Conjecture on a subset of Woodall numbers divisible by Poulet numbers

Marius Coman
email: mariuscoman13@gmail.com

Abstract

The Woodall numbers are defined by the formula $W(n)=n * 2^{\wedge} n-1$ (see the sequence A003261 in OEIS). In this paper I conjecture that any Woodall number of the form $2^{\wedge} k * 2^{\wedge}\left(2^{\wedge} k\right)-1$, where $k \geq 3$, is either prime either divisible by a Poulet number.

Conjecture:

Any Woodall number of the form $2^{\wedge} k^{*} 2^{\wedge}\left(2^{\wedge} k\right)-1$, where $k \geq$ 3, is either prime either divisible by a Poulet number.

Note: see the sequence A003261 in OEIS for Woodall numbers $n * 2^{\wedge} n-1$ up to $n=300$).

Verifying the conjecture:

(for the first seven such Woodall numbers)

```
:W(2^3) = W(8) = 2047 (= 23*89) which is a Poulet
    number;
:W(2^4)=W(16)=1048575 (= 3* 5^2*11*31*41) which is
        divisible by 341 (= 11*31) and 13981 (= 11*31*41),
        both Poulet numbers;
:W(2^5) = W(32) = 137438953471 (= 223*616318177)
        which is a Poulet number;
:W(2^6) = W(64) = 1180591620717411303423 (=
        3*11*31*43*71*127*281*86171*122921) which is
        divisible at least by 341 (= 11*31), 5461 (=
        43*127), 19951 (= 71*281), 24214051 (= 281*86171),
        all four Poulet numbers;
:W(2^7) = W W(128) =
        43556142965880123323311949751266331066367 (=
        7*31*73*151*271*631*23311*262657*348031*499716178308
        01) which is divisible at least by 4681 (= 31*151)
        and 15841 (= 7*31*73), both Poulet numbers;
:W(2^8) = W(256) =
        2964277484475294602843417216222410441043711607440398
        4394101141506025761187823615
```

3^2*5*7*13*17*23*67*89*241*353*397*683*2113*7393*208
57*312709*599479*4327489*1761345169*2931542417*98618
273953) which is divisible at least by 2047 (=
23*89), 137149 (= 23*67*89), 745889 (= 353*2113),
8280229 (= 397*20857), 15621409 (= 2113*7393), all
five Poulet numbers;
: W(2^9) $=W(512)$ is a number with 157 digits which is prime (see the sequence A002234 in OEIS: "Numbers n such that the Woodall number $n * 2^{\wedge} n-1$ is prime").

```
```

