Conjecture on the Fibonacci numbers with an index equal to $2 p$ where p is prime

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following conjecture: If $F\left(2^{*} p\right)$ is a Fibonacci number with an index equal to $2 * p$, where p is prime, $p \geq 5$, then there exist a prime or a product of primes $q 1$ and a prime or a product of primes q^{2} such that $F(2 * p)=q 1 * q 2$ having the property that $q 2$ 2*q1 is also a Fibonacci number with an index equal to $2^{\wedge} n^{*} r$, where r is prime or the unit and n natural. Also I observe that the ratio $q 2 / q 1$ seems to be a constant k with values between 2.2 and 2.237; in fact, for $p \geq 17$, the value of k seems to be $2.236067(. .$.$) .$

Conjecture:

If $F(2 * p)$ is a Fibonacci number with an index equal to $2 * p$, where p is prime, $p \geq 5$, then there exist a prime or a product of primes q1 and a prime or a product of primes q2 such that $F\left(2^{*} p\right)=q 1 * q 2$ having the property that $q 2-2 * q 1$ is also a Fibonacci number with an index equal to $2^{\wedge} n * r$, where r is prime or the unit and n natural.

Note:

I observe that the ratio $q 2 / q 1$ seems to be a constant k with values between 2.2 and 2.237; in fact, for $p \geq 17$, the value of k seems to be 2.236067 (...).

Verifying the conjecture:

(for the first thirteen such Fibonacci numbers)
: for $\mathrm{p}=5$, we have $\mathrm{F}(10)=55=5 * 11$ and $11-2 * 5=1=$ $\mathrm{F}(1)$, where $1=2^{\wedge} 0 * 1$;
[note the fact that $11 / 5=2.2$]
: for $\mathrm{p}=7$, we have $\mathrm{F}(14)=377=13 * 29$ and $29-2 * 13=3$ $=F(4)$, where $4=2^{\wedge} 2$;
[note the fact that $199 / 89=2.230769 \ldots$...]
: for $p=11$, we have $F(22)=17711=89 * 199$ and $199-2 * 89$ $=21=\mathrm{F}(8)$, where $8=2^{\wedge} 3$;
[note the fact that 199/89 = 2.235955...]
: for $p=13$, we have $F(26)=121393=233 * 521$ and 521 $2 * 233=55=F(10)$, where $10=2 * 5$ and 5 is prime;
[note the fact that 521/233 = 2.236051...]
: for $\mathrm{p}=17$, we have $\mathrm{F}(34)=5702887=1597 * 3571$ and 3571 $-2 * 1597=377=F(14)$, where $14=2 * 7$ and 7 is prime;
[note the fact that $3571 / 1597=2.236067 \ldots]$
: for $p=19$, we have $F(38)=39088169=37 * 113 * 9349$ and $9349-2 * 37 * 113=987=F(16)$, where $16=2^{\wedge} 4$;
[note the fact that 9349/(37*113) $=2.236067 .$.]
: for $p=23$, we have $F(46)=1836311903=139 * 461 * 28657$ and $139 * 461-2 * 28657=6765=F(20)$, where $20=2 \wedge 2 * 5$ and 5 is prime;
[note the fact that $(139 * 461) / 28657=2.236067 \ldots]$
for $p=29$, we have $F(58)=591286729879=$ $59 * 19489 * 514229$ and $59 * 19489-2 * 514229=121393=F(26)$, where $26=2 * 13$ and 13 is prime;
[note the fact that (59*19489)/514229 = 2.236067...]
: for $p=31$, we have $F(62)=4052739537881=$ $557 * 2417 * 3010349$ and $3010349-2 * 557 * 2417=317811=$ F(28), where $28=2^{\wedge} 2 * 7$ and 7 is prime;
[note the fact that $3010349 /(557 * 2417)=2.236067 .$.]
: for $\mathrm{p}=37$, we have $\mathrm{F}(74)=1304969544928657$ = $73 * 149 * 2221 * 54018521$ and 54018521 - $2 * 73 * 149 * 2221=$ $5702887=F(34)$, where $34=2 * 17$ and 17 is prime;
[note the fact that 54018521/(557*73*149*2221) = 2.236067...]
: for $\mathrm{p}=41$, we have $\mathrm{F}(82)=61305790721611591=$ $2789 * 59369 * 370248451$ and 370248451 - $2 * 2789 * 59369=$ $39088169=F(38)$, where $38=2 * 19$ and 19 is prime;
[note the fact that $370248451 /(2789 * 59369)=2.236067 .$.]
: for $p=43$, we have $F(86)=420196140727489673=$ $6709 * 144481 * 433494437$ and 6709*144481 - $2 * 433494437=$ $102334155=\mathrm{F}(40)$, where $40=2^{\wedge} 3 \star 5$ and 5 is prime;
[note the fact that $370248451 /(2789 * 59369)=2.236067 .$.]
: for $\mathrm{p}=47$, we have $\mathrm{F}(94)=19740274219868223167=$ $2971215073 * 6643838879$ and 6643838879 - $2 * 2971215073=$ $701408733=\mathrm{F}(44)$, where $44=2 \wedge 2 * 11$ and 11 is prime;
[note the fact that 6643838879/2971215073 = 2.236067...]

