Conjecture on a subset of Woodall numbers divisible by Poulet numbers

Marius Coman email: mariuscoman13@gmail.com

Abstract. The Woodall numbers are defined by the formula $W(n) = n*2^n - 1$ (see the sequence A003261 in OEIS). In this paper I conjecture that any Woodall number of the form $2^k*2^2(2^k) - 1$, where $k \ge 3$, is either prime either divisible by a Poulet number.

Conjecture:

Any Woodall number of the form $2^{k+2}(2^k) - 1$, where $k \ge 3$, is either prime either divisible by a Poulet number.

Note: see the sequence A003261 in OEIS for Woodall numbers $n*2^n - 1$ up to n = 300).

Verifying the conjecture:

(for the first seven such Woodall numbers)

- : $W(2^3) = W(8) = 2047$ (= 23*89) which is a Poulet number;
- : W(2^4) = W(16) = 1048575 (= 3*5^2*11*31*41) which is divisible by 341 (= 11*31) and 13981 (= 11*31*41), both Poulet numbers;
- : W(2^5) = W(32) = 137438953471 (= 223*616318177) which is a Poulet number;
- : W(2^6) = W(64) = 1180591620717411303423 (= 3*11*31*43*71*127*281*86171*122921) which is divisible at least by 341 (= 11*31), 5461 (= 43*127), 19951 (= 71*281), 24214051 (= 281*86171), all four Poulet numbers;
- : W(2^7) = W(128) = 43556142965880123323311949751266331066367 (= 7*31*73*151*271*631*23311*262657*348031*499716178308 01) which is divisible at least by 4681 (= 31*151) and 15841 (= 7*31*73), both Poulet numbers;
- : $W(2^8) = W(256) =$ 2964277484475294602843417216222410441043711607440398 4394101141506025761187823615 (=

3^2*5*7*13*17*23*67*89*241*353*397*683*2113*7393*208 57*312709*599479*4327489*1761345169*2931542417*98618 273953) which is divisible at least by 2047 (= 23*89), 137149 (= 23*67*89), 745889 (= 353*2113), 8280229 (= 397*20857), 15621409 (= 2113*7393), all five Poulet numbers;

: $W(2^9) = W(512)$ is a number with 157 digits which is prime (see the sequence A002234 in OEIS: "Numbers n such that the Woodall number $n*2^n - 1$ is prime").