# Quasi-periodic oscillations of GRO J1744-28 

Jacob Biemond*<br>Vrije Universiteit, Amsterdam, Section: Nuclear magnetic resonance, 1971-1975<br>*Postal address: Sansovinostraat 28, 5624 JX Eindhoven, The Netherlands<br>Website: http://www.gravito.nl Email: j.biemond@gravito.nl


#### Abstract

Observed quasi-periodic oscillations (QPOs) of GRO J1744-28 are compared with predictions from a previously proposed three tori model. The three highest QPO frequencies are assumed to arise from three circular tori moving around the pulsar: an inner torus with charge $Q_{i}$, a torus with mass $m_{m}$ in the middle and an outer torus with charge $Q_{o}$, whereas the pulsar itself bears a charge $Q_{s}$.

In addition, it follows from a special interpretation of the gravitomagnetic theory, that the three circular tori are subjected to a total number of four lowfrequency precessions. The expressions of these four additional QPO frequencies are revised compared to earlier work. For GRO J1744-28 the two lowest observed QPO frequencies are attributed to the two highest of the four low-frequency QPOs. The two other frequencies of the quartet may be too low to be detected. From the two highest QPO frequencies of the quartet, lying close together, approximate values for the charges $Q_{s}, Q_{i}$, and $Q_{o}$ are extracted. The results are compared with the observed and predicted set of seven QPOs for five other pulsars and two black holes.

The observed magnetic field is compared with the polar magnetic field, also predicted by the gravitomagnetic theory. Remarkably, the observed highly ionized iron emission lines may be compatible with the tree tori model. In order to explain the discontinuity in recently observed phase lags of GRO J1744-28, a Compton reverberation mechanism is considered, compatible with electron temperatures that depend on the radii of the tori.


## 1. INTRODUCTION

The accreting pulsar in the low-mass X-ray binary system GRO J1744-28 produces X-ray bursts, showing quasi-periodic X-ray oscillations (QPOs). The current understanding of these phenomena is far from complete. In this work the origin of the QPOs will further be investigated. From the observed X-ray spectrum of GRO J1744-28 Zhang et al. [1] deduced a spin frequency at 2.14 Hz and its harmonic at 4.2 Hz and three, clearly discernible, QPOs at $56.2,39.0$ and 20.2 Hz , respectively. In addition, Kommers et al. [2] found large-amplitude oscillations in the light curve of the bursts. They attributed them to a simple beating of two narrow band QPOs with comparable amplitudes at 3.75 Hz and 3.25 Hz , respectively. Attempts to interpret the QPOs of GRO J1744-28 have been given [1, 2], but no generally accepted model has emerged so far.

In this work the observed three highest QPO frequencies of GRO J1744-28 are attributed to the frequencies of the orbital motion of the three circular tori around the pulsar, whereas the two other QPOs are attributed to a gravitomagnetic precession mechanism [3-5]. In general, the latter mechanism leads to a total of four low-frequency QPOs, but it is argued that two of them may escape detection for GRO J1744-28. The full set of three high-frequency and four low-frequency QPOs has been observed for five other pulsars: SAX J1808.4-3658, XTE J1807-294, IGR J00291+5934, SGR 1806-20 and Sco X-1 and two black holes: XTE J1550-564 and Sgr A*. Alternative explanations for the latter QPOs are discussed in, e.g., refs. [3-5] and references cited therein.

Compared with other models, our model contains two new basic assumptions. Firstly, it is assumed that pulsars and black holes may bear large charges [3-5]. Secondly, for the explanation of four low-frequency QPOs another assumption may be essential: a special interpretation of the gravitomagnetic theory, which may be deduced from general relativity [3-9]. In this interpretation the gravitomagnetic field $\mathbf{B}(\mathrm{gm})$ generated by rotating mass and the electromagnetic induction field $\mathbf{B}(\mathrm{em})$ generated by moving charge are supposed to be equivalent. It is generally accepted that introduction of a gravitomagnetic field is consistent with orthodox general relativity, but the proposed equivalence of $\mathbf{B}(\mathrm{gm})$ and $\mathbf{B}(\mathrm{em})$ is not. Application of this special interpretation of the gravitomagnetic field, however, results in the deduction of four precession frequencies, which may be identified with four observed low-frequency QPOs [3-5].

It is noticed, that our interpretation of the gravitomagnetic field also leads to a prediction of the strength of the magnetic field of pulsars and other rotating bodies. Identification of the "magnetic-type" gravitational field with a magnetic field results into the so-called Wilson-Blackett formula. This relation applies, e.g., to a spherical star consisting of electrically neutral matter

$$
\begin{equation*}
\mathbf{M}(\mathrm{gm})=-1 / 2 \beta c^{-1} G^{1 / 2} \mathbf{S} \tag{1.1}
\end{equation*}
$$

Here $\mathbf{M}(\mathrm{gm})$ is the gravitomagnetic dipole moment of the star with angular momentum $\mathbf{S}$, and $\beta$ is a dimensionless constant of order unity. Recently, an indication is found that the sign of $\beta$ is negative [10]. Therefore, it is adopted throughout this paper that $\beta=-1$.

Relation (1.1) appears to be approximately valid for many, widely different celestial bodies and some rotating metallic cylinders in the laboratory as well (see for a review ref. [7] and references therein). The magnetic fields of pulsars have separately been discussed [8]. The angular momentum $\mathbf{S}$ for a spherical star with mass $m_{s}$ and radius $r_{s}$ can be calculated from the relations

$$
\begin{equation*}
\mathbf{S}=I \boldsymbol{\Omega}_{s}, \quad \text { or } \quad S=I \Omega_{s}=2 / 5 f_{s} m_{s} r_{s}^{2} \Omega_{s} \tag{1.2}
\end{equation*}
$$

where $\boldsymbol{\Omega}_{s}$ is the angular velocity vector of the star $\left(\Omega_{s}=2 \pi v_{s}\right.$ is its angular velocity and $v_{s}$ is its spin frequency), $I$ is the moment of inertia of the star and $f_{s}$ is a dimensionless factor depending on the homogeneity of the mass density in the star. For convenience sake, the value $f_{s}=1$ for a homogeneous mass density will be used in this work.

The value of a gravitomagnetic dipole moment $\mathbf{M}(\mathrm{gm})$ or an electromagnetic dipole moment $\mathbf{M}$ (em) can be calculated from

$$
\begin{equation*}
\mathbf{M}=1 / 2 R^{3} \mathbf{B}_{\mathrm{p}}, \quad \text { or } \quad M=1 / 2 R^{3} B_{\mathrm{p}} . \tag{1.3}
\end{equation*}
$$

Here $\mathbf{B}_{\mathrm{p}}$ is the magnetic induction field at, say, the north pole of the star at distance $R$ from the centre of the star to the field point where the field $\mathbf{B}_{\mathrm{p}}$ may be observed $\left(R \geq r_{s}\right)$.

For $R=r_{s}$ combination of (1.1), (1.2) and (1.3) yields the following polar field $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$

$$
\begin{equation*}
\mathbf{B}_{\mathrm{p}}(\mathrm{gm})=-2 / 5 \beta c^{-1} G^{1 / 2} m_{s} r_{s}^{-1} \mathbf{\Omega}_{s} \tag{1.4}
\end{equation*}
$$

For $\beta=-1$ the directions of the vectors $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ and $\boldsymbol{\Omega}_{s}$ coincide. It is stressed that $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ at distance $r_{s}$ has been derived for an ideal gravitomagnetic dipole located at the centre of the star. For a homogeneous mass distribution in the star, however, the same result for $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ can be deduced [11, 12].

Furthermore, precession phenomena are another consequence of the special interpretation of the gravitomagnetic theory. The latter theory predicts an angular precession velocity $\boldsymbol{\Omega}(\mathrm{gm})$ for an angular momentum $\mathbf{S}$ of a star or a torus. The following
relation then applies to $\boldsymbol{\Omega}(\mathrm{gm})$

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{S}}{\mathrm{dt}}=\boldsymbol{\Omega}(\mathrm{gm}) \times \mathbf{S} \tag{1.5}
\end{equation*}
$$

The angular precession velocity $\boldsymbol{\Omega}(\mathrm{gm})$ of $\mathbf{S}$ around direction of the field $\mathbf{B}(\mathrm{gm})$ from gravitomagnetic origin is given by $[3,7,9]$

$$
\begin{equation*}
\boldsymbol{\Omega}(\mathrm{gm})=-2 \beta^{-1} c^{-1} G^{1 / 2} \mathbf{B}(\mathrm{gm}), \tag{1.6}
\end{equation*}
$$

where the precession frequency $v(\mathrm{gm})$ is given by $v(\mathrm{gm})=\Omega(\mathrm{gm}) /(2 \pi)$.
As a first example, the precession of the angular momentum $\mathbf{S}_{m}$ of a circular torus with total mass $m_{m}$ by the gravitomagnetic field of the star with angular momentum $\mathbf{S}$ will be considered. According to (1.5), an angular precession velocity $\boldsymbol{\Omega}(\mathrm{gm})$ of the component $\mathbf{S}_{m} \sin \delta_{m}$ ( $\delta_{m}$ is the angle between the directions of $\mathbf{S}$ and $\mathbf{S}_{m}$ ) will occur around $\mathbf{S}$. An approximately equatorial orbit for the torus will be adopted, so that $\delta_{m}$ is small. Substitution of the equatorial value of the dipolar gravitomagnetic field $\mathbf{B}_{\mathrm{eq}}(\mathrm{gm})=$ $-R^{-3} \mathbf{M}(\mathrm{gm})$ into (1.6) $\boldsymbol{\Omega}(\mathrm{gm})$ then yields

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{LT}} \approx-c^{-2} G R^{-3} \mathbf{S}, \quad \text { or } \quad v_{\mathrm{LT}} \approx-2 / 5 c^{-2} G m_{s} v_{s} r_{s}^{2} R^{-3} . \tag{1.7}
\end{equation*}
$$

The precession of the torus with mass $m_{m}$ is an example of Lense-Thirring precession. Thus, the obtained result for $\boldsymbol{\Omega}(\mathrm{gm})$ is denoted by $\boldsymbol{\Omega}_{\mathrm{LT}}$ and the corresponding LenseThirring frequency by $\nu_{\text {LT }}$. Note that $\mathbf{B}_{\text {eq }}(\mathrm{gm})$ is approximately constant, when $\delta_{m}$ is small. Since $\mathbf{S}_{m} \sin \delta_{m}$ reduces to zero for $\delta_{m}=0$, however, precession only occurs for $\delta_{m}>0$.

Another situation occurs, when an electromagnetic field $\mathbf{B}(\mathrm{em})$ is present besides $\mathbf{B}(\mathrm{gm})$. Adopting that both fields are equivalent, the resulting total magnetic field $\mathbf{B}($ tot $)=$ $\mathbf{B}(\mathrm{gm})+\mathbf{B}(\mathrm{em})$ has to be substituted into (1.6). In section 3 we will consider a number of different fields $\mathbf{B}(\mathrm{em})$ contributing to $\mathbf{B}$ (tot). It is noticed that the proposed equivalence of $\mathbf{B}(\mathrm{gm})$ and $\mathbf{B}(\mathrm{em})$ is in contradiction with the analysis of data obtained by the Gravity Probe B satellite and with reported results for the Lense-Thiring precession of the orbit of two LAGEOS satellites These results are criticized, however (see, e.g, ref. [11] and references cited therein).

The three tori model from [3], resulting in three high-frequency QPOs $v_{i}, v_{m}$ and $v_{o}$, is summarized in section 2 . In section 3 a revised version of the deduction of four lowfrequency QPOs from gravitomagnetic origin [3], $v_{i o}, v_{m o}, v_{o i}$ and $v_{m i}$, is given. In section 4 a previously introduced factor $\beta^{*}$, depending on the sign of $\beta$, is reconsidered. The parameter $\beta^{*}$, also depending on the spin frequency $v_{s}$, determines the total polar magnetic field $\mathbf{B}_{\mathrm{p}}($ tot $)$ of the star. In section 5 the five observed QPO frequencies of pulsar GRO J1744-28 are compared with the seven predicted QPO frequencies following from our model. In addition, the obtained radii are compared with radii deduced from other approaches. In section 6 results are summarized and conclusions are drawn.

## 2. THREE TORI MODEL

In this section we deal with the three highest QPO frequencies, which are assumed to arise from three circular tori around the central star. The first frequency $v_{i}$ is attributed to an inner torus of radius $r_{i}$ containing a total electric charge $Q_{i}$, a second frequency $v_{o}$ is attributed to an outer torus of radius $r_{o}$ with total charge $Q_{o}$, whereas a third torus of radius $r_{m}$, containing a total electrically neutral mass $m_{m}$ (the subscript $m$ stems from middle) is assumed to be present between the two other tori. Thus, it is assumed that $r_{i}<$ $r_{m}<r_{o}$. In addition, it is assumed that the star bears a total charge $Q_{s}$. When the sign of $Q_{i}$
is opposite to that of the charges $Q_{o}$ and $Q_{s}$, equilibrium is possible under certain restrictions.

The high-frequency QPOs $v_{i}$ and $v_{o}$ are calculated by application of Coulomb's law, the gravitation law of Newton and the centrifugal force. It can be shown [3], that all forces acting between a point mass $d m_{i}$ with charge $d Q_{i}$ in the inner torus can be in equilibrium with mass $m_{s}$ and charge $Q_{s}$ of the star and with a total charge $Q_{o}$ in the outer torus, respectively. Equilibrium is only possible, if the angle $\Delta=90^{\circ}-\theta$ between the unit vectors $\mathbf{n}_{i}$ and $\mathbf{n}_{o}$ perpendicular to the planes of the inner and outer torus, respectively, does not exceed the value $\Delta_{0} \equiv 90^{\circ}-\theta_{0}$ (see refs. [3, 4] for the definitions of $\Delta, \theta$ and $\theta_{0}$ and for values of $\theta_{0}$ ). The motion of the tori becomes unstable, when the latter condition is not fulfilled. This instability may (partially) explain the observed instability of the high-frequency QPOs $v_{i}$ and $v_{o}$. The expression for $v_{i}$ is given by [3]

$$
\begin{equation*}
v_{i}=\frac{1}{2 \pi}\left[\frac{G m_{s}}{r_{i}^{3}}\left\{1-\frac{m_{s}}{m_{i}} Q_{i}^{\prime}\left(Q_{s}^{\prime}-x^{2} f Q_{o}^{\prime}\right)\right\}\right]^{1 / 2}, \tag{2.1}
\end{equation*}
$$

where $m_{i}$ is the total mass in the inner torus, $x$ is defined by $x \equiv r_{i} / r_{o}, Q_{i}^{\prime}$ is defined by the dimensionless quantity $Q_{i}^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{i}, Q_{s}^{\prime}$ by $Q_{s}^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{s}$ and so on. In the deduction of (2.1), it has been assumed that the mass and charge are homogeneously distributed in both tori. The value of the quantity $f$ depends on the location of $d Q_{i}$ in the inner torus with respect to the outer torus with total charge $Q_{o}$. When the inner and outer torus are lying in the same plane, $f$ reduces to $f(x)$ in the equilibrium state

$$
\begin{equation*}
f(x)=\frac{-2}{\pi x}\left\{K(x)-\frac{E(x)}{1-x^{2}}\right\}, \tag{2.2}
\end{equation*}
$$

where $K(x)$ and $E(x)$ are complete elliptic integrals of the first kind and second kind, respectively. When both tori are in a bound state but their planes do not coincide, the value of $f$ varies along the orbit of the inner torus. When $f$ becomes negative, the tori become unstable. At the least stable situation in the orbit $f$ reduces to $f_{0}=0$, as has been discussed in refs. [3, 4]. When the angle $\Delta$ between the unit vectors $\mathbf{n}_{i}$ and $\mathbf{n}_{o}$ is not too small, the averaged value of $f$ over the whole orbit may be approximated by $f(\vec{x})=1 / 2\left\{f_{0}+f(x)\right\}=$ $1 / 2\{0+f(x)\}=1 / 2 f(x)$. For nearly coplanar tori the averaged value of $f$ approaches to $f(\bar{x})=$ $f(x)$. The latter approximation will be used in this work.

It is to be expected that the factor $m_{s} / m_{i}$ on the right hand side of (2.1) is very large. It will be assumed that the difference ( $Q_{s}{ }^{\prime}-x^{2} f Q_{o}{ }^{\prime}$ ) is very small, so that the term depending on $Q_{s}^{\prime}, Q_{i}^{\prime}$ and $Q_{o}{ }^{\prime}$ on the right hand side of (2.1) may be small. As a result, the real radius $r_{i}$ from (2.1) may then be somewhat larger or smaller than the corresponding Kepler radius $r_{i}=\left\{G m_{s} /\left(2 \pi v_{i}\right)^{2}\right\}^{1 / 3}$. In our calculations we will use the following relation

$$
\begin{equation*}
Q_{s} \approx x^{2} f Q_{o} . \tag{2.3}
\end{equation*}
$$

This approximation reduces the number of unknowns like $x, Q_{s}$ and $Q_{o}$ by one.
Following an analogous method, the same forces between a point mass $d m_{o}$ with charge $d Q_{o}$ in the outer torus of radius $r_{o}$ can be in equilibrium with mass $m_{s}$ and charge $Q_{s}$ of the star and with a total charge $Q_{i}$ in the inner torus of radius $r_{i}$, respectively. The following expression for the corresponding high-frequency $v_{o}$ is then obtained [3]

$$
\begin{equation*}
v_{o}=\frac{1}{2 \pi}\left[\frac{G m_{s}}{r_{o}^{3}}\left\{1-\frac{m_{s}}{m_{o}} Q_{o}^{\prime}\left(Q_{s}^{\prime}+g Q_{i}^{\prime}\right)\right\}\right]^{1 / 2}, \tag{2.4}
\end{equation*}
$$

where $m_{o}$ is the total mass in the outer torus and $Q_{o}{ }^{\prime}$ is defined by the dimensionless quantity $Q_{o}{ }^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{o}$, and so on. The value of the quantity $g$ depends on the location of $d Q_{o}$ in the outer torus with respect to the inner torus with total charge $Q_{i}$ (see refs. [3, 4]). When the inner and outer torus are lying in the same in the same plane, $g$ reduces to $g(x)$ in the equilibrium state

$$
\begin{equation*}
g(x)=\frac{2}{\pi}\left\{\frac{E(x)}{1-x^{2}}\right\} \tag{2.5}
\end{equation*}
$$

where $E(x)$ is a complete elliptic integral of the second kind. When both tori are in a bound state but their planes do not coincide, the value of $g$ varies along the orbit of the outer torus. At the least stable situation in the orbit $g$ reduces to $g_{0}$. When the angle $\Delta$ between the unit vectors $\mathbf{n}_{i}$ and $\mathbf{n}_{o}$ is not too small, the averaged value of $g$ over the whole orbit may be approximated by $\bar{g}(\bar{x})=1 / 2\left\{g_{0}+g(x)\right\}$ (see for definition and values of $g_{0}$ refs. [3, 4]). For nearly coplanar tori the averaged value of $g$ approaches to $\bar{g}(\bar{x})=g(x)$. The latter approximation will be used in this work.

It is to be expected that the factor $m_{s} / m_{o}$ on the right hand side of (2.4) is large. In this work it will be assumed that the sum $\left(Q_{s}^{\prime}+g Q_{i}^{\prime}\right)$ is small, so that

$$
\begin{equation*}
Q_{s} \approx-g Q_{i} . \tag{2.6}
\end{equation*}
$$

This approximation also reduces the number of unknowns like $g, Q_{s}$ and $Q_{i}$ by one. The charge dependent term on the right hand side of (2.4), however, may differ from zero value, so that the radius $r_{o}$ in (2.4) may be somewhat larger or smaller than the corresponding Kepler radius $r_{o}=\left\{G m_{s} /\left(2 \pi v_{o}\right)^{2}\right\}^{1 / 3}$.

It is noticed that Lorentz forces and the gravitational attraction between the masses $m_{i}$ and $m_{o}$ in the tori have been neglected in the deduction of the results (2.1) and (2.4). Moreover, general relativistic effects have not been taken into account. Starting from a Kerr-Newman space-time, Aliev and Galtsov [13] considered the latter effects for the binary system of a charged star and a charged point mass moving in a circular orbit around that star. Therefore, the results in this section have only to be considered as a first order approximation.

Furthermore, the third high-frequency QPO $v_{m}$, due to the middle torus, is identified as the orbital frequency $v_{m}$ for a point mass $d m_{m}$ in a circular orbit of radius $r_{m}$ around a star with mass $m_{s}$ and angular momentum $S$. Including the contribution due to $S$, the frequency $v_{m}$ for a prograde motion of $d m_{m}$ in the equatorial plane around the star can be shown to be (compare with, e.g., Aliev and Galtsov [13])

$$
\begin{equation*}
v_{m}=\frac{1}{2 \pi}\left(\frac{G m_{s}}{r_{m}^{3}}\right)^{1 / 2} \frac{1}{1+\frac{S}{c^{2} m_{s}}\left(\frac{G m_{s}}{r_{m}^{3}}\right)^{1 / 2}}=\frac{1}{2 \pi}\left(\frac{G m_{s}}{r_{m}^{3}}\right)^{1 / 2} f_{S} . \tag{2.7}
\end{equation*}
$$

For most pulsars the relativistic factor $f_{S}$ in (2.7) depending on the angular momentum $S$ usually approaches unity value. In that case, frequency $v_{m}$ becomes equal to the Kepler frequency $v_{\mathrm{K}}$

$$
\begin{equation*}
v_{m} \approx v_{\mathrm{K}}=\frac{1}{2 \pi}\left(\frac{G m_{s}}{r_{\mathrm{K}}^{3}}\right)^{1 / 2} \quad \text { and } \quad r_{\mathrm{K}}=\left\{\frac{G m_{s}}{\left(2 \pi \nu_{\mathrm{K}}\right)^{2}}\right\}^{1 / 3} . \tag{2.8}
\end{equation*}
$$

Note that none of the high-frequency QPOs $v_{i}$ of (2.1), $v_{o}$ of (2.4) or $v_{\mathrm{K}}$ of (2.8) depend on the spin frequency $v_{s}$ of the star.

Moreover, it is noticed that the three tori model is an idealized model, since each torus is mathematically represented by a circle. In reality, the cross sectional area is no point but possesses a certain area. As an illustration, the three tori model applied to calculate Earth's net charge and the charges of the van Allen belts [14] can be considered. Comparison of the observed cross-sections of the tori (radiation belts) shows that they increase with increasing radius of the torus. Especially, the cross-section of the outer torus of radius $r_{o}$ is much larger than the cross-section of the inner torus of radius $r_{i}$.

## 3 LOW-FREQUENCY QPOs FROM GRAVITOMAGNETIC ORIGIN

When the field $\mathbf{B}(\mathrm{gm})$ in (1.6) is replaced by a magnetic induction field $\mathbf{B}(Q)$, due to some charge $Q$, a number of different gravitomagnetic precession frequencies can be distinguished (The adjective "gravitomagnetic" has been retained, since (1.6) describes the interaction between some angular momentum (no charge) and a magnetic field ( $\mathbf{B}(Q)$ in this case)). A calculation of four precession frequencies has previously been given in ref. [3, sections 3 and 4]. Here the revised results are given.

As a first example, we consider the field $\mathbf{B}\left(Q_{o}\right)$ generated by the total charge $Q_{o}$ in the outer torus of radius $r_{o}$ and acting on the torus with total mass $m_{m}$. Two precession frequencies from (1.6) can then be distinguished. Firstly, the field component $\mathbf{B}^{\|}\left(Q_{o}\right)=$ $B\left(Q_{o}\right) \cos \delta_{o} \mathbf{s}\left(\mathbf{s} \equiv \boldsymbol{\Omega}_{s} / \Omega_{s}\right.$ is the direction of the rotation axis of the star) may act on the component $\mathbf{S}_{m}{ }^{\perp}$ perpendicular to $\mathbf{s}$, where $\mathbf{S}_{m}$ is the angular momentum of the torus with mass $m_{m}$ and $S_{m}{ }^{\perp}$ is defined as $S_{m}{ }^{\perp} \equiv S_{m} \sin \delta_{m}$. Here $\delta_{o}$ and $\delta_{m}$ are the angles between the unit vector $\mathbf{s}$ and the unit vector $\mathbf{n}_{o}$ along the direction of the rotation axis of the torus with mass $m_{o}$ and charge $Q_{o}$ and the unit vector $\mathbf{n}_{m}$ along the direction of the rotation axis of the torus with mass $m_{m}$, respectively. For the field component $\mathbf{B}^{\|}\left(Q_{o}\right)$ parallel to $\mathbf{s}$ the following expression can be calculated

$$
\begin{equation*}
\mathbf{B}^{\|}\left(Q_{o}\right)=\frac{2 \pi Q_{o} v_{o}}{c r_{o}} g\left(x_{o}\right) \cos \delta_{o} \mathbf{s} \tag{3.1}
\end{equation*}
$$

where the frequency of the charge $Q_{o}$ in the torus of radius $r_{o}$ is given by $v_{o}$ (see (2.4)) and $x_{o}$ is defined by $x_{o} \equiv r_{m} / r_{o}$. The function $g\left(x_{o}\right)$ in (3.1) is analogously defined to $g(x)$ in (2.5). It will be assumed in this work that $\delta_{o}$ is small and that the field $\mathbf{B}^{\|}\left(Q_{o}\right)$ will be approximately constant. Substitution of (3.1) into (1.6) yields for the angular precession frequency $\boldsymbol{\Omega}_{\text {mo }}$

$$
\begin{equation*}
\boldsymbol{\Omega}_{m o}=-4 \pi \beta^{-1} \frac{G^{1 / 2} Q_{o}}{c^{2} r_{o}} v_{o} g\left(x_{o}\right) \cos \delta_{o} \mathbf{s} . \tag{3.2}
\end{equation*}
$$

So, for $\beta=-1$ and a positive charge $Q_{o}$ the precession velocity $\boldsymbol{\Omega}_{m o}$ is clockwise around $\mathbf{s}$. The following sequence with respect to the subscripts has been used in $\boldsymbol{\Omega}_{m o}$ : the first subscript $m$ stems from middle and the last subscript $o$ from outer. The precession frequency $v_{m o}\left(v_{m o}=\Omega_{m o} /(2 \pi)\right)$ is then given by

$$
\begin{equation*}
v_{m o}=+Q_{o}^{\prime} \frac{2 G m_{s}}{c^{2} r_{o}} v_{o} g\left(x_{o}\right) \cos \delta_{o}, \tag{3.3}
\end{equation*}
$$

where the quantity $Q_{o}{ }^{\prime}$ is again defined by $Q_{o}{ }^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{o}$. A second interaction between the field component $\mathbf{B}^{\perp}\left(Q_{o}\right)$ perpendicular to $\mathbf{s}$, where $B^{\perp}\left(Q_{o}\right)$ is defined as $B^{\perp}\left(Q_{o}\right) \equiv$ $B\left(Q_{o}\right) \sin \delta_{o}$ and the component $\mathbf{S}_{m}{ }^{\|}$parallel to $\mathbf{S}\left(S_{m}{ }^{\|} \equiv S_{m} \cos \delta_{m}\right)$ may lead to an additional precession frequency ${v^{\prime}}_{m o}$. Since it is assumed that $\delta_{o}$ is small, the component $B^{\perp}\left(Q_{o}\right)$ will
be small. Moreover, the field $\mathbf{B}^{\perp}\left(Q_{o}\right)$ may (partly) average out. Note that result (3.3) differs by a factor $\cos \delta_{m}$ from the incorrect expression for $v_{m o}$ given in ref. [3].

In an analogous way, the field component $\mathbf{B}^{\|}\left(Q_{o}\right)=B\left(Q_{o}\right) \cos \delta_{o} \mathbf{s}$ may act on the component $\mathbf{S}_{i}{ }^{\perp}$ perpendicular to $\mathbf{s}$, where $\mathbf{S}_{i}$ is the angular momentum of the inner torus with mass $m_{i}$ and charge $Q_{i}\left(S_{i}{ }^{\perp} \equiv S_{i} \sin \delta_{i}\right)$. Here $\delta_{i}$ is the angle between the direction of the rotation axis of the star $\mathbf{s}$ and the unit vector $\mathbf{n}_{i}$ along the direction of the rotation axis of the torus with mass $m_{i}$ and charge $Q_{i}$. For the resulting precession frequency $v_{i o}$ one obtains

$$
\begin{equation*}
v_{i o}=+Q_{o}^{\prime} \frac{2 G m_{s}}{c^{2} r_{o}} v_{o} g(x) \cos \delta_{o}, \tag{3.4}
\end{equation*}
$$

where $Q_{o}{ }^{\prime}, r_{o}, v_{o}$ and $\delta_{o}$ are already given in (3.3) and $x$ is again defined by $x \equiv r_{i} / r_{o}$. Note that the quantity $g(x)$ in (3.4) equals to $g(x)$ in (2.5). A possible precession frequency $v_{i o}^{\prime}$, analogous to ${v^{\prime}}_{m o}^{\prime}$, will also be neglected.

Furthermore, an electromagnetic field $\mathbf{B}\left(Q_{i}\right)$ generated by the total charge $Q_{i}$ in the inner torus of radius $r_{i}$ may act on the torus of radius $r_{m}$ with total mass $m_{m}$. Two precession frequencies following from (1.6) can again be distinguished. Only the field component $\mathbf{B}^{\|}\left(Q_{i}\right)=B\left(Q_{i}\right) \cos \delta_{i} \mathbf{s}$ will be considered, where $\delta_{i}$ is the angle between the unit vector $\mathbf{s}$ and the unit vector $\mathbf{n}_{i}$ along the direction of the rotation axis of the torus with mass $m_{i}$ and charge $Q_{i}$. This field may act on the component $\mathbf{S}_{m}{ }^{\perp}$ perpendicular to $\mathbf{s}$, where $\mathbf{S}_{m}$ is the angular momentum of the torus with mass $m_{m}$ and $S_{m}^{\perp}$ is defined as $S_{m}^{\perp} \equiv$ $S_{m} \sin \delta_{m}$. For the resulting precession frequency $v_{m i}$ one obtains

$$
\begin{equation*}
v_{m i}=-Q_{i}^{\prime} \frac{2 G m_{s}}{c^{2} r_{m}} v_{i} x_{i} f\left(x_{i}\right) \cos \delta_{i}, \tag{3.5}
\end{equation*}
$$

where $Q_{i}{ }^{\prime}$ is again defined by $Q_{i}{ }^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{i}$. The frequency of the charge $Q_{i}$ in the torus of radius $r_{i}$ is given by $v_{i}$ (see (2.1)) and $x_{i}$ is defined by $x_{i} \equiv r_{i} / r_{m}$. The function $f\left(x_{i}\right)$ in (3.5) has analogously been defined to $f(x)$ in (2.2). In an analogous way, the field component $\mathbf{B}^{\|}\left(Q_{i}\right)=B\left(Q_{i}\right) \cos \delta_{i} \mathbf{s}$ may act on the component $\mathbf{S}_{o}{ }^{\perp}$ perpendicular to $\mathbf{s}$, where $\mathbf{S}_{o}$ is the angular momentum of the outer torus with mass $m_{o}$ and charge $Q_{o}\left(S_{o}{ }^{\perp} \equiv\right.$ $S_{o} \sin \delta_{o}$ ). For the resulting precession frequency $v_{o i}$ one obtains

$$
\begin{equation*}
v_{o i}=-Q_{i}^{\prime} \frac{2 G m_{s}}{c^{2} r_{o}} v_{i} x f(x) \cos \delta_{i}, \tag{3.6}
\end{equation*}
$$

where all parameters have already been given before. The quantity $f(x)$ has earlier been defined in (2.2).

Note that the frequencies $v_{m o}, v_{i o}$ and $v_{o i}$ contain the same quantity $G m_{s} /\left(c^{2} r_{o}\right)$, whereas $v_{m i}$ contains $G m_{s} /\left(c^{2} r_{m}\right)$. In general, both dimensionless quantities are smaller than unity value for pulsars, so that the frequencies $v_{m o}$ and $v_{i o}$ are usually smaller than $v_{o}$ and are therefore denoted as low-frequency QPOs. An analogous line of reasoning can be applied to the frequencies $v_{m i}$ and $v_{o i}$ with respect to $v_{i}$. Therefore, they can also be characterized as low-frequency QPOs. So, a total of four low-frequency QPOs are predicted by the special interpretation of the gravitomagnetic theory.

It is noticed that small angles $\delta_{m}, \delta_{o}$ and $\delta_{i}$ have always been assumed in the derivations of the precession frequencies (3.3), (3.4), (3.5) and (3.6). If all values of $\delta$ nearly reduce to zero value, prograde motion of $Q_{i}, m_{m}$ and $Q_{o}$ around $\mathbf{s}=\boldsymbol{\Omega}_{s} / \Omega_{s}$ takes place. Alternatively, retrograde motion of $Q_{i}, m_{m}$ and $Q_{o}$ around $\mathbf{s}$ implies that all values of $\delta$ are about $180^{\circ}$.

Furthermore, another remark with respect to the relative magnitudes of $v_{m o}$ and $v_{i o}$ can be made. Assuming $r_{o}>r_{m}>r_{i}$, implies $x_{o}>x$. According to tables 1 in both refs. [3, 4], the quantity $g\left(x_{o}\right)$ is then larger than $g(x)$. As a consequence, it follows from (3.3) and (3.4) that the frequency $v_{m o}$ is larger than $v_{i o}$. Finally, no sign of any of the frequencies $v_{i}$, $v_{m}, v_{o}, v_{m o}, v_{i o}, v_{m i}$ and $v_{o i}$ is known at this moment. For convenience sake, positive signs for all frequencies have therefore been used in the calculations below.

## 4. PARAMETER $\boldsymbol{\beta}^{*}$

When both a magnetic field $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ from gravitomagnetic origin and a magnetic induction field $\mathbf{B}_{\mathrm{p}}(\mathrm{em})$ from electromagnetic origin are present at the north pole of a star, the total polar magnetic field $\mathbf{B}_{\mathrm{p}}($ tot $)$ is given by

$$
\begin{equation*}
\mathbf{B}_{\mathrm{p}}(\mathrm{tot})=\mathbf{B}_{\mathrm{p}}(\mathrm{gm})+\mathbf{B}_{\mathrm{p}}(\mathrm{em}) \tag{4.1}
\end{equation*}
$$

According to (1.4), the direction of $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ is parallel to $\boldsymbol{\Omega}_{s}$ for $\beta=-1$. It appears helpful to define the following dimensionless quantity $\beta^{*}$ (see ref. [3])

$$
\begin{equation*}
\mathbf{B}_{\mathrm{p}}^{\|}(\mathrm{tot})=\beta^{*} \mathbf{B}_{\mathrm{p}}(\mathrm{gm}) . \tag{4.2}
\end{equation*}
$$

When the total field $\mathbf{B}($ tot $)$ is from gravitomagnetic origin only, $\mathbf{B}_{\mathrm{p}}(\mathrm{em})=0$, and $\beta^{*}$ reduces to $\beta^{*}=1$. As a rule, measurements yield $B($ tot $)$, so that only an estimate for $\beta^{*}$ can be obtained.

Several contributions to the field $\mathbf{B}_{\mathrm{p}}^{\|}(\mathrm{em})$ at the north pole of a star have been calculated in ref. [3]. First, a contribution $\mathbf{B}_{\mathrm{p}}^{\|}(\mathrm{em})=\mathbf{B}_{\mathrm{p}}^{\|}\left(Q_{s}\right)$ is generated by the charge $Q_{s}$ in the star of radius $r_{s}$ and with a spin frequency $v_{s}$. Secondly, a contribution $\mathbf{B}_{\mathrm{p}}^{\|}(\mathrm{em})=$ $\mathbf{B}_{\mathrm{p}}^{\|}\left(Q_{i}\right)$ is generated by the charge $Q_{i}$ moving in the circular torus of radius $r_{i}$. Thirdly, a contribution $\mathbf{B}_{\mathrm{p}}^{\|}\left(Q_{o}\right)$ arises from charge $Q_{o}$ moving in the circular torus of radius $r_{o}$. For a value $\beta=-1$, combination of the gravitomagnetic contribution of (1.4) and the three contributions to $\mathbf{B}_{\mathrm{p}}^{\|}(\mathrm{em})$ leads to the following expression for the parameter $\beta^{*}$ (compare with refs. [3-5])

$$
\begin{equation*}
\beta^{*}=1+\beta_{\mathrm{current}}^{*}+Q_{s}^{\prime}+5 / 2 Q_{i}^{\prime} \frac{v_{i}}{v_{s}} \frac{r_{i}^{2} / r_{s}^{2} \cos \delta_{i}}{\left(1+r_{i}^{2} / r_{s}^{2}\right)^{3 / 2}}+5 / 2 Q_{o}^{\prime} \frac{v_{o}}{v_{s}} \frac{r_{o}^{2} / r_{s}^{2} \cos \delta_{o}}{\left(1+r_{o}^{2} / r_{s}^{2}\right)^{3 / 2}}, \tag{4.3}
\end{equation*}
$$

where $\delta_{i}$ and $\delta_{o}$ have been defined in section 3 . The quantities like $Q_{s}{ }^{\prime}$ are again be defined by $Q_{s}{ }^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{s}$ and so on. Note that the terms in $Q_{s}{ }^{\prime}, Q_{i}{ }^{\prime}$ and $Q_{o}{ }^{\prime}$ are due to the contributions $\mathbf{B}_{\mathrm{p}}^{\|}\left(Q_{s}\right), \mathbf{B}_{\mathrm{p}}^{\|}\left(Q_{i}\right)$ and $\mathbf{B}_{\mathrm{p}}{ }^{\|}\left(Q_{o}\right)$, respectively. Furthermore, it is noticed that the terms in (4.3) containing $Q_{s}^{\prime}, Q_{i}^{\prime}$ and $Q_{o}{ }^{\prime}$ all possess opposite signs compared with the earlier expression for $\beta^{*}[3-5]$. This difference is caused by the choice of $\beta=-1$ in (1.1) instead of $\beta=+1$, since recently an indication is found that the sign of $\beta$ is negative [10].

The term $\beta_{\text {current }}^{*}$ in (4.3) has been added to account for a possible contribution to the total magnetic field, due to toroidal currents in the pulsar. For $\beta_{\text {current }}^{*}=-1$ toroidal currents completely compensate the magnetic field from gravitomagnetic origin. A striking property of (4.3) is that it provides a relation between the high-frequency QPOs $v_{o}$ and $v_{i}$, and the spin frequency $v_{s}$. When $r_{s} \ll r_{i}$ and $r_{s} \ll r_{o}$, the expression $\beta^{*}$ in (4.3) can be approximated by

$$
\begin{equation*}
\beta^{*} \approx 1+\beta_{\mathrm{current}}^{*}+Q_{s}^{\prime}+5 / 2 Q_{i}^{\prime} \frac{v_{i} r_{s} \cos \delta_{i}}{v_{s} r_{i}}+5 / 2 Q_{o}^{\prime} \frac{v_{o} r_{s} \cos \delta_{o}}{v_{s} r_{o}} \tag{4.4}
\end{equation*}
$$

The latter relation is used in the calculations below.
Usually, an estimate for the total polar magnetic field $B_{\mathrm{p}}^{\|}(\mathrm{tot})$ of spin-down pulsars is extracted from the magnetic dipole radiation formula containing the field $B_{\mathrm{p}}(\mathrm{sd})$ (see, e.g., ref. [8])

$$
\begin{equation*}
B_{\mathrm{p}}(\mathrm{sd})=\left(\frac{3 c^{3} I}{8 \pi^{2} r_{s}^{6}}\right)^{1 / 2}\left(-\frac{\dot{v}_{s}}{v_{s}^{3}}\right)^{1 / 2}=3.2 \times 10^{19}\left(-\frac{\dot{v}_{s}}{v_{s}^{3}}\right)^{1 / 2} . \tag{4.5}
\end{equation*}
$$

The parameter $\beta^{*}$ may then be approximated by

$$
\begin{equation*}
\beta^{*}=B_{\mathrm{p}}(\mathrm{sd}) / \mathrm{B}_{\mathrm{p}}(\mathrm{gm}) \tag{4.6}
\end{equation*}
$$

As has been discussed in refs. [3-5, 8], for most recycled uncharged millisecond binary pulsars the parameter $\beta^{*}=1+\beta_{\text {current }}^{*}$ may approach zero value, so that an asymptotic value of $\beta_{\text {current }}^{*}=-1$ follows from (4.4).

## 5. COMPARISON BETWEEN OBSERVATIONS AND THEORY

From observations of the pulsar in the low-mass X-ray binary system GRO J174428 [1, 2] a total of five QPO frequencies has been calculated. The three highest centroid frequencies at $56.2,39.0$ and 20.2 Hz of ref. [1] are identified as $v_{i}, v_{m}$ and $v_{o}$, respectively. The two low-frequency QPOs at 3.75 and 3.25 Hz , obtained from a calculation given in ref. [2], are identified as $v_{m o}$ and $v_{i o}$, respectively. The three highest QPO frequencies are characterized by Lorentzian profiles with quality factors $Q$ defined by $Q \equiv v /(2 \Delta)$, where $\Delta$ is the half-width at half maximum. The values of $\Delta$ follow from table 1 in ref. [1] (for example, $Q=56.2 / 9.8=5.7$ for $v=56.2 \mathrm{~Hz}$ ).

From the frequencies $v_{i}, v_{m}$ and $v_{o}$ the corresponding Kepler radii $r_{i}, r_{m}$ and $r_{o}$ are calculated (compare with equations (2.1), (2.4) and (2.8)). In these calculations a mass $m_{s}$ $=1.4 m_{\odot}=2.7846 \times 10^{33} \mathrm{~g}$ is adopted for the pulsar. Further, a value of $f_{S}=0.9964$ and a radius $r_{m}=14.5 \times 10^{6} \mathrm{~cm}$ is calculated from (2.7) by iteration using a spin frequency $v_{s}=$ 2.14 Hz for the pulsar. The found radius $r_{m}$ differs only slightly from the Kepler radius $r_{\mathrm{K}}$ $=14.6 \times 10^{6} \mathrm{~cm}$.

For the radius $r_{i}$ the second term on the right hand side of (2.1), possibly containing a small factor $\left(Q_{s}^{\prime}-x^{2} f Q_{o}{ }^{\prime}\right)$ and a large factor $m_{s} / m_{i}$, may lead to a deviation from the Kepler radius $r_{i}$. Likewise, deviations from the Kepler value of radius $r_{o}$ may occur (see equation (2.4)). Such deviations have been calculated for five other pulsars: SAX J1808.4-3658, XTE J1807-294, IGR J00291+5934, SGR 1806-20 and Sco X-1 and two black holes: XTE J1550-564 and Sgr A* [3-5]. The more accurate values for $r_{i}$ and $r_{o}$ could be deduced, because a complete set of seven QPO frequencies was available for these stars. For this reason, the calculated Kepler values of $r_{i}$ and $r_{o}$ for GRO J1744-28 can only be considered as a first approximation.

From the obtained Kepler radii the ratios $x \equiv r_{i} / r_{o}, x_{i} \equiv r_{i} / r_{m}$ and $x_{o} \equiv r_{m} / r_{o}$ are calculated. Subsequently, from these ratios the values $f(x), g(x), f\left(x_{i}\right), g\left(x_{o}\right)$, as well as the averaged values $\bar{f}(\bar{x}) \approx f(x), \bar{g}(\bar{x}) \approx g(x)$, and so on, can be calculated (compare sections 2 and 3 of this work and ref. [3]). When an arbitrarily small value $\delta_{o}=10^{\circ}$ is chosen for the outer torus, the absolute value of $Q_{o}{ }^{\prime}$ can be calculated from (3.3). Substitution of $x, f(x)$ and $g(x)$, into (2.3) and (2.6) then yields the values for $Q_{s}^{\prime}$ and $Q_{i}^{\prime}$. The results are summarized in table 1. Note that the charges $Q_{s}{ }^{\prime}$ and $Q_{i}{ }^{\prime}$ of GRO J1744-28 are an order of magnitude smaller than for the pulsars in refs. [3, 5]. According to relation (2.3), the ratio $Q_{o}{ }^{\prime} / Q_{s}{ }^{\prime}$ increases for decreasing values of $x$. So, for GRO J1744-28 the ratio $Q_{o}{ }^{\prime} / Q_{s}{ }^{\prime}=$ +11.1 is rather large.

Using the values of $\bar{g}\left(\bar{x}_{o}\right) \approx g\left(x_{o}\right)$ and $\bar{g}(\bar{x}) \approx g(x)$ from table 1, combination of (3.3) and (3.4) yields the following (absolute) ratio $v_{m o} / v_{i o}=\bar{g}\left(\bar{x}_{o}\right) / \bar{g}(\bar{x})=1.51 / 1.25=$ 1.21 , whereas the (absolute) ratio of the observed frequencies is equal to $v_{m o} / v_{i o}=$ $3.75 / 3.25=1.15$. In order to obtain full agreement with observations, one may choose a lower value for $\bar{g}\left(\bar{x}_{o}\right)$, whereas $\bar{g}(\bar{x})$ is left unchanged. Substitution of the value of $\bar{g}(\bar{x})$ from table 1 and the observed values of $v_{m o}$ and $v_{i o}$ into $\bar{g}\left(\bar{x}_{o}\right)=\bar{g}(\bar{x}) v_{m o} v_{i o}$, yields a value $\bar{g}\left(\bar{x}_{o}\right)=1.44$. From this result follows $x_{o}=0.616, r_{o}=23.6 \times 10^{6} \mathrm{~cm}, r_{i}=11.9 \times 10^{6}$ $\mathrm{cm}, x_{i}=0.821, Q_{o}{ }^{\prime}=0.744, Q_{s}{ }^{\prime}=0.0669$ and $Q_{i}{ }^{\prime}=-0.0534$. All these values can be compared with the corresponding values from table 1: $x_{o}=0.643, r_{o}=22.6 \times 10^{6} \mathrm{~cm}, r_{i}=$ $11.4 \times 10^{6} \mathrm{~cm}, x_{i}=0.786, Q_{o}{ }^{\prime}=0.681, Q_{s}{ }^{\prime}=0.0612$ and $Q_{i}{ }^{\prime}=-0.0488$, whereas $x$ and $f(\bar{x})$ remain the same (the value $\delta_{o}=10^{\circ}$ is also left unchanged). Although the choice of $\bar{g}\left(\bar{x}_{o}\right)$ $=1.44$ leads to agreement with observations, alternative choices are possible. For example, one may use $\bar{g}\left(\bar{x}_{o}\right)=1.51$ and the observed values of $v_{\mathrm{mo}}$ and $v_{\mathrm{io}}$ from table 1 and substitute them into $\bar{g}(\bar{x})=\bar{g}\left(\bar{x}_{o}\right) \quad v_{i o} / v_{m o}$. Evaluation then yields other values for $x, r_{i}$, and so on. Note that replacement of the value $\bar{g}\left(\bar{x}_{o}\right)=1.51$ by 1.44 only slightly affects the values of $r_{i}$ and $r_{o}$. Therefore, the values for $r_{i}$ and $r_{o}$ in our calculations will be approximated by the corresponding Kepler radii.

Table 1. Observed centroid QPO frequencies for the pulsar in GRO J1744-28. If available, quality factors $Q$ and integrated fractional r.m.s. amplitudes are added. Relative radii $x, x_{i}$ and $x_{o}$, radii $r_{i}, r_{m}$, and $r_{o}$, relative charges $Q_{s}^{\prime}, Q_{i}^{\prime}$ and $Q_{o}^{\prime}\left(Q^{\prime}\right.$ is defined by $\left.Q^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q\right)$ and factors $\bar{f}(\bar{x}), f\left(\bar{x}_{i}\right), \bar{g}(\bar{x})$ and $\bar{g}\left(\bar{x}_{o}\right)$ are given. For comment see text.

| $\begin{gathered} v \\ (\mathrm{~Hz}) \end{gathered}$ | $Q$ | r.m.s. ampl. (\%) | $x$ | $\begin{gathered} R \times 10^{6} \\ (\mathrm{~cm}) \end{gathered}$ | $Q^{\prime}$ | $f(\bar{x})^{h}$ | $\bar{g}(\bar{x})^{h}$ | $\begin{gathered} \delta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} v_{i} \\ 56.2^{\mathrm{a}} \end{gathered}$ | $5.2^{\text {a }}$ | $0.19{ }^{\text {b }}$ |  | $\begin{gathered} r_{i} \\ 11.4 \end{gathered}$ | $\begin{gathered} -Q_{i}{ }^{\prime} \\ 0.0488 \end{gathered}$ |  |  | $\begin{gathered} \delta_{i} \\ 10 \\ \hline \end{gathered}$ |
| $\begin{gathered} v_{m} \\ 39.0^{\mathrm{a}} \\ \hline \end{gathered}$ | $2.09^{\text {a }}$ | $5.9{ }^{\text {b }}$ |  | $\begin{gathered} r_{m} \\ 14.5 \end{gathered}$ | $\begin{gathered} Q^{\prime} \\ 0 \\ \hline \end{gathered}$ |  |  |  |
| $\begin{gathered} v_{o} \\ 20.2^{\mathrm{a}} \\ \hline \end{gathered}$ | $5.7^{\text {a }}$ | $0.42^{\text {b }}$ |  | $\begin{gathered} r_{o} \\ 22.6 \end{gathered}$ | $\begin{gathered} Q_{o}{ }^{\prime} \\ 0.681 \end{gathered}$ |  |  | $\begin{aligned} & \hline \delta_{o} \\ & 10 \end{aligned}$ |
| $\begin{gathered} v_{s} \\ 2.14^{\mathrm{b}, \mathrm{c}} \end{gathered}$ |  |  |  | $\begin{gathered} r_{s} \\ 1 \end{gathered}$ | $\begin{gathered} Q_{s}^{\prime} \\ 0.0612 \end{gathered}$ |  |  |  |
| $\begin{gathered} v_{m o} \\ 0.375^{\mathrm{d}} \end{gathered}$ |  | $5-15^{\text {d }}$ | $\begin{gathered} x_{o} \\ 0.643 \end{gathered}$ | $\begin{gathered} r_{o} \\ 22.6 \end{gathered}$ | $\begin{gathered} Q_{o}^{\prime} \\ 0.681 \end{gathered}$ |  | $\begin{array}{r} \hline \bar{g}\left(\bar{x}_{\bar{o}}\right) \\ 1.51 \end{array}$ | $\begin{aligned} & \delta_{o} \\ & 10 \end{aligned}$ |
| $\begin{gathered} v_{i o} \\ 0.325^{\mathrm{d}} \end{gathered}$ |  | $5-15^{\text {d }}$ | $\begin{gathered} x \\ 0.506 \\ \hline \end{gathered}$ | $\begin{gathered} r_{o} \\ 22.6 \\ \hline \end{gathered}$ | $\begin{gathered} Q_{o}{ }^{\prime} \\ 0.681 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \bar{g}(\bar{x}) \\ & 1.25 \\ & \hline \end{aligned}$ | $\begin{aligned} & \delta_{o} \\ & 10 \\ & \hline \end{aligned}$ |
| $\begin{gathered} v_{m i} \\ 0.068^{\mathrm{e}} \\ \hline \end{gathered}$ |  |  | $\begin{gathered} x_{i} \\ 0.786 \end{gathered}$ | $\begin{gathered} r_{m} \\ 14.5 \end{gathered}$ | $\begin{gathered} \hline-Q_{i}^{\prime} \\ 0.0488 \end{gathered}$ | $\begin{array}{r} f\left(\bar{x}_{i}\right) \\ 1.13 \end{array}$ |  | $\begin{gathered} \delta_{i} \\ 10 \end{gathered}$ |
| $\begin{gathered} v_{o i} \\ 0.0088^{\mathrm{f}} \end{gathered}$ |  |  | $\begin{gathered} x \\ 0.506 \end{gathered}$ | $\begin{gathered} r_{o} \\ 22.6 \\ \hline \end{gathered}$ | $\begin{gathered} -Q_{i}^{\prime} \\ 0.0488 \end{gathered}$ | $\begin{aligned} & f(\bar{x}) \\ & 0.352 \end{aligned}$ |  | $\begin{gathered} \delta_{i} \\ 10 \end{gathered}$ |
| $\begin{array}{\|l} \hline v_{\mathrm{LT}}\left(m_{i}\right)^{g} \\ 1.2 \times 10^{-10} \end{array}$ |  |  |  | $\begin{gathered} R=r_{i} \\ 11.4 \\ \hline \end{gathered}$ |  |  |  |  |

${ }^{\text {a }}$ From table 1 in ref. [1]. ${ }^{\mathrm{b}}$ Ref. [1]. ${ }^{\mathrm{c}}$ Ref. [15]. ${ }^{\text {d }}$ Ref. [2]. ${ }^{\mathrm{e}}$ Calculated from (3.5). ${ }^{\mathrm{f}}$ Calculated from (3.6).
${ }^{\mathrm{g}}$ Calculated from (1.7). ${ }^{\mathrm{h}}$ Definitions and a discussion of these quantities have been given in sections 2 and 3 of this work and in ref. [3].

For five pulsars and two black holes a complete set of four low-frequency QPOs has been observed [3-5]. In that case more stringent conditions can be imposed on the values of the radii $r_{i}$ and $r_{o}$. However, in the case of GRO J1744-28 the low-frequency QPOs $v_{m i}$ and $v_{o i}$ have not been observed. An estimate for these frequencies can be made by substitution of all necessary parameters and an arbitrarily chosen value $\delta_{i}=10^{\circ}$ into (3.5) and (3.6). The calculated values for $v_{m i}$ and $v_{o i}$ in table 1 show that these values may not be observable.

Furthermore, the predicted Lense-Thirring precession $v_{\mathrm{LT}}$ of the inner torus with radius $r_{i}$ and mass $m_{i}$ is calculated from (1.7). Its value appears to be negligible small. All additional results are also given in table 1. Comparison of the corotation radius $r_{\text {cor }}=$ $\left\{G m_{s} /\left(2 \pi v_{s}\right)^{2}\right\}^{1 / 3}=10.1 \times 10^{6} \mathrm{~cm}$ shows that all obtained radii $r_{i}, r_{m}$ and $r_{o}$ are larger than $r_{\text {cor }}$.

A value for the observed magnetic field $B_{\mathrm{p}}(\mathrm{tot})$ for GRO J1744-28 can be obtained from XMM-Newton and INTEGRAL observations from 2014, reported by D'Aì, Di Salvo, et al. [15]. They attributed features in the X-ray spectrum as cyclotron resonance scattering features (CRSFs) and identified an electron cyclotron fundamental at $\sim 4.7 \mathrm{keV}$ and hints for two possible harmonics. In addition, Doroshenko et al. [16] reported an absorption feature at $\sim 4.5 \mathrm{keV}$ from BeppoSAX observations in 1997; they interpreted it as a cyclotron line, too.

From the value of 4.7 keV an approximate absolute value of the polar magnetic field $B_{\mathrm{p}}($ tot $)=5.30 \times 10^{11} \mathrm{G}$ can be calculated (see, e.g., ref. [8]). This result can be compared with the prediction by the gravitomagnetic theory (see, eq. (4) in ref. [8]), yielding a value of the polar field $B_{\mathrm{p}}(\mathrm{gm})=1.16 \times 10^{14} \mathrm{G}$ for $v_{s}=2.14 \mathrm{~Hz}$ and $\beta=-1$. For the parameter $\beta^{*}$ then follows a small value $\beta^{*}=B_{\mathrm{p}}(\mathrm{tot}) / B_{\mathrm{p}}(\mathrm{gm})= \pm 0.0046$ from (4.2). This result shows that for the mildly-recycled pulsar of GRO J1744-28 the value of $\beta^{*}$ already approaches to zero value. Comparison of this result with fourteen other more slowly rotating accretionpowered X-ray emitting pulsars (table 2 in ref. [8]) shows an increasing (absolute) value of $\beta^{*}$ for a decreasing value of the spin frequency $v_{s}$ of the pulsar, ranging from $\beta^{*}=0.1$ to $\beta^{*}$ $=53$. Neglecting $\beta^{*}$ for the relative slowly rotating pulsar in GRO J1744-28 and taking the necessary parameters from table 1 , the following approximate value for $\beta_{\text {current }}^{*}$ can be calculated from (4.4)

$$
\begin{equation*}
\beta_{\text {current }}^{*}=-1-0.06\left(\text { from } Q_{s}\right)+0.24\left(\operatorname{from} Q_{i}\right)-0.62\left(\operatorname{from} Q_{o}\right)=-1.44 \tag{5.1}
\end{equation*}
$$

So, when a positive charge $Q_{s}$ is assumed for the mildly-recycled pulsar, the value for $\beta_{\text {current }}^{*}$ becomes more negative than for than the asymptotic value $\beta_{\text {current }}^{*}=-1$, discussed in section 4.

From simultaneous Chandra/HETG-NuSTAR observations of the X-ray spectrum of GRO J1744-28 Younes et al. [17] deduced an iron line complex at 6.7 keV , whereas Doroshenko et al. [16] also found a single fluorescence iron line at 6.7 keV . In ref. [17] the iron line complex has been resolved into three narrow Gaussian emission lines from neutral and/or near neutral Fe at 6.44 keV and from highly ionized Fe XXV and Fe XXVI at 6.65 keV and at 6.99 keV , respectively (see their table 4 and section 4.3 ). In addition, Degenaar et al. [18] also deduced related spectral lines from Chandra/HETG observations (see their table 1).

Following our model, the emission line at $\sim 6.4 \mathrm{keV}$ from neutral and lowly ionized iron may be attributed to the uncharged middle torus at $r_{m}=14.5 \times 10^{6} \mathrm{~cm}$. In addition, the inner torus of radius $r_{i}=11.4 \times 10^{6} \mathrm{~cm}$ with a relatively small negative charge $Q_{i}\left(Q_{i} / Q_{s}=-0.88\right.$, see table 1) may also contribute to this line. Furthermore, the lines at rest energies 6.7 keV and at 6.9 keV from highly ionized Fe XXV and Fe XXVI, respectively, may illustrate the presence of the positive charge $Q_{s}$ in the pulsar and the large charge $Q_{o}$ in the outer torus of radius $r_{o}=22.6 \times 10^{6} \mathrm{~cm}\left(Q_{o} / Q_{s}=+11.1\right.$, see table 1). Especially, the combined observation of emission lines of neutral iron and highly ionized iron may confirm the simultaneous presence of an electrically neutral middle torus and a positively charged pulsar and outer torus.

When the broad emission complex at 6.7 keV results from reflection from an accretion disk, an estimate can be made for the inner radius $r_{\text {in }}$ of the accretion disk. Using diskline modelling, Degenaar et al. [18] deduced an estimate of $r_{\text {in }}=85 r_{\mathrm{g}}\left(r_{\mathrm{g}} \equiv\right.$ $G m_{s} / c^{2}$ ) or $r_{\text {in }}=18 \times 10^{6} \mathrm{~cm}$. Using diskline models too, values of $r_{\mathrm{in}}=50-115 r_{\mathrm{g}}=$
$(10-24) \times 10^{6} \mathrm{~cm}$ and $r_{\text {in }}=130 r_{\mathrm{g}}=27 \times 10^{6} \mathrm{~cm}$ were calculated by other authors $[15 ; 17$, section 3.3.3], respectively.

Another way to probe the dimensions and electron temperatures of the tori may be possible by interpreting the observed phase lags between hard and soft photons. Such hard phase lags in the pulsed emission of GRO J1744-28 are recently discovered by D'Aì, Burderi, et al. [19]. As an explanation of these lags, they considered a Compton reverberation mechanism and applied the following formula to the time lag

$$
\begin{equation*}
t_{\mathrm{lag}}=\frac{R_{\mathrm{cc}}}{c(1+\tau)} \frac{\ln \left(E_{h} / E_{s}\right)}{\ln \{1+4 \Theta(1+4 \Theta)\}} \equiv k \ln \left(E_{h} / E_{s}\right) \tag{5.2}
\end{equation*}
$$

where $R_{\text {cc }}$ is the radius of the Compton cloud, $\tau$ the optical depth and $\Theta$ the electron temperature defined by $\Theta \equiv k T_{e} / m_{e} c^{2} . E_{h}$ and $E_{s}$ are the energies of the hard and soft photons, respectively. From their figure 4 they calculated a value $k_{1}=7.0 \pm 0.1 \mathrm{~ms}$ for the energy range $E<6.6 \mathrm{keV}$. Taking a value of 7.1 keV for $k T_{e}$ and a fixed optical depth $\tau=1$, calculation leads to a radius $R_{\mathrm{cc}}$ of $240 \mathrm{~km}=24 \times 10^{6} \mathrm{~cm}$ for size of the Compton cloud. Inserting the values of $k_{1}, E_{s}=1.3 \mathrm{keV}$ and $E_{h}=6.6 \mathrm{keV}$ into (5.2), yields a value of $t_{\text {lag }}=$ 11.4 ms , in agreement with figure 4 of ref. [19].

Following our approach, we replace the radius $R_{\mathrm{cc}}$ by the radius for the inner torus $r_{i}=11.4 \times 10^{6} \mathrm{~cm}$ in the expression $k_{1}$ of (5.2) ( $\tau=1$ is left unchanged) and then obtain $k T_{e}$ $=3.4 \mathrm{keV}$. Likewise, replacement of $R_{\mathrm{cc}}$ in $k_{1}$ by the radius of the middle torus $r_{m}=$ $14.5 \times 10^{6} \mathrm{~cm}$ leads to $k T_{e}=4.3 \mathrm{keV}$. In addition, for the energy range $E>6.6 \mathrm{keV}$ a value $k_{2}=4.5 \mathrm{~ms}$ has been calculated in ref. [19]. Substitution of the value of the radius of the outer torus $r_{o}=22.6 \times 10^{6} \mathrm{~cm}$ for $R_{\mathrm{cc}}$ (and of $\tau=1$ ) into the expression of $k_{2}$, then yields a value $k T_{e}=10 \mathrm{keV}$. Note that combination of $k_{2}, E_{h}=6.9 \mathrm{keV}$ and $E_{s}=1.3 \mathrm{keV}$ from ref. [19] yields a value $t_{\text {lag }}=7.5 \mathrm{~ms}$, in agreement with their figure 4 for $E_{h}=6.9 \mathrm{keV}$. In our approach $k T_{e}$ is no longer constant, but becomes dependent on radius of the torus.

It is noticed that the value $k T_{e}=10 \mathrm{keV}$ of the outer torus is much higher than that of the inner torus with $k T_{e}=3.4 \mathrm{keV}$ and the middle torus with $k T_{e}=4.3 \mathrm{keV}$. This high value is remarkably close to the weak line at 10.4 keV in the X -ray spectrum detected by D'Aì, Di Salvo et al. [15] and the feature at $\sim 10 \mathrm{keV}$ deduced by Younes et al. [17] (see their table 4).

A related example of such a dependence is worth mentioning. The three tori model has also been applied to calculate Earth's net charge and the charges of the van Allen belts [14]. In that case the minimum and maxima in the equatorial radial omnidirectional electron fluxes at electron energies of, e.g., 3 MeV appeared to depend on the radial distance from the Earth (see, e.g., Vette [20]). From this dependence the radii $r_{i}, r_{m}$ and $r_{o}$ have been estimated in that case.

## 6. SUMMARY AND CONCLUSIONS

For the pulsar in the low-mass X-ray binary system GRO J1744-28 three highfrequency QPOs have been reported by Zhang et al. [1]. This pulsar is a new example of a growing list of celestial bodies compatible with the so-called three tori model. Other triplets of high-frequency QPOs are previously discussed for five other pulsars, one white dwarf and two black holes [3-5]. More recently, van Doesburgh and van der Klis [21] found three high-frequency QPOs for six pulsars in low-mass X-ray binaries: 4U 1728$34,4 \mathrm{U} 0614+09$, $4 \mathrm{U} 1608-52$, $4 \mathrm{U} 1636-53$, $4 \mathrm{U} 1702-43$ and Aquila X-1. For these pulsars the three high-frequency QPOs can clearly be distinguished (see the D rows in their figures 4 and 5): $L_{u}$ (yellow), $L_{l}$ (magenta) and $L_{h H z}$ (orange), corresponding to $v_{i}, v_{m}$ and $v_{o}$ in our notation. The three tori model has also been applied to calculate Earth's net charge and the charges of the van Allen belts [14]. It is striking that so much widely different systems can be described by the same three tori model.

In this work the three highest QPO frequencies of GRO J1744-28 at 56.2, 39.0 and 20.2 Hz reported by Zhang et al. [1] are put equal to the Kepler frequencies of the orbital motion of three circular tori around the pulsar. From these three QPO frequencies the approximate radii of three tori are calculated (see table 1). In addition, two narrow band QPOs with comparable amplitudes at 3.75 Hz and 3.25 Hz for GRO J1744-28 were deduced by Kommers et al. [2]. The latter two QPOs may be explained by a special interpretation of the gravitomagnetic theory [3-9]. From that theory follows that the three proposed tori are subjected to four low-frequency precessions. Compared to earlier work [3-5] the expressions for these four low-frequency QPOs have been revised. For the accreting pulsar of GRO J1744-28 the two low-frequency QPOs at 3.75 Hz and 3.25 Hz may be attributed to the latter precession mechanism. In a first approximation, the relative charges $Q_{i}{ }^{\prime}$ and $Q_{o}{ }^{\prime}$ for the inner and outer torus, respectively, and the relative charge $Q_{s}{ }^{\prime}$ for the central star can be extracted from these QPOs ( $Q_{i}^{\prime}$ is defined by $Q_{i}{ }^{\prime} \equiv\left(G^{1 / 2} m_{s}\right)^{-1} Q_{i}$ and so on). It appears that two additionally predicted low-frequency QPOs may be too low to be detected. A summary of these results has been given in table 1.

For five other pulsars and two black holes a complete set of four low-frequency QPOs has been observed [3-5]. From the seven observed QPOs frequencies of each star more accurate values for the three radii of the tori have been calculated. Since only five QPO frequencies have been reported for GRO J1744-28, only Kepler radii could be calculated in this case.

Another consequence of the previously proposed gravitomagnetic theory is the prediction of a polar magnetic field $\mathbf{B}_{\mathrm{p}}(\mathrm{gm})$ for electrically neutral celestial bodies. Furthermore, magnetic fields from electromagnetic origin may be generated by a rotating pulsar with charge $Q_{s}$, by toroidal currents in the pulsar, by an inner torus with charge $Q_{i}$ and by an outer torus with charge $Q_{o}$. The total effect of all these fields is embodied in the parameter $\beta^{*}$, whereas the parameter $\beta_{\text {current }}^{*}$ describes the toroidal currents. Both parameters for the pulsar in GRO J1744-28 are calculated, discussed and can be compared with the values of other pulsars (see section 5).

Highly ionized iron emission lines at 6.7 keV and 6.9 keV (see refs. [15-18]) may confirm the presence of the positive charge $Q_{s}$ in the pulsar and the positive charge $Q_{o}$ in the outer torus. The emission line at 6.4 keV from neutral/lowly ionized iron are compatible with an electrically neutral torus in the middle and with the small negative charge $Q_{i}$ in the inner torus. An attempt has been given to relate these three energies to the radii of the three tori. These radii can be compared with estimates of the inner radius of the accreting disk obtained from diskline modelling in refs. [15, 17, 18]. Recently, D'Aì, Burderi, et al. [19] detected a discontinuity in the phase lags of GRO J1744-28. This discontinuity may be explained by a Compton cloud mechanism, in which the electron temperature depends on the radius of the torus.

## REFERENCES

[1] Zhang, W., Morgan, E. H., Jahoda, K. Swank, J. H., Strohmayer, T. E, Jernigan, G. and Klein, R. I., "Quasi-periodic X-ray brightness oscillations of GRO J1744-28." Astrophys. J. 469, L29-L32 (1996).
[2] Kommers, J. M., Fox, D. W., Lewin, W. H. G., Rutledge, R. E., van Paradijs, J. and Kouveliotou, C. "Postburst quasi-periodic oscillations from GRO J1744-28 and from the Rapid Burster." Astrophys. J. 482, L53-L56 (1997).
[3] Biemond, J., "Quasi-periodic oscillations, charge and the gravitomagnetic theory." arXiv:0706.0313v2 [physics.gen-ph], 20 Mar 2009.
[4] Biemond, J., "Quasi-periodic oscillations, mass and jets of black holes: XTE J1550-564 and Sgr A*." viXra:astrophysics/1001.0021v1, 18 Jan 2010.
[5] Biemond, J., "Quasi-periodic oscillations of Scorpius X-1." viXra:astrophysics/1211.0092v1, 17 Nov 2012.
[6] Biemond, J., Gravi-magnetism, 1st ed. (1984). Postal address: Sansovinostraat 28, 5624 JX Eindhoven, The Netherlands. E-mail: j.biemond@ gravito.nl Website: http://www.gravito.nl
[7] Biemond, J., Gravito-magnetism, 2nd ed. (1999). See also ref. [6].
[8] Biemond, J., "The Origin of the Magnetic Field of Pulsars and the Gravitomagnetic Theory." In: Trends in Pulsar Research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007) (updated and revised version of arXiv:astro-ph/0401468v1, 22 Jan 2004).
[9] Biemond, J., "Which gravitomagnetic precession rate will be measured by Gravity Probe B?", arXiv:physics/0411129v1 [physics.gen-ph], 13 Nov 2004.
[10] Biemond, J., "Neutrino magnetic moment and mass." viXra:quantum physics/1507.0208v1, 28 Jul 2015.
[11] Biemond, J., "The gravitomagnetic field of a sphere, Gravity Probe B and the LAGEOS satellites", arXiv:0802.3346v2 [physics.gen-ph], 14 Jan 2012.
[12] Biemond, J., "The gravitomagnetic vector potential and the gravitomagnetic field of a rotating sphere." viXra:astrophysics/1205.0064v1, 15 May 2012.
[13] Aliev, A. N. and Galtsov, D. V., "Radiation from relativistic particles in nongeodesic motion in a strong gravitational field." Gen. Rel. Grav. 13, 899-912 (1981).
[14] Biemond, J., "Earth's charge and the charges of the Van Allen belts." viXra:geophysics/1008.0071v1, 25 Aug 2010.
[15] D’Aì, A., Di Salvo, T., Iaria, R., García, J. A., Sanna, A., Pintore, F., Riggio, A., Burderi, L., Bozzo, E., Dauser, T., Matranga, M., Galiano, C. G. and Robba, N. R., "GRO J1744-28: an intermediate B-field pulsar in a low-mass X-ray binary." Mon. Not. R. Astron. Soc. 449, 4288-4303 (2015).
[16] Doroshenko, R., Santangelo, A., Doroshenko, V., Suleimanov, V. and Piraino, S., "BeppoSAX observations of GRO J1744-28: cyclotron line detection and the softening of the burst spectra." Mon. Not. R. Astron. Soc. 452, 2490-2499 (2015).
[17] Younes, G., Kouveliotou, C., Grefenstette, B. W., Tomsick, J. A., Tennant, A., Finger, M. H., Fürst, F., Pottschmidt, K., Bhalerao, V. Boggs, S. E., Boirin, L., Chakrabarty, D., Christensen, F. E., Craig, W. W., Degenaar, N., Fabian, A. C., Gandhi, P., Göğüş E., Hailey, C. J., Harrison, F. A., Kennea, J. A., Miller, J. M., Stern, D. and Zhang, W. W. "Simultaneous NuSTAR/Chandra observations of the bursting pulsar GRO J1744-28 during its third reactivation." Astrophys. J. 804, 43 (16pp) (2015) and references therein.
[18] Degenaar, N., Miller, J. M., Harrison, F. A., Kennea, J. A., Kouveliotou, C. and Younes, G., "Highresolution X-ray spectroscopy of the bursting pulsar GRO J1744-28." Astrophys. J. Lett. 796, L9 (6pp) (2014).
[19] D'Aì, A., Burderi, L., Di Salvo, T., Iaria, R., Pintore, F., Riggio, A. and Sanna, A., "Discovery of hard phase lags in the pulsed emission of GRO J1744-28." Mon. Not. R. Astron. Soc. Lett. 463, L84-L88 (2016).
[20] Vette, J. I., "The AE-8 trapped electron model environment." National Space Science Data Center (NSSDC) World Data Center A for Rockets and Satellites (WDC-A-R\&S), 91-24, NASA, Goddard Space Flight Center, Greenbelt, Maryland (1991).
[21] van Doesburgh, M. and van der Klis, M., "Testing the relativistic precession model using low frequency and kHz quasi-periodic oscillations in neutron star low mass X-ray binaries with known spin." Mon. Not. R. Astron. Soc. 465, 3581-3606 (2016).

