The First Task of PHPR

From String Theory to Topological Strings in Metaspace

Miguel A. Sanchez-Rey
The First Task of PHPR [The Physicist Program] is a 100 year task. It’s a task that is a collaborative effort amongst high-energy physicist to resolve the long-standing issue of mineral depletion that also includes an international effort to gain access to metaspace. In conjunction it includes utilizing the International Thermonuclear Experimental Reactor [ITER] as a 40 year window of opportunity in which sixty percent of The First Task must be completed.

Not only does it involve the completion of The Grand Unification Scheme (which is the second most important task) but also gaining access to metaspace that will result in igniting the terraformic process. It’s a stringent task but a task well worth pursuing as the pay-offs are limitless in extent. Not only will it resolve mineral depletion but it will also accelerate advances in the technological and engineering sciences.

There can be no anticipation of metaspace until one gains access to metaspace however efforts are to be put into place that includes computational control and SUPREME, prime factorization, a guide through metaspace, and the A-scheme and B-scheme. Metaprocesses that allows one to control and harness metaspace.

But metaspace is defined as cosmological homotopic states between variant [of stringy]’s of prime. These variant [of stringy]’s are understood to be variations of supersymmetric string. Where one can say that SUSY-like physics resides in metaspace. In such a way that the first stringy is a membrane solution of all other three string models. Where each string model is a first quantized solution that includes open and close strings in a 11-dimensional membrane that can be related by duality transformations (or mirror symmetry). A unique transformation led to the discovery of the first variant [of stringy] in the form of a Chern-Simons solution in $N = 4$ Super-Yang Mills.

At first it was seen as a parameterized solution to a holographic counterterm. With further advances it was then discovered that this crude solution is a variant and that by perturbing this variant all but 32 variants remain unaccounted for.

String theory is the dominant field of research in the string landscape. But string theories drawbacks are tantamount. Even as it makes significant cross-roads in supersymmetry and quantum cosmology one has yet to observe or manipulate a one-dimensional string residing on a world-sheet manifold. Yet strings includes a monumental amount of depth on a mathematical level. Depth that has serve its purpose. Giving one significant access to pure physics that ultimately led to metaspace. Even then string theory will prove worthy of study for making experimental predictions not only in the 11-dimensional membrane universe but also at 3+1 low-energy classical scale.

Leading to abandoning string theory in favor of string topology in hopes of furthering advances in metaspace. String topology, unlike string theory, develop by Edward Witten and Cumrum Vafa, includes monumental eloquence and simplicity that can achieve faster results in gaining knowledge about the mechanisms of all the known variant [of topstringy]’s while by applications of all the metaprocesses allows one to control metaspace once access to metaspace is achieved at the higher-energy scale.

It should be stated that variant [of topstringy]’s is subject to computational control and SUPREME. That implies that mathematical understanding of string topology will change and it will not be clear until one gains access to metaspace what string topology may entail as variant [of topstringy] but theoretical advances in topstringy will be essential to controlling metaspace in which not being able to anticipate metaspace hinders any hindsight of these variants. Only by using what is already recognized as a topological theory of strings, as the A-model and B-model, in the gravitational supersymmetric Kähler and Calabi-Yau manifold, will continuing applications of string topology to The First Task of PHPR yield limitless positive results in metaspace.