Conjecture that states that numbers $16^{\wedge} n-4^{\wedge} n+1$ are either primes either divisible by Poulet numbers

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that any number of the form $16^{\wedge} n-4^{\wedge} n+1$, where n is positive integer, is either prime either divisible by a Poulet number (see the sequence A020520 in OEIS for the sequence of the numbers of this form).

Conjecture:

Any number of the form $a(n)=16^{\wedge} n-4^{\wedge} n+1$, where n is positive integer, is either prime either divisible by a Poulet number.

Note: see the sequence A020520 in OEIS for the numbers of this form.

Verifying the conjecture:

(for the first nine such numbers)

```
: a(1) = 13 which is prime;
: a(2) = 241 which is prime;
: a(3) = 4033 which is a Poulet number;
: a(4) = 65281 which is a Poulet number;
: a(5) = 1047553 = 13*61*1321 and 61*1321 = 80581
    which is a Poulet number;
: a(6) = 16773121 which is a Poulet number;
: a(7) = 268419073 = 13*1429*14449 and 1429*14449=
    20647621 which is a Poulet number;
: a(8) = 4294901761 which is a Poulet number;
: a(9) = 68719214593 which is a Poulet number.
```

