FIEZ IDENTITY FOR INTERACTING FOUR-FERMION IN FOUR-DIMENSIONAL SPACE-TIME

Pairoaj Sungkung *

February 22, 2017

Abstract

the simple case of fiez identity for interacting four-fermion in four-dimensional space-time is worked out explicitly.

1 Spinor Algebra

These matrices

$$
\epsilon^{A B} \stackrel{*}{=} \epsilon^{A^{\prime} B^{\prime}} \stackrel{*}{=} \epsilon_{A B} \stackrel{*}{=} \epsilon_{A^{\prime} B^{\prime}} \stackrel{*}{=}\left[\begin{array}{cc}
0 & 1 \tag{1}\\
-1 & 0
\end{array}\right]
$$

are using to raising and lowering the spinor indices.

$$
\begin{gather*}
\xi^{A}=\epsilon^{A B} \xi_{B},-\xi_{A}=\epsilon_{A B} \xi^{B} \tag{2}\\
\xi^{A^{\prime}}=\epsilon^{A^{\prime} B^{\prime}} \xi_{B^{\prime}},-\xi_{A^{\prime}}=\epsilon_{A^{\prime} B^{\prime}} \xi^{B^{\prime}}
\end{gather*}
$$

You must observed that

$$
\left[\epsilon^{A B}\right]\left[\epsilon_{B C}\right]=\left[\begin{array}{cc}
0 & 1 \tag{3}\\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=-\mathbb{1}_{2 \times 2}=\left[\epsilon^{A}{ }_{C}\right]
$$

Then it becomes

$$
\begin{equation*}
\delta_{B}^{A}=\epsilon_{B}^{A}=-\epsilon_{B}^{A}, \tag{4}
\end{equation*}
$$

It is worth to notice that

$$
\begin{equation*}
M^{A} N_{A}=-M_{A} N^{A} \quad, M^{A^{\prime}} N_{A^{\prime}}=-M_{A^{\prime}} N^{A^{\prime}} \tag{5}
\end{equation*}
$$

1.1 Relation to the Metric

$$
\begin{gather*}
g_{\mu \nu}=\eta_{I J} e_{\mu}^{I} e_{\nu}^{J}, \tag{6}\\
\eta_{I J}=\operatorname{diag}(-1,1,1,1) \tag{7}
\end{gather*}
$$

The basis one-forms e_{μ}^{a} correspond to spinor-valued one-forms

$$
\begin{equation*}
e^{A A^{\prime}}{ }_{\mu}=e^{I}{ }_{\mu} \sigma_{I}{ }^{A A^{\prime}}, \tag{8}
\end{equation*}
$$

where the soldering, σ, is defi ned to be i times the Infeld-Van de Waerden translation symbol

$$
\sigma_{0}=\frac{i}{\sqrt{2}} \mathbb{I}_{2 \times 2}, \quad \sigma_{i}=\frac{i}{\sqrt{2}} \Sigma_{i}
$$

[^0]where Σ_{i} is Pauli matrices, $A, B, \ldots=0,1, \quad A^{\prime}, B^{\prime}, \ldots=0^{\prime}, 1^{\prime}$.
\[

\Sigma_{1}=\left[$$
\begin{array}{ll}
0 & 1 \tag{9}\\
1 & 0
\end{array}
$$\right], \Sigma_{2}=\left[$$
\begin{array}{cc}
0 & -i \\
i & 0
\end{array}
$$\right], \Sigma_{3}=\left[$$
\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}
$$\right]
\]

Numerically, I adopted the notation such that

$$
\begin{equation*}
\sigma_{I}^{A A^{\prime}} \stackrel{!}{=}\left\{\sigma_{0}, \sigma_{i}\right\} \equiv \sigma_{I} \tag{10}
\end{equation*}
$$

$\stackrel{!}{=}$ means numerically equals. The well known identity is

$$
\begin{equation*}
\left(\sigma_{I} \bar{\sigma}_{J}+\sigma_{J} \bar{\sigma}_{I}\right)=\eta_{I J} \otimes \mathbb{1}_{2 \times 2}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\sigma}_{I} \equiv\left\{\sigma_{0},-\sigma_{i}\right\} \tag{12}
\end{equation*}
$$

1.2 soldering (or solder form)

If you want to see the suloscripts version of the solder form A.K.A. $\sigma_{I} A A^{\prime}$. The most natural way

$$
\begin{align*}
& \sigma_{I A A^{\prime}}:=\left(-\epsilon_{A B}\right)\left(-\epsilon_{A^{\prime} B^{\prime}}\right) \sigma_{I}{ }^{B B^{\prime}}, \tag{13}\\
& {\left[\begin{array}{ll}
\sigma_{I} A A^{\prime}
\end{array}\right]=-\left[\epsilon_{A B}\right]\left[\sigma_{I}{ }^{B B^{\prime}}\right]\left[\epsilon_{B^{\prime} A^{\prime}}\right],} \tag{14}\\
& \stackrel{*}{=} \quad \bar{\sigma}_{I}, \quad \text { Just try! , } \tag{15}\\
& =\left[\bar{\sigma}_{I A^{\prime} A}\right],^{\prime} \text { flips positions, needed for matrix mult with } \sigma \text {. } \tag{16}
\end{align*}
$$

Now I have

$$
\begin{equation*}
\sigma_{I A A^{\prime}} \equiv \bar{\sigma}_{I A^{\prime} A} \tag{17}
\end{equation*}
$$

Now (11) can be written to be

$$
\begin{equation*}
\sigma_{I}{ }^{A A^{\prime}} \sigma_{J B A^{\prime}}+\sigma_{J}{ }^{A A^{\prime}} \sigma_{I B A^{\prime}}=\eta_{I J} \otimes \delta_{B}^{A}, \tag{18}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\sigma_{(I} A A^{\prime} \sigma_{J) A A^{\prime}}=\eta_{I J} \tag{19}
\end{equation*}
$$

Then one can found the reverse of (8) as

$$
\begin{equation*}
e^{I}{ }_{\mu}=e_{\mu}^{A A^{\prime}} \sigma_{A A^{\prime}}^{I} \tag{20}
\end{equation*}
$$

You will also found that

$$
\begin{equation*}
e_{(\mu}{ }^{A A^{\prime}} e_{\nu) A A^{\prime}}=g_{\mu \nu} \tag{21}
\end{equation*}
$$

2 Fierz identity

To perfectly done, we may need to defi ne the bi-spinor

$$
\begin{equation*}
a^{\mu}=\binom{a^{A}}{a^{A^{\prime}}} \tag{22}
\end{equation*}
$$

I think everything are almost analogous to the case of two-spinors since now we work on the group of twospinor $\oplus \mathrm{two}$-spinor, for example $S L(2, C) \oplus \overline{S L(2, C)}$. Analogous to $\epsilon_{A B}$, we have $\epsilon_{\mu \nu}=\epsilon_{A B} \oplus \epsilon_{A^{\prime} B^{\prime}}$

$$
\underbrace{\left(\begin{array}{cc}
\epsilon_{A B} & 0 \tag{23}\\
0 & \epsilon_{A^{\prime} B^{\prime}}
\end{array}\right)}_{\epsilon_{\mu \nu}} \underbrace{\binom{a^{B}}{a^{B^{\prime}}}}_{a^{\nu}}=\underbrace{-\binom{a_{A}}{a_{A^{\prime}}}}_{-a_{\mu}}
$$

But I will not use these tools properly at this time. I will employ other style(ค่อยปรับแต่งทีหลัง) to obtain the fierz identity in four dimensional spacetime. The starting point is considering of the quantity

$$
\begin{align*}
M N \equiv \underbrace{\left(\bar{\psi}_{1} M \psi_{2}\right)}_{\text {scalar }} \underbrace{\left.\left(\bar{\psi}_{3} N \psi_{4}\right)\right)}_{\text {scalar }} & =\left(\bar{\psi}_{1 \alpha} M^{\alpha}{ }_{\beta} \psi_{2}^{\beta}\right)\left(\bar{\psi}_{3 \gamma} N^{\gamma}{ }_{\delta} \psi_{4}^{\delta}\right), \tag{24}\\
& =\bar{\psi}_{1 \alpha} M^{\alpha}{ }_{\beta}\left(\psi_{2}^{\beta} \otimes \bar{\psi}_{3 \gamma}\right) N^{\gamma}{ }_{\delta} \psi_{4}^{\delta}, \tag{25}
\end{align*}
$$

Let us define

$$
\begin{equation*}
\psi_{2}^{\beta} \otimes \bar{\psi}_{3 \gamma}=: P_{\gamma}^{\beta}, \tag{27}
\end{equation*}
$$

then expand in complete Clifford basis

$$
\begin{equation*}
P^{\beta}{ }_{\gamma}=C^{A} \Gamma_{A}{ }^{\beta}{ }_{\gamma} . \tag{28}
\end{equation*}
$$

So

$$
\begin{equation*}
C^{A}=P^{\beta}{ }_{\gamma} \Gamma^{A \gamma}{ }_{\beta} . \tag{29}
\end{equation*}
$$

We now have

$$
\begin{align*}
M N & =\bar{\psi}_{1 \alpha} M^{\alpha}{ }_{\beta}\left(C^{A} \Gamma_{I}{ }^{\beta}{ }_{\gamma}\right) N^{\gamma}{ }_{\delta} \psi_{4}^{\delta}, \tag{30}\\
& =\underbrace{\left(\bar{\psi}_{1 \alpha} M^{\alpha}{ }_{\beta} \Gamma_{I}{ }^{\beta}{ }_{\gamma} N^{\gamma}{ }_{\delta} \psi_{4}^{\delta}\right)}_{\text {scalar }} \underbrace{\left(C^{A}\right)}_{\text {scalar }}, \tag{31}\\
\left(\bar{\psi}_{1} M \psi_{2}\right)\left(\bar{\psi}_{3} N \psi_{4}\right) & =\left(\bar{\psi}_{1} M \Gamma_{A} N \psi_{4}\right)\left(\psi_{2}^{\beta} \otimes \bar{\psi}_{3 \gamma} \Gamma^{A \gamma}{ }_{\beta}\right), \tag{32}\\
& =\left(\bar{\psi}_{1} M \Gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{2}{ }_{\alpha} \epsilon^{\beta \alpha} \otimes \psi_{3}^{\delta} \epsilon_{\delta \gamma} \Gamma^{A \gamma}{ }_{\beta}\right), \tag{33}\\
& =\left(\bar{\psi}_{1} M \Gamma_{I} N \psi_{4}\right)\left(\left(\bar{\psi}_{2 \alpha} \otimes \psi_{3}^{\delta}\right) \epsilon_{\delta \gamma} \epsilon^{\beta \alpha} \Gamma^{A \gamma}{ }_{\beta}\right), \tag{34}\\
& =\left(\bar{\psi}_{1} M \Gamma_{I} N \psi_{4}\right)\left(\left(\bar{\psi}_{2 \alpha} \otimes \psi_{3}^{\delta}\right) \epsilon_{\gamma \delta} \epsilon^{\alpha \beta} \Gamma^{A \gamma}{ }_{\beta}\right), \tag{35}
\end{align*}
$$

Analogous to (16) we should have

$$
\begin{equation*}
\epsilon_{\delta \gamma} \Gamma^{A \gamma}{ }_{\beta} \epsilon^{\beta \alpha}=-\Gamma_{\delta}^{A}{ }_{\delta}^{\alpha} \tag{37}
\end{equation*}
$$

So

$$
\begin{align*}
\left(\bar{\psi}_{1} M \psi_{2}\right)\left(\bar{\psi}_{3} N \psi_{4}\right)= & -\left(\bar{\psi}_{1} M \Gamma_{A} N \psi_{4}\right)\left(\psi_{3}^{\delta} \Gamma^{A}{ }_{\delta}{ }^{\alpha} \bar{\psi}_{2 \alpha}\right), \tag{38}\\
= & -\left(\bar{\psi}_{1} M \Gamma_{A} N \psi_{4}\right)\left(\bar{\psi}_{3 \delta} \Gamma^{A \delta}{ }_{\alpha} \psi_{2}{ }^{\alpha}\right)(-1)^{2}, \tag{39}\\
= & -\frac{1}{4}\left(\bar{\psi}_{1} M N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha} \delta^{\alpha}{ }_{\delta} \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha} \gamma^{I \alpha}{ }_{\delta} \psi_{2}^{\delta}\right) \\
& -\frac{1}{8}\left(\bar{\psi}_{1} M \gamma_{[I} \gamma_{J]} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(\gamma^{[I} \gamma^{J]}\right)^{\alpha}{ }_{\delta} \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(\gamma_{5} \gamma^{I}\right)^{\alpha}{ }_{\delta} \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha} \gamma_{5}{ }^{\alpha}{ }_{\delta} \psi_{2}^{\delta}\right), \tag{40}\\
= & -\frac{1}{4}\left(\bar{\psi}_{1} M N \psi_{4}\right)\left(\bar{\psi}_{3} \psi_{2}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma^{I} \psi_{2}\right) \\
& -\frac{1}{8}\left(\bar{\psi}_{1} M \gamma_{[I} \gamma_{J]} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(\gamma^{[I \alpha}{ }_{\lambda} \gamma^{J] \lambda}{ }_{\delta}\right) \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(\gamma_{5}^{\alpha}{ }_{\lambda} \gamma^{I \lambda}{ }_{\delta}\right) \psi_{2}^{\delta}\right)
\end{align*}
$$

$$
\begin{align*}
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma_{5} \psi_{2}\right) \tag{41}\\
= & -\frac{1}{4}\left(\bar{\psi}_{1} M N \psi_{4}\right)\left(\bar{\psi}_{3} \psi_{2}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma^{I} \psi_{2}\right) \\
& -\frac{1}{8}\left(\bar{\psi}_{1} M \gamma_{[I} \gamma_{J]} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(-\gamma^{[I \alpha \lambda} \gamma^{J]}{ }_{\lambda \delta}\right) \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3 \alpha}\left(-\gamma_{5}^{\alpha \lambda} \gamma^{I}{ }_{\lambda \delta}\right) \psi_{2}^{\delta}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma_{5} \psi_{2}\right) \tag{42}\\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma_{5} \psi_{2}\right) \tag{43}\\
= & -\frac{1}{4}\left(\bar{\psi}_{1} M N \psi_{4}\right)\left(\bar{\psi}_{3} \psi_{2}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma^{I} \psi_{2}\right) \\
& +\frac{1}{8}\left(\bar{\psi}_{1} M \gamma_{[I} \gamma_{J]} N \psi_{4}\right)\left(\bar{\psi}_{3}\left(\gamma^{[I} \gamma^{J]}\right) \psi_{2}\right) \\
& +\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} \gamma_{I} N \psi_{4}\right)\left(\bar{\psi}_{3}\left(\gamma_{5} \gamma^{I}\right) \psi_{2}\right) \\
& -\frac{1}{4}\left(\bar{\psi}_{1} M \gamma_{5} N \psi_{4}\right)\left(\bar{\psi}_{3} \gamma_{5} \psi_{2}\right) \tag{44}
\end{align*}
$$

where $\gamma_{5} \equiv \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, in our original notation it wil replaced by \star. So for real representation we have

$$
\begin{equation*}
\psi_{2} \bar{\psi}_{3}=-\frac{1}{4} \bar{\psi}_{3} \psi_{2}-\frac{1}{4}\left(\bar{\psi}_{2} \gamma^{I} \psi_{2}\right) \gamma_{I}+\frac{1}{8}\left(\bar{\psi}_{3} \gamma^{[I} \gamma^{J]} \psi_{2}\right) \gamma_{[I} \gamma_{J]}+\frac{1}{4}\left(\bar{\psi}_{3} \gamma_{5} \gamma^{I} \psi_{2}\right) \gamma_{5} \gamma_{I}-\frac{1}{4}\left(\bar{\psi}_{3} \gamma_{5} \psi_{2}\right) \gamma_{5} \tag{46}
\end{equation*}
$$

For both real and complex representation we have

$$
\begin{equation*}
\psi_{2} \bar{\psi}_{3}=-\frac{1}{4} \bar{\psi}_{3} \psi_{2}-\frac{1}{4}\left(\bar{\psi}_{3} \gamma^{I} \psi_{2}\right) \gamma_{I}+\frac{1}{8}\left(\bar{\psi}_{3} \gamma^{[I} \gamma^{J]} \psi_{2}\right) \gamma_{[I} \gamma_{J]}+\frac{1}{4}\left(\bar{\psi}_{3} \star \gamma^{I} \psi_{2}\right) \star \gamma_{I}-\frac{1}{4}\left(\bar{\psi}_{3} \star \psi_{2}\right) \star . \tag{47}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\bar{\psi}_{\beta} \otimes \chi^{\beta}=\psi^{\rho} \epsilon_{\rho \beta} \otimes \epsilon^{\beta \nu} \bar{\chi}_{\nu}=-\psi^{\rho} \epsilon_{\rho}^{\nu} \otimes \bar{\chi}_{\nu}=-\psi^{\rho} \otimes \bar{\chi}_{\rho} \tag{48}
\end{equation*}
$$

3 COnclusion

Hope this small paper may helpful, have afun :)

[^0]: *moccona@tuta.io

