m \equiv R_m : I_m \to \mathbb{R}$. Thus R_m may be thought as the 1-dimensional co-ordinate system for m-dimensional space; but it has non empty kernel, all points along a radius of the S_{m-1} (frame) are mapped to same element of \mathbb{R}. Further, all the points having same R_m (those don’t manifesting the \mathcal{D}_m) are too mapped to same element of \mathbb{R}. However, we get a useful corollary from theorem 1.

Corollary 1.1: Any m-dimensional space can be identified with set of real numbers by R_m as the chart $C_m \equiv R_m : I_m \to \mathbb{R}$. Hence the geometrical relations provide trivial real numbered chart for corresponding dimensional space.

All points in neighborhood of a point $x \in X_n$ having same R_ms in the frame constitute to kernel of the chart C_m. As R_m is same for all points along a radial direction, it is inevitably non-injective surjective map. A good coordinate chart is needed to be injective & surjective. In order to achieve this, extra components should be considered in the chart amenable to distinguish the kernel points. This can be done by considering extra components from lower dimensional geometrical relations i.e. $R_{m'}$s such that $m'<m$ in the chart. For example, points along same radial direction in the frame having same R_m can be distinguished by considering the radial distance (i.e. R_1) as a component of the chart. Two points having same R_m in a frame can be distinguished by values of $R_{m'}$ in a subframe. By subframe we mean subset of the frame amenable to provide m' fixed reference points in order to quantify $R_{m'}$ of a point. By adopting lower dimensional geometrical relations in the chart in order to make it bijective, we are needed to consider all the m types of R_m m=1,2,3..m. Thus eventually we get map of I_m to \mathbb{R}^m. In other words, set of the geometrical relations provide a potential co-ordinate chart for $C : I_m \to \mathbb{R}^m$.
Realization of an infinitesimal path is nothing but the direction defined by the path. The directions realized in X_n are useful for interpretation of directional quantities i.e. vectors. Before exploring characteristics of the directions, let’s clarify two concepts.

Definition 4: A set of directions $S = \{D_i\}$ near a point is to be called as mutually exclusive directions if realization of a direction $D_i \in S$ along a path in X_n implies non-realization of all other directions $D_{ij} \in S$ along same path.

Definition 5: A set of directions $S = \{D_i\}$ near a point is to be called as collectively exhaustive directions if no direction other than elements of S can be realized along any path in neighborhood of a point in X_n.

Definitions of mutually exclusive and collectively exhaustive directions can be used for ordered directions. This is clear as ordered directions are special type (subsets with respect to underlying paths) of general directions: as paths configured by R_ms are examples of general paths.

Theorem 2: In n-dimensional space, continuous variation in position of a point object can lead to manifestation of n types of mutually exclusive ordered directions.

Proof: In an n-dimensional space X_n, S_{n-1} m being at most n exists. Thus highest dimensional spherical path would exist on S_{n-1}. The direction along S_{n-1} configured by continuously varying R_n in a frame is D_n. As implied by definition 3, D_n isn’t manifested on the continuous path defined by the non varying R_n value because of conditional isomorphism R_n in definition of D_n.

If in neighborhood N_x of a point x in X_n, R_n values of all the points in a frame are same, then N_x constitutes kernel of R_n. The n reference points being constant in the frame, the set E is identified by point x only. Hence it is fair to call the $L_m(E)$ be L_m of x i.e. Lebesgue measure of the point. From (1) we infer that same R_n implies same L_{n-1} of the points in the frame. If a Lebesgue measure of continuous (neighboring) points is same, then we can find a subframe wherein an ordinate (in same dimension) of all the points is same. That is- all those points lie in a lesser dimensional cross section of the space. The cross sectional space accommodating all those point has number of dimensions one lesser than that of the prior space. In short, if L_m of continuous points is same, then all those points lie in single I_{n-1} (i.e. a lesser dimensional section of the I_m). Thus points in N_x having same R_n should lie on cross section of the S_{n-1}with the I_{n-1} containing N_x. Cross section of the S_{n-1}with I_{n-1}is nothing but the S_{n-2}. Hence N_x lies on a S_{n-2} which is subset of S_{n-1}. Frames for S_{n-2} are subsets of frames for S_{n-1}; thus in the same frame we can obtain map $R_{n-1} : N_x \rightarrow \mathbb{R}$ for the points which do not lead to manifestation of D_n.

Continuous varying R_{n-1} signifies direction D_{n-1} along the S_{n-2}. The general R_ms aren’t injective (or bijective) but the D_{m}s are defined by the isomorphism i.e. D_{m}s pick up the subsets on which corresponding R_ms are bijective. Hence on the S_{n-2} (equivalently in N_x), there will be some continuous points (let’s identify their set be $N_{x'}$) leading to a path for which R_{n-1} is constant and not manifesting of D_{n-1}. This is possible only when $N_{x'} \in S_{n-3} \subset S_{n-2}$.

Then paths on the S_{n-3} for which R_{n-2} uniquely identifies the points, are manifested as D_{n-2}. But yet there would be continuous points having same R_{n-2}. Such points must lie on S_{n-4} leading to D_{n-3}. Following this scheme, on the most general sphere i.e. S_{n-1}, different ordered directions are manifested as $D_n, D_{n-1}, D_{n-2}, \ldots, D_3, D_2$. Direction D_2 is manifested on S_1, and on S_1, there are no two points having same R_2 i.e. angle in a frame.

In addition to these ordered directions, a type of ordered directions is possible along paths that change radius of the spheres considered so far. This is manifestation of direction along a straight line ℓ, in terms of
distances as $\mathbb{R}_1: \ell \to \mathbb{R}$. Straight line is nothing but I_1. Such rectilinear path is manifested as primary ordered direction D_1. Hence there are n types of ordered directions $D_i, 1 \leq i \leq n$ in X_n.

When R_m doesn’t lead to identification of difference in points along a path, then we adopt R_m to identify the points. Equivalently when D_m is not manifested along a path, then D_{m-1} can be manifested; and sequentially when D_{m-1} isn’t manifested, we may manifest D_{m-2} by employing R_{m-2}. This sequence is followed till manifestation of D_1. Further, any two neighboring points having varying R_m don’t lie on same S_{m-2} (or lower spheres), thus they can’t be distinguished by R_{m-1} (or lower dimensional geometrical relations). That is when D_m is manifested, then no lower dimensional ordered direction is manifested. Hence no two ordered directions D_i are manifested on same path in the frame. In other words, the n types of ordered directions D_is existing in X_n are mutually exclusive.

In X_n, there exist infinitely many D_ms such that $m < n$. This is because with this condition, infinitely many S_{m-1}s exist about a point in X_n. While there only one S_{m-1} exists at a point; thus single D_{m-1} is manifested. This is a useful corollary.

Corollary 2.1: *In X_n there exists infinitely many D_ms such that $1 \leq m < n, m \in \mathbb{N}$, but only one D_n.*

Ordered directions are manifested by paths on spheres or along straight lines. But there are general infinitesimal paths which are neither along any sphere nor along lines. Such paths manifest directions different from ordered directions. Therefore different directions can be manifested in X_n which aren’t ordered direction. This leads to following proposition.

Corollary 2.2: *The n types of ordered directions manifested in X_n aren’t collectively exhaustive.*

Theorem 3: *Different D_ms obey triangle law of addition in X_n $m < n$, i.e. if points $A, B, C \in X_n$ and D_m for specific m are manifested along the paths joining any two of these three points, then $D_m(AB) + D_m(BC) = D_m(AC)$*
Where, $D_m(ij)$ implies the direction along the path going from i to j manifested as D_m.

Proof: In X_n, S_{m-1}-exist m being at most n. A S_{m-1} having centre at point x accommodates many S_{m-1} for every $m < n$. The cross section of S_{m-1} made by a I_m is set of all points in the I_m equidistant from x. Set of all points in I_m equidistant from a point is nothing but a S_{m-1}. If the cross section contains x, then radius of S_{m-1} is same as radius of the S_{m-1}. Otherwise S_{m-1} has smaller radius and centre at projection of x on the I_m. Thus every cross section of S_{m-1} made by an I_m is a S_{m-1}. As D_m is manifestation of path along S_{m-1} (continuously varying R_m), the path along arbitrary section of S_{m-1} made by a I_m leads to manifestation of D_m. Different cross sections of a S_{m-1} made by different I_ms in X_n lead to manifestation of different D_ms. S_{m-1} has infinitesimally S_{m-1} structure in the cross section with I_m.

Consider left hand side of the equality as $D_m(AB) + D_m(BC)$. It implies that in X_n, D_m along paths AB & BC exists. Thus existence of the isomorphisms R_ms from the paths in a frame is evident. According to the conjecture (which is used for defining D_ms), all the points along path AB should lie on a S_{m-1} of radius r. Similarly all points along path BC too lie on a S_{m-1} of same radius r as it goes through common point B. Thus points A & C lie on same sphere of radius r. As arbitrary cross section of S_{m-1} made by an I_m leads to manifestation of D_m, for
any two points A & C in the frame we can get a cross section to manifest D_m along AC. We get a path on S_{m-1} of radius r going from A to C the points along which can be isomorphically identified by the R_m in the frame.

Conclusively, we have $D_m(AB) + D_m(BC) = D_m(AC)$ for any $A, B, C \in X_n$.

Theorem 4: Set of the D_ms with consideration of specific path length forms vector space over field of numbers.

Proof: D_ms are manifestations of paths along S_{m-1}s. Consider in a frame in X_n, a set V_m of all the D_ms having associated specific length of the path on the S_{m-1}s.

\[V_m = \{ v^a = v \otimes D_m^a : v \in \mathbb{R}, \; & D_m^a \text{ is identification of a } D_m \text{ out of various other } D_m s \} \]

(7)

Above v is assumed to be field of real numbers. One can form the complex field by direct product of two real number fields. The formalism with real numbers would be similar to that with complex numbers. Elements of V_m are m-dimensional ordered directions D_ms having certain path length v. The path length can be quantified in terms of R_m values of path extremities in a frame; this is due to the continuous variation in R_m leads to manifestation of D_m. Many D_ms are possible depending on number n of dimensions of the space in which the set V_m is considered (as stated by corollary 2.1).

On a path, if D_m^a is manifestation of increasing R_m then $-D_m^a$ is manifestation of decreasing R_m on same path. If a point object goes path length v along a D_m^a, then further going same v along $-D_m^a$ (or $-v$ along D_m^a) will bring it to the initial point. Thus v^a & $-v^a$ are inverses of each other under addition. Here addition of elements of V_m is meant to successively following paths (along with lengths) described by the elements.

Denote elements of V_m having either $v=0$ or absence of D_m by 0. Then 0 followed with a v^a implies no variation in v^a i.e. the initial point. Thus for any $v^a \in V_m$ we have $v^a + 0 = 0 + v^a = v^a$ i.e. 0 is identity element of V_m under addition.

The S_{m-1} are obtained as arbitrary cross sections of higher sphere $S_{\geq m}$ made by I_ms. As an S_{m-1} represents the I_m in which it exists, two S_{m-1}s are transverse or parallel (or inclined at specific angle) only if corresponding I_ms are so. Therefore such spheres can be adopted to facilitate projections of $v^a \in V_m$ at desired points in S_{m-1} thereby in X_n. Thus projection of a v^a on every other v^b is defined due to existence of unique I_m transverse to the D_m^b (i.e. to v^b) & going through the extremity of v^a.

As projections of the D_ms on every other D_ms are defined and all D_ms span higher spheres, we can transfer any $v^a \in V_m$ to any point on the sphere. Thus at every point on the sphere we have all the D_ms. Thus effectively can transfer every element of V_m to any point on the sphere. Consider a point O on the S_{m-1} relative to which path length v of all v^as in V_m is defined. Then let points A & B are described by v_A & $v_B \in V_m$ respectively i.e. there is equivalence in the frame $OA \equiv v_A = v_A \otimes D_m^a$ & $OB \equiv v_B = v_B \otimes D_m^b$. Note that paths like OA, OB etc. are along D_ms and not just one dimensional curves. $v_A + v_B$ means going from O to A by v_A and then further from A by v_B. An element of V_m must preserve its intrinsic direction D_m^a while transferred to any point in X_n i.e. any element should be transported at any point of X_n as parallel to its original position in the frame. Hence when we say going from point A by v_B, it means to cover path length of v_B along the path specified by D_m^b parallel to OB. Let the resultant position due to $v_A + v_B$ from O be C, thus according to theorem 3 we can write $OC \equiv v_A + v_B$.

Transfer of v_B to A means equivalence $AC \equiv v_B$. As two paths are manifested along same direction if they are parallel, OB & AC are parallel with same path length v_B. Now consider $v_B + v_A$, it means going from O to B by v_B and then from B by v_A. Let the resultant position due to $v_B + v_A$ from O be D i.e. OD $\equiv v_B + v_A$. Here too we have equivalence $BD \equiv v_A$ and OA & BD are parallel with same path length v_A. Thus OA & OB are parallel to BD &
AC respectively having same path lengths, so are the I_ms specified by them. Two pairs of parallel I_ms, each pair having same path length form a closed four vertex set (very primarily, two pairs of parallel lines having same parallel lengths form parallelogram). The three vertices being fixed by O, A & B, positions of points C & D are identical, thus $OC=OD$; this directly means $v_A + v_B = v_B + v_A$ what is commutativity of addition of elements of V_m.

As transfer (& projections) of all elements of V_m at any desired point on the S_{n-1} is possible and geometry of neighborhoods of all points on S_{n-1} is identical, addition of the elements should be associative under addition.

Elements of V_m are defined in (7) as direct products of numbers (scalars) field & directions, thus arithmetic characteristics of scalar multiplication are obvious. The characteristics are Compatibility of scalar multiplication with field multiplication, identity element of scalar multiplication, distributivity of scalar multiplication with respect to addition, distributivity of scalar multiplication with respect to field addition. Thus all the axioms for a set to be vector space are satisfied and we can conclude that V_m is a vector space.

Any point x in the X_n can be identified with an element x of V_m in a certain frame.

There several \mathcal{D}_ms are possible depending on dimensionality n of the space. Different vector spaces V_ms having different value of m lead to different realizations of the vector elements. For instance, elements of V_1 have rectilinear direction while those of V_2 have angular direction. Dimensionality of elements of vector spaces is inherently intrinsic due to directions \mathcal{D}_m in their definition. Thus we can explicitly define dimensional vectors.

Definition 6: The m-dimensional vector is defined as element of V_m having direction along a \mathcal{D}_m.

According to Theorem 2, in n-dimensional space we manifest n types of ordered directions. Hence in n-dimensional space we have n-types of vectors viz. m-dimensional vectors with $m \leq n, m \in \mathbb{N}$. Also according to Theorem 1, R_m signifies direction along the I_m. There exists only one I_n, hence only one \mathcal{D}_n in X_n. Therefore V_n has only one direction for all elements. Thus V_n is not much useful for analysis in X_n as the V_ms $m < n, m \in \mathbb{N}$ are.

We can identify the scalar number field v in definition (7) of vector space V_m with range of R_m in same frame. For utilization of V_ms for analysis on X_n, every $x \in X_n$ should be identified with single element of V_m. We have a simple scheme to do so. Any $x \in X_n$ can be considered on a path defined by single \mathcal{D}_m. For this we need a frame having fixed centre for all the S_ms to be considered and having fixed points on the S_{n-1} (this implies fixed rays for varying radii of the spheres) for quantification of R_ms. Then any point x will lie along specific \mathcal{D}_m specified by cross section of corresponding I_m with the S_{n-1}. The reference points fixed by the frame & x define the cross sectional I_m. In this way specific direction \mathcal{D}_m^x for every x is identified. The scalar value corresponding to x can be simply identified with path length given by R_m of the x from the reference point on the sphere. As R_m is isomorphism on the \mathcal{D}_m, no two points have same path length in same direction. Hence in order to identify points in X_n with elements of V_m, we should use the configuration $v: X_n \rightarrow V_m$ given by

$$v(x) = R_m(x) \otimes \mathcal{D}_m^x$$

(8)

Where $R_m(x)$ is the path length of x along the \mathcal{D}_m^x w.r.t. the reference point of the frame (x along with the m-reference points defines the E needed for R_m). Thus a vector space is direct product of the directions \mathcal{D}_m^xs and range of R_m for points along corresponding \mathcal{D}_m^xs.
Further, every element of \(V_m \) configured in \(X_n \) can be identified with a scalar as \(\mathbb{R}^m: V_m \rightarrow \mathbb{R} \) with reference to same frame in which the configuration done.

Theorem 5: In \(n \)-dimensional space, \(V_m \leq n, m \in \mathbb{N} \) are topological Banach spaces.

Proof: Theorem 4 clearly concludes existence of vector space \(V_m \) in \(X_n \) and definition 3 defines it for all \(m \leq n, m \in \mathbb{N} \). Also from the definition & above configuration, map \(\mathbb{R}^m \) for every element of \(V_m \) is evident. Now, consider \(\mathbb{R}^m: V_m \rightarrow \mathbb{R} \) along specific \(\mathcal{D}_m \). In a specific frame, all the elements of \(V_m \) can be identified with corresponding value of \(\mathbb{R}^m \) irrespective of \(\mathcal{D}_m \). Specifically elements of \(V_m \) have directions \(\mathcal{D}_m \) along different \(S_m \) on the \(S_{m-1} \), and Theorem 1 implies that \(\mathbb{R}^m \) is measure from \(S_{m-1} \) in the frame quantifying a \(\mathcal{D}_m \). Hence all the elements of \(V_m \) can be identified with corresponding \(\mathbb{R}^m \).

As by lemma 2 \(\mathbb{R}^m \) is a measure, for any \(v \in V_m \), always \(\mathbb{R}^m(v) \geq 0 \) i.e. \(\mathbb{R}^m \) is non negative. Further, when for a \(v \in V_m \), \(\mathbb{R}^m(v)=0 \) it means that the \(\mathbb{L}_{m-1}(E) \) concerned by the conjecture is zero. In such case, no separation of the point \(x \) (which is identified with \(v \)) from the reference point occurs; thus no manifestation of any path by \(x \) & hence of any \(\mathcal{D}_m \). Thus in such case the element \(v \) has no direction i.e. \(v=0 \). Conclusively we get non degeneracy of \(\mathbb{R}^m \) i.e. \(\mathbb{R}^m(v)=0 \leftrightarrow v=0 \). By linearity of the conjecture, scalar multiplicativity is obvious i.e. \(\mathbb{R}^m(\lambda v) = \lambda \mathbb{R}^m(v) \). Further for \(v, w \in V_m \), let \(P_v, P_w \) be corresponding \(\mathbb{L}_{m-1}(E) \) as considered in (1). Let the \(\mathbb{L}_{m-1} \) corresponding to the vector element \(v + w \) be \(P_{v+w} \). As \(\mathbb{L}_{m-1} \) is Lebesgue measure from the open sets on spheres to \(\mathbb{R} \), using property of sum of the sets \(P_{v+w} = P_v + P_w - P_{v+w} \). Using this relation in the conjecture we get \(\mathbb{R}^m(v+w) \leq \mathbb{R}^m(v) + \mathbb{R}^m(w) \) what is the triangle inequality. As \(\mathbb{R}^m \) has essential properties of non negativity, non degeneracy, multiplicativity and triangle inequality on \(V_m, \mathbb{R}^m \) is norm on \(V_m, \mathbb{R}^m \) makes \(V_m \) a normed vector space.

Lemma 3 implies that every Cauchy sequence in \(V_m \) with respect to the norm converges to points (elements) in \(V_m \). Alternatively, the spheres are complete. Therefore \(V_m \) is a complete normed space i.e. Banach space. Further, a norm always gives raise to metric and thus induces the topology on same space. Thus \(V_m \) are topological Banach spaces.

From this point, one can derive all the aspects of conventional vectors spaces such as geometrical, topological, algebraic, functional etc. for \(V_m \).

Theorem 6: If an entity exists as a vector quantity in \(n \)-dimensional space then it essentially exists in all the \(n \) types of vectors as elements of \(V_n \leq n, m \in \mathbb{N} \); and induces same dynamics with all the types.

Proof: An entity existing in \(n \)-dimensional space can be considered as a point object in corresponding \(n \)-dimensional configuration space \(X_n \). If the entity exists as a vector quantity, then it intrinsically has magnitude & direction. That is the point object is to be considered along with a direction (& a path length being its magnitude) in \(X_n \) with respect to the frame. Image of the entity in \(X_n \) can have any direction; however an arbitrary direction can be considered as resultant of several simultaneous ordered directions. Importantly, theorem 2 states that continuous variation in position of a point object leads to manifestation of \(n \) types of mutually exclusive ordered directions. Hence the vector quantity should be intrinsically along all the possible ordered directions \(\mathcal{D}_m \) \(m \leq n \) \(m \in \mathbb{N} \) in order quantify any infinitesimal change in it. The entity should be configured along the \(\mathcal{D}_m \). Scalars
(magnitudes of the entity) along these directions according to Theorem 4 form vector spaces \(V_m, m \leq n \). Thus overall \(n \) types of vectors spaces \(V_m \) exist. Thus the entity exists as \(n \) types of vector as elements of corresponding \(V_m \).

Further, Theorem 2 implies existence of mutually exclusive ordered directions in \(X_n \). Therefore variation in point object is along any of the \(n \) types of ordered directions independently. An infinitesimal variation results in change in magnitude of any one type of vector (along any \(D_m, m \leq n \)) and not of other. Therefore in order to configure any change in the configuration, the entity essentially comes in all the vector versions as elements of \(V_m, m < n, m \in \mathbb{N} \).

Further, any other vector quantity too should come in all the versions (i.e. the \(n \) types). Thus in every type of vector space, all the quantities exists. Additionally field of scalars exists for all the vector spaces. If \(x \) & \(y \) are two vector quantities, then in all types of vector spaces \(V_m, m \leq n \) their versions exist as \(x_m \) & \(y_m \) correspondingly. Then all the mathematical operations of arithmetic, geometry & calculus are possible with them. Thus their relation is preserved in every version out of \(m \). Thus a vector quantity induces or derives same dynamics in all typed vectors spaces \(V_m, m < n, m \in \mathbb{N} \).

Now we have reached to the point from which the mathematics developed can be applied to special objective. The trivial case of the application is of our physical universe. In upcoming section we will discuss the universe with respect to the work done in this section.

Elements of any algebraic vector space can be interpreted in \(X_n \) as discussed. Conventionally they are interpreted to be straight line segments \((D_1) \), while now we can interpret them to be segments along any of \(D_m \). For the new interpretation, dimensionality \(n \) of \(X_n \) & \(m \) of the \(D_m \) is important. In same \(X_n \), dimensionality of \(V_m \) varies with \(m \) due to limitation on number of mutually perpendicular \(I_m \).

3. Case of the universe

Our universe can be identified with a 4-dimensional general manifold. Out of the four dimensions, locally 3 are spatial & 1 is temporal. Such space having 3 spatial dimensions and a parameter of evolution will be written as 3+1-dimensional space. More precisely, the universe \(U \) is globally 4-dimensional while locally it is 3+1-dimensional. Theorem 5 clearly implies that for \(n=4 \), \(V_m, m \leq 4, m \in \mathbb{N} \) form topological Banach spaces i.e. there would exist \(4 \) types of vectors as elements of \(V_1, V_2, V_3 \) & \(V_4 \). But out of them, 4-dimensional vectors i.e. elements of \(V_4 \) are useless for analysis. This is because in \(U \), single \(D_4 \) exists i.e. \(V_4 \) (configured) in \(U \) is 1-dimensional Banach space; 1-dimensional vector space has least analytical value since it can be considered as scalar space. If linearly independent directions of vectors exist, then the vectors are useful for analysis. In this sense in \(U \) there are three types of analytical vectors viz. 1-dimensional, 2-dimensional & 3-dimensional (4-dimensional being dormant for analysis).

1-dimensional vectors are the conventional vectors having directions along straight lines; let’s call them rectilinear vectors. 2-dimensional vectors have directions along \(S_1 \) i.e. circular path; let’s call them angular vectors. While 3-dimensional vectors are having directions along \(S_2 \); let’s call them sangular vectors. In the immediate subsection, we will elaborate on the 2-dimensional vectors.

The case study of our universe is presented here purposefully. A theory in physics to be proposed in [1] concerns the universe as configuration space accommodating four types of vectors.
3.1 Angular Vectors

It is well accepted that the infinitesimal angular rotations can be represented as vectors [3]. As a special case of vectors in curvilinear coordinates, the angular vectors are already explored. Special spherical vectors \(\mathbf{r}, \theta \) & \(\phi \) are useful for analysis of conventional (rectilinear) vectors. If one ignores \(\mathbf{r} \), then the space can accommodate angular vectors only (and no rectilinear vector). In such angular vector space, directed angles can be identified with elements of any algebraic vector space. For convention we will consider anticlockwise or right handed angular direction to be positive and the clockwise or left handed to be negative.

Angle is measure of arc of circle in plane. And as every section of the sphere made by a plane is a circle, every infinitesimal curve on circle can be measured in terms of angle (i.e. \(R_2 \)). In general \(R_m \) is measure on a \(S_{m-1} \), and every cross section of \(I_m \) & higher sphere is \(S_{m-1} \). Thus the higher spheres have infinitesimally piecewise \(D_m \) structure to accommodate \(m \)-dimensional vectors.

Definition 7: Elements of \(V_1 \) having direction along \(D_1 \) are defined as rectilinear vectors.

Definition 8: Elements of \(V_2 \) having direction along \(D_2 \) are defined as angular vectors.

For configuration/identification of rectilinear vectors, in the frame, origin in form of a point is needed. For angular vectors, origin in form of a ray (giving centre and a point on every radius sphere) is needed. Origin ray for angular vectors is the line starting from the centre of the frame \(S_n \) and propagating in a direction. The angular magnitudes are measured with respect to this ray. (In general for \(m \)-dimensional vectors, origin in form of \(I_{m-1} \) is needed for fixing of all the \(m \) points for \(R_m \). And the norm of a vector point is measured relative to such origin.) The angular vectors can exist on higher spheres or 4-balls.

Algebraic expressions for all types of vectors are same such as linear combination of components, identities of dot product & cross product etc. This is valid if the magnitude in terms of \(R_m \) is considered for \(m \)-dimensional vectors. As discussed in proof of theorem 5, in the universe trivial norms for vectors are \(R_m \) i.e. distance, angle & solid angle correspondingly. But comparison of different typed vector magnitudes can be done by fixing all the quantifications \((R_m) \) in terms of distances. For this, we can exploit the conjecture. Angle can be written as ratio of arc and radius. Basis can be easily identified for the vector spaces, wherein an arbitrary vector can be expanded in terms of basis vectors. Suppose an angular vector \(\mathbf{a} \) is written as

\[
\mathbf{a} = Mm + Nn \tag{9}
\]

Where, \(M \) & \(N \) are quantified in angles and \(m \) & \(n \) are basis angular vectors in \(X_3 \). Then same can be written as

\[
\mathbf{a} = \frac{M}{r}m + \frac{N}{r}n
\]

Where, \(M \) & \(N \) are quantified in distances (or lengths) on sphere of radius \(r \). In \(X_{n\geq3} \), the resultant vector and its components form spherical triangle on \(S_2 \). We have equality from spherical trigonometry [4] as

\[
\cos(a) = \cos(M)\cos(N) + \sin(M)\sin(N)\cos(\hat{u}) \tag{10}
\]

Where \(a \), \(M \) and \(N \) are sides of spherical triangle formed on a sphere. \(\hat{u} \) is angle opposite to side \(a \). The spherical triangle formed by resultant angular vector and its components is right angled, i.e. if \(a \) is resultant of \(M \)
& N, then \(\dot{u} = \frac{\pi}{2} \). Hence second term in RHS of (10) vanishes. Thus using (9) & (10) we get magnitude of angular vector as

\[
a = \arccos \left(\cos(M) \cos(N) \right)
\]

(11)

Further, we obtain unit angular vector as

\[
\mathbf{u} = \frac{a}{a} = \frac{Mm + Nn}{\arccos \left(\cos(M) \cos(N) \right)}
\]

(12)

Let two angular vectors in spatial universe \(X_3 \), \(\mathbf{a} = Mm + Nn \) and \(\mathbf{b} = M'm + N'n \) then we get magnitude of the vector obtained by their addition as

\[
a + b = \arccos [\cos(M+M').\cos(N+N')]
\]

(13)

The essential triangle inequality \(|a + b| \leq |a| + |b| \) holds for angular vectors as used in Theorem 5.

The scalar product of two vectors is obtained as product of their projections on each other. Consider projections of two angular vectors on each other in their space i.e. \(S_2 \) as shown in fig.1. Let \(GA = \mathbf{a} \) & \(GB = \mathbf{b} \). From spherical law of sine [5] for triangle \(GAA' \)

\[
\frac{\sin a}{\sin \frac{\pi}{2}} = \frac{\sin x}{\sin \theta}
\]

(14)

i.e. \(x = \arcsin (\sin a \sin \theta) \)

Then using general formula (10) for same triangle,

\[
GA' = a' = \arccos \left(\frac{\cos a}{\cos \left(\arcsin (\sin a \sin \theta) \right)} \right)
\]

(15)

Repeating same procedure for triangle \(GBB' \),

\[
GB' = b' = \arccos \left(\frac{\cos b}{\cos \left(\arcsin (\sin b \sin \theta) \right)} \right)
\]

(16)

Combining (15) & (16) we get scalar product of angular vectors in terms of their magnitudes and angle between them

\[
\mathbf{a} \cdot \mathbf{b} = a'b' = \arccos \left(\frac{\cos a}{\cos \left(\arcsin (\sin a \sin \theta) \right)} \right) \cdot \arccos \left(\frac{\cos b}{\cos \left(\arcsin (\sin b \sin \theta) \right)} \right)
\]

(17)

To verify- it is commutative and fulfills desired properties of scalar product such as \(\mathbf{a} \cdot \mathbf{a} = a^2 \), and for basis units \(m.m =1 \), \(n.n =1 \) and \(m.n = n.m =0 \). Using these relations for basis vectors, it is easy to get the scalar product in terms of components (equivalent to general expression) as

\[
\mathbf{a} \cdot \mathbf{b} = (M'M')+(NN')
\]

(18)
Vector product of two angular vectors can be developed using crux of vector product i.e. combination of perpendicular component of vector acting on magnitude of other. If a vector a acts on another vector b, then by geometric definition of cross product we take magnitude of component of a that is transverse to b and multiply it by magnitude of b. Formulae for spherical trigonometry in [5] i.e. like (14) assists the derivation. Then we have the magnitude of cross product as

$$|a \times b| = a''b$$

where a'' magnitude of component of a that is transverse to b.

By using equations for spherical triangles, we get

$$\cos x = \arccos \left(\frac{\cos a}{\cos \left(\arcsin \sin \left(\frac{\pi}{2} - \theta \right) \right)} \right)$$

Crux behind the vector product clearly implies that the vector product of two vectors is perpendicular to both of them. This is possible only if the product has direction linearly independent to that of both. In the example, a & b are expressed in terms of basis m & n. Hence the vector product should have direction linearly independent to m & n. Let’s denote the unit vector in the new direction by l; thus the vector product (19) has direction l. That is,

$$a \times b = \left[\arccos \left(\frac{\cos a}{\cos \left(\arcsin \sin \left(\frac{\pi}{2} - \theta \right) \right)} \right) \right] b l$$

Using (20) we obtain the essential properties of angular vector product as

$$m \times m = 0 \text{ and } n \times n = 0 \text{ and } |m \times n| = l \text{ and } |n \times m| = l = 1$$

Also $m \times n = l$ and $n \times m = -l$

Using these properties, in terms of basis we obtain (equivalent to general expression)

$$a \times b = (MN' - NM')l = -(b \times a)$$

In this subsection we have revealed basic details about 2-dimensional vectors or angular vectors which are elements of V_2 & have directions along D_2. The formulary is consistent with that of V_1. Thus one may generalize the scalar & vector products for higher dimensional vectors in terms of basis. The algebraic properties of all types of vectors (at least of rectilinear & angular) are identical; and one can’t distinguish between their algebras. If angular vectors are identified to be rectilinear vectors by appropriate morphism, then algebraically one can’t reveal the fact. Different typed vectors are algebraically identical but have geometrically different.

During evolution of physics, we encountered many examples of angular vectors such as angular velocity, angular momentum, torque etc. We assumed them to be rectilinear vectors by assigning right hand thumb rule as the morphism. Further, these vectors are always cross products of other rectilinear vectors. As algebraic properties of angular vectors and rectilinear vectors are same, their algebras are indistinguishable and no trouble occurred in the analysis. But when their geometry is concerned, the difference explicitly arises. At first glance everyone feels that these vectors are fundamentally different from other rectilinear vectors, but abandons this fact as the analysis plays fine. Most effective sensation of geometry, next to physical realization is symmetry. These vectors indicate
their difference when studied under symmetries. The scientific community compensated this matter by making two classes of vectors as pure vector (or polar vector) and pseudovector (or axial vector). The pseudovectors don’t obey laws of symmetry e.g. reflection. Pseudovector is always associated with the cross product of two pure vectors \([6] \); and the cross product implies a vector acting on another vector. Mathematically the pseudovectors should be angular vectors (according to the theorems in last section, quantities having direction \(\mathbf{D}_2 \) are essentially angular vectors belonging to \(V_2 \)). We have to accept the fact that scheme of pseudovectors is misleading (it is misinterpretation) and they are actually angular vectors. If we consider the angular vectors instead of pseudovectors, all physical systems are invariant under all trivial symmetry operations including reflection. Vector is just a tool to analyze physical system; the system must be invariant if frame of such tool is changed- this is possible only if we consider angular vectors instead of pseudovectors.

3.2 Sangular Vectors

As discussed earlier, in 4-dimensional space the vector space \(V_3 \) having elements as 3-dimensional vectors can be configured. Such vectors will exist on the 4-balls (or 3-spheres) existing in \(U \); and have directions along \(\mathbf{D}_3 \) and norm in terms of \(R_3 \) i.e. solid angle. This norm will induce metric in terms of solid angle for the sangular vectors.

Definition 9: Elements of \(V_3 \) having direction along \(\mathbf{D}_3 \) are defined as sangular vectors.

\(U \) being 4-dimensional, can be configured as sangularly 2-dimensional vector space. Continuous random change in positions of a point object on surface of \(S_2 \) leads to manifestation of sangular vector.

For configuration of vectors, appropriate frame is needed. For rectilinear vectors it could be any of the conventional; for angular vectors in the frame a fixed point on the \(S_1 \) is needed from which angles can be measured. Analogously, for sangular vectors in the frame two points on \(S_2 \) are needed referring to which area traced by a point on \(S_2 \) (i.e. \(E \) in the conjecture) can be measured. Both ends of a diameter can be considered as the origin in the frame, these two points and the object point form triangle on the sphere. Area of such triangle divided by square of radius of the sphere yields the solid angle i.e. norm of the sangular vector of the object point in the frame. For quantification of area on the spheres, any two reference points would work, but we concluded end points of a diameter because this makes symmetry for choice of frames on the spheres. Further the end points of a diameter mean \(S_0 \), this would help for generalization for higher dimensional vectors.

Area of the spherical triangle formed by two reference points & an object point characterizes norm of the sangular vector of the object point. Area \(A \) of plane triangle is half of the product of base & height \((b.h/2)\); and area \(A \) of spherical triangle having same base \(b \) & height \(h \) has different but comparable area due to spherical excess. We can write \(A = g \ b \cdot \ h/2 \) where, \(g \) is the deviation due to spherical area. We don’t need to explore \(g \) here.

Further, for any sangular vector, the base concerned is constant as out of the three points, two are always reference points (or end point of a diameter). The spherical distance between ends of a diameter is \(\pi r \) i.e. \(b = \pi r \). Using this substitution, we get area of the spherical triangle formed by point \(x \) as \(A_x = g \ \pi r \cdot h_x/2 \), where location of \(x \) characterizes \(h_x \). Using this in the conjecture we get

\[
R_3(x) = \frac{g \pi h_x}{2r}
\]
\((22) \)
3.3 Vectors in the universe

In the universe U, rectilinear, angular & sangular types of vectors should exist. An angular vector spans over two dimensions as S_1 exists in 2-dimensional space. Similarly a sangular vector spans over three dimensions. Let in a frame, the four rectilinear basis dimensions of U are $x_1, x_2, x_3 & x_4$; let x_4 be time dimension. Let the unit angular vectors in planes $x_1x_2, x_1x_3 & x_1x_4$ be basis for V_2 in same frame. Note that any combination x_ix_j with i being same & j varying over three others forms basis for angular vector space, and all basis sets are equivalent related by linear transformations.

In 4-dimensional space only two linearly independent sangular vectors can exist and a sangular vector spans over three rectilinear (Euclidean) dimensions.

In the universe U, there exist three types of vectors viz. rectilinear, angular and sangular. According to theorem 6, any quantity like displacement, momentum etc. should come in these four versions. The formalism on a type (or for general vector) is to be followed for all the types of vectors. This means if rate of change (w.r.t. a quantity) of a vector quantity v is defined as u, then it holds for any type of vector. Therefore if a quantity is conserved, then it should be conserved in all typed vectors.

According to Theorem 6, a vector quantity should exist in all the types of vectors. If it changes in U, then it must change locally i.e. the change must be manifested in spatially 3-dimensional space with time evolution. Vector has magnitude & direction, if change happens in magnitude, then it is explicitly manifested as change in the path length along the ordered direction. But if a vector of fixed magnitude exists and can change via variation in direction only, then local geometry on U is important. If two linearly independent vectors of a type are manifested locally, then change in the typed vector via change in direction is manifested due to there are many vector directions possible. Local space of manifestation is spatial 3-dimensional portion of U with time evolution. As in 3-dimensional space at least two linearly independent vectors of rectilinear & angular type can exist, change in them due to direction can be manifested. This isn’t the case with singular vectors as only one such vector spans whole 3-dimensional (spatial) space.

According to theory of relativity, U is globally 4-dimensional continuum while locally is 3+1-dimensional having Minkowskian geometry. Thus if there exists 4-ball in U, then locally it is manifested as 3-ball with a dimension being evolution parameter. Two linearly independent sangular vectors can exist on 4-ball, but only one such on 3-ball. The 3-ball is projection of 4-ball aligned with local spatial space of manifestation U_i. If change in a sangular vector direction happens, then the change must be perpendicular to U_i. If a vector changes direction (or rotates) perpendicular to a subspace, then its projection on (or component in) the subspace should change. If a path along D_m having specific path length is changed (rotated) perpendicular to the accommodating I_m, then path length along the projection of the path in the I_m will be changed depending on the amount of change (rotation). Thus even the path length is generally constant, for the projection in the subspace it changes. Thus in effect, in local portion of U, change in sangular vector is manifested as change in its magnitude on the 3-ball (even if its magnitude on 4-ball is constant).

3.4 Comparison of Magnitudes of different typed vectors

Three types of vectors exist in the universe. For fruitful analysis, comparison between magnitudes of different typed vectors is must. All the m-dimensional vectors such that m is greater than 1 exist on the respective spheres or balls. Rectilinear vectors are fundamental vectors quantified in terms of R_1. The universe is infinitesimally piecewise rectilinear. All the comparison should be done with respect to magnitude of rectilinear vector.
Consider a rectilinear vector \(\mathbf{v}_R \) of norm \(|\mathbf{v}_R| \), it should exist along \(\mathcal{D}_1 \) i.e. straight line. But the same norm i.e. curved line segment of the length \(|\mathbf{v}_R| \) can exist on spheres. Initially, let’s find comparison with angular vector existing on a sphere of radius \(r \). Magnitude i.e. norm of an angular vector \(\mathbf{v}_A \) is given by \(R_3 \) i.e. \(|\mathbf{v}_A| = \frac{P}{r} \), \(P \) being difference between the \(L_1 \)s of extremities of the vector. As \(L_1 \) is length, \(P \) is length on the \(S_1 \). Comparison can be obtained by substituting \(|\mathbf{v}_R| \) for \(P \) meaning that same path length is used to construct both the vectors. Then we get

\[
|\mathbf{v}_A| = \frac{|\mathbf{v}_R|}{r} \quad (23)
\]

Relation (23) provides comparison of magnitudes of the angular & rectilinear vectors if same amount of geometric content (in terms of Lebesgue measure) is used to generate both the vector. This relation is similar to \(\theta = l/r \) of arc length & angle.

Norm of sangular vector is given by difference in \(R_3s \) of its extremities. Thus norm \(|\mathbf{v}_S| \) of sangular vector \(\mathbf{v}_S \) is ratio of area due to \(\mathbf{v}_S \) on the sphere to square of the radius. It is as given in (22). There \(h_x \), is curved length which can be regarded as magnitude of the corresponding rectilinear vector for comparison. In other words, for comparison purpose \(R_3(x) \) in (22) is magnitude of a sangular vector \(\mathbf{v}_S \) while \(h_x \) is magnitude of a corresponding rectilinear vector \(\mathbf{v}_R \). It takes the form

\[
|\mathbf{v}_S| = \frac{g\pi |\mathbf{v}_R|}{2r} \quad (24)
\]

This equality provides abstract comparison of magnitudes. Here \(g \) is general function and we haven’t explored it. The relative magnitudes of the three types of vectors are essential in the physical theory proposed in [1].

4 Conclusion

Vectors have ordered directions that not needed to be rectilinear always. The paper provides generalization of conventional interpretation of vectors. It concludes that a type of ordered direction exists for every number of Euclidean dimensions. Paths with the path lengths along such ordered directions satisfy axioms of the vectors, hence they can be considered as vectors. Thus every number of dimensions comes with a type of vector. Algebra of all the typed vectors is identical. Expressions in terms of basis or components for scalar product & vector product are identical. But different typed vectors differ in magnitude; an \(n \)-dimensional vector has magnitude in terms of \(R_n \). Elements of arbitrary algebraic vector space may be interpreted as of any type in corresponding geometrical (configuration) space. All types of the vector form Banach spaces and have metric induced topologies.

In 4-dimensional Euclidean space, three types of vectors exist viz. rectilinear, angular & sangular. A gross comparison of their magnitudes is obtained as (23) & (24). The types of the vectors retain their directions infinitesimally i.e. it is meaningless to say that an angular (or sangular) direction is infinitesimally rectilinear. This makes the generalized vectors different from that through the differential geometry.

Acknowledgements: No funding is received for the work. Author dedicates the work to Jawaharlal Nehru.
References
