Probable Prime Test for Specific Class of $N=k \cdot b^{n}-1$

Predrag Terzić
Bulevar Pera Ćetkovića 139 , Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

Abstract

Polynomial time probable prime test for specific class of $N=k \cdot b^{n}-1$ is introduced

 Keywords: Compositeness test, Polynomial time, Prime numbers .AMS Classification: 11A51 .

1 Introduction

In 1856 Edouard Lucas developed primality test for Mersenne numbers . The test was improved by Lucas in 1878 and Derrick Henry Lehmer in the 1930s, see [1].In 1969 Hans Riesel formulated primality test, see [2] for numbers of the form $k \cdot 2^{n}-1$ with k odd and $k<2^{n}$. In this note we present lucasian type compositeness test for specific class of $k \cdot b^{n}-1$.

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are positive integers.

Theorem 2.1. Let $N=k \cdot b^{n}-1$ such that $k>0,3 \nmid k, b>0, b$ is even number, $3 \nmid b$ and $n>2$.Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{k b / 2}\left(P_{b / 2}(4)\right)$, thus If N is prime then $S_{n-2} \equiv 0(\bmod N)$

The following proof appeared for the first time on MSE forum in January 2017 , see [3].
Proof. Let us prove by induction that

$$
S_{i}=p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}
$$

where $p=2-\sqrt{3}, q=2+\sqrt{3}$ with $p q=1$.
$S_{0}=P_{k b / 2}\left(P_{b / 2}(4)\right)$
$=P_{k b / 2}\left(p^{b / 2}+q^{b / 2}\right)$
$=2^{-k b / 2}\left(p^{b / 2}+q^{b / 2}-\sqrt{\left(p^{b / 2}+q^{b / 2}\right)^{2}-4}\right)^{k b / 2}+2^{-k b / 2}\left(p^{b / 2}+q^{b / 2}+\sqrt{\left(p^{b / 2}+q^{b / 2}\right)^{2}-4}\right)^{k b / 2}$
$=2^{-k b / 2}\left(p^{b / 2}+q^{b / 2}-\left(q^{b / 2}-p^{b / 2}\right)\right)^{k b / 2}+2^{-k b / 2}\left(p^{b / 2}+q^{b / 2}+\left(q^{b / 2}-p^{b / 2}\right)\right)^{k b / 2}$
$=p^{k b^{2} / 4}+q^{k b^{2} / 4}$
Supposing that $S_{i}=p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}$ gives that

$$
\begin{aligned}
S_{i+1}= & P_{b}\left(S_{i}\right) \\
= & P_{b}\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}\right) \\
= & 2^{-b}\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}-\sqrt{\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}\right)^{2}-4}\right)^{b} \\
& +2^{-b}\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}+\sqrt{\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}\right)^{2}-4}\right)^{b} \\
= & 2^{-b}\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}-\left(q^{k b^{i+2} / 4}-p^{k b^{i+2} / 4}\right)\right)^{b} \\
& +2^{-b}\left(p^{k b^{i+2} / 4}+q^{k b^{i+2} / 4}+\left(q^{k b^{i+2} / 4}-p^{k b^{i+2} / 4}\right)\right)^{b} \\
= & p^{k b^{i+3} / 4}+q^{k b^{i+3} / 4} \quad \text { ■ }
\end{aligned}
$$

Now

$$
S_{n-2}=p^{(N+1) / 4}+q^{(N+1) / 4}
$$

Squaring the both sides gives

$$
\begin{equation*}
S_{n-2}^{2}=p^{(N+1) / 2}+q^{(N+1) / 2}+2 \tag{1}
\end{equation*}
$$

Using that

$$
\sqrt{2 \pm \sqrt{3}}=\frac{\sqrt{3} \pm 1}{\sqrt{2}}
$$

we get

$$
\begin{aligned}
2^{(N+1) / 2}\left(p^{(N+1) / 2}+q^{(N+1) / 2}\right) & =(\sqrt{3}-1)^{N+1}+(\sqrt{3}+1)^{N+1} \\
& =\sum_{i=0}^{N+1}\binom{N+1}{i}(\sqrt{3})^{i}\left((-1)^{N+1-i}+1^{N+1-i}\right) \\
& =\sum_{j=0}^{(N+1) / 2}\binom{N+1}{2 j}(\sqrt{3})^{2 j} \cdot 2 \\
& \equiv 2+2 \cdot 3^{(N+1) / 2} \quad(\bmod N) \\
& \equiv 2+2 \cdot(-3) \quad(\bmod N) \\
& \equiv-4 \quad(\bmod N)
\end{aligned}
$$

where

$$
3^{(N+1) / 2}=3 \cdot 3^{(N-1) / 2} \equiv 3\left(\frac{3}{N}\right)=3 \cdot \frac{(-1)^{\frac{3-1}{2} \cdot \frac{N-1}{2}}}{\left(\frac{N}{3}\right)}=3 \cdot \frac{-1}{1}=-3 \quad(\bmod N)
$$

Since

$$
2^{(N+1) / 2}=2 \cdot 2^{(N-1) / 2} \equiv 2\left(\frac{2}{N}\right)=2 \cdot(-1)^{\left(N^{2}-1\right) / 8} \equiv 2 \quad(\bmod N)
$$

is coprime to N, we get

$$
\begin{equation*}
p^{(N+1) / 2}+q^{(N+1) / 2} \equiv-2 \quad(\bmod N) \tag{2}
\end{equation*}
$$

It follows from (1)(2) that

$$
S_{n-2} \equiv 0 \quad(\bmod N)
$$

as desired.

References

[1] Crandall, Richard; Pomerance, Carl (2001), "Section 4.2.1: The Lucas-Lehmer test", Prime Numbers: A Computational Perspective (1st ed.), Berlin: Springer, p. 167-170 .
[2] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $N=h \cdot 2^{n}$ - 1", Mathematics of Computation (American Mathematical Society), 23 (108): 869-875 .
[3] mathlove (http://math.stackexchange.com/users/78967/mathlove), Probable prime test for specific class of $N=k \cdot b^{n}-1$, URL (version: 2017-01-30): http://math.stackexchange.com/q/2121030

