Primality Criterion for Safe Primes

Predrag Terzić
Bulevar Pera Ćetkovića 139 , Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

Abstract

Polynomial time primality test for safe primes is introduced . Keywords: Primality test , Polynomial time, Prime numbers . AMS Classification: 11A51 .

1 Introduction

In 1750 Euler stated following theorem
Theorem 1.1. Let $p \equiv 3(\bmod 4)$ be prime , then $2 p+1$ is prime iff $2 p+1 \mid 2^{p}-1$.

In 1775 Lagrange gave a proof of the theorem, see [1] . In this note we provide a proof to the theorem that is similar to the Euler-Lagrange theorem .

2 The Main Result

Theorem 2.1. Let $p \equiv 5(\bmod 6)$ be prime , then $2 p+1$ is prime iff $2 p+1 \mid 3^{p}-1$.

Proof. Suppose $q=2 p+1$ is prime. $q \equiv 11(\bmod 12)$ so 3 is quadratic residue module q and it follows that there is an integer n such that $n^{2} \equiv 3(\bmod q)$. This shows $3^{p}=3^{(q-1) / 2} \equiv$ $n^{q-1} \equiv 1(\bmod q)$ showing $2 p+1$ divides $3^{p}-1$.

Conversely, let $2 p+1$ be factor of $3^{p}-1$. Suppose that $2 p+1$ is composite and let q be its least prime factor. Then $3^{p} \equiv 1(\bmod q)$ and so we have $p=k \cdot \operatorname{ord}_{\mathbf{q}}(3)$ for some integer k. Since p is prime there are two possibilities $\operatorname{ord}_{\mathrm{q}}(3)=1 \operatorname{or}_{\mathrm{q}}(3)=p$. The first possibility cannot be true because q is an odd prime number so $\operatorname{ord}_{q}(3)=p$. On the other hand $\operatorname{ord}_{q}(3) \mid q-1$, hence p divides $q-1$. This shows $q>p$ and it follows $2 p+1>q^{2}>p^{2}$ which is contradiction since $p>3$, hence $2 p+1$ is prime .
Q.E.D.

References

[1] P. Ribenboim.1996: How to Recognize Whether a Natural Number Is a Prime. The New Book of Prime Number Records. New York: Springer-Verlag, 90-91

