A Proof of Goldbach's Conjecture

Chongxi Yu

Techfields Inc.
1679 S Dupont HYW, Dover, Delaware, USA

Abstract

Prime numbers are the basic numbers and are crucial important. There are many conjectures concerning primes are challenging mathematicians for hundreds of years. Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. A kaleidoscope can produce an endless variety of colorful patterns and it looks like a magic, but when you open it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Goldbach's conjecture is about all numbers, the pattern of prime numbers likes a "kaleidoscope" of numbers, we divided any even numbers into 10 groups and primes into 4 groups, Goldbach's conjecture becomes much simpler. Here we give a clear proof for Goldbach's conjecture based on the fundamental theorem of arithmetic and Euclid's proof that the set of prime numbers is endless.

Key words: Goldbach's conjecture, fundamental theorem of arithmetic, Euclid's proof of infinite primes

\section*{Introduction}

Prime numbers ${ }^{1}$ are the basic numbers and are crucial important. There are many conjectures concerning primes are challenging mathematicians for hundreds of years and many "advanced mathematics tools" are used to solve them, but they are still unsolved.

I believe that prime numbers are "basic building blocks" of the natural numbers and they must follow some very simple basic rules and do not need "advanced mathematics tools" to solve them. Two of the basic rules are the "fundamental theorem of arithmetic" and Euclid's proof of endless prime numbers.

Fundamental theorem of arithmetic:

The crucial importance of prime numbers to number theory and mathematics in general stems from the fundamental theorem of arithmetic, ${ }^{[1]}$ which states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors. ${ }^{[2]}$ Primes can thus be considered the "basic building blocks" of the natural numbers.

Euclid's proof ${ }^{[2]}$ that the set of prime numbers is endless

The proof works by showing that if we assume that there is a biggest prime number, then there is a contradiction.
We can number all the primes in ascending order, so that $P_{1}=2, P_{2}=3, P_{3}=5$ and so on. If we assume that there are just \mathbf{n} primes, then the biggest prime will be labeled \mathbf{P}_{n}. Now we can form the number Q by multiplying together all these primes and adding 1 , so

$$
\mathbf{Q}=\left(\mathbf{P}_{1} \times \mathbf{P}_{2} \times \mathbf{P}_{3} \times \mathbf{P}_{4} \ldots \times \mathbf{P}_{n}\right)+\mathbf{1}
$$

Now we can see that if we divide Q by any of our n primes there is always a remainder of 1 , so Q is not divisible by any of the primes, but we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be a prime or Q must be divisible by primes that are larger than P_{n}.

Our assumption that P_{n} is the biggest prime has led us to a contradiction, so this assumption must be false, so there is no biggest prime and the set of prime numbers is endless.

Discussions

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. It states:
Every even integer greater than 2 can be expressed as the sum of two primes.

If N is an even integer:
$\mathrm{N}=\mathrm{N} / 2+\mathrm{N} / 2=(\mathrm{N} / 2+\mathrm{m})+(\mathrm{N} / 2-\mathrm{m}) ; \mathrm{m}=0,1,2,3, \ldots \ldots \mathrm{M}$. We need to prove $[(\mathrm{N} / 2+\mathrm{m}]$ and $[\mathrm{N} / 2-\mathrm{m}]$ can be primes at same time.
A kaleidoscope can produce an endless variety of colorful patterns and it looks like a magic, but when you open it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Goldbach's conjecture is about all numbers, the pattern
of prime numbers likes a "kaleidoscope" of numbers, if we divide all even numbers into 10 groups and primes into 4 groups, Goldbach's conjecture will be much simpler.

If a number $(\mathrm{N}>3)$ is not divisible by 3 or any prime which is smaller or equal to $N / 3$, it must be a prime. Any number is divisible by 7 , it have $1 / 3$ chance is divisible by 3 , any number is divisible by 11 , it have $1 / 3$ chance is divisible by 3 and $1 / 7$ chance is divisible by 7 , any number is divisible by 13 , it has $1 / 3$ chance to be divisible 3 and $1 / 7$ chance to be divisible by 7 , and $1 / 11$ chance to be divisible by 11 , so on, so we have terms: $1 / 3,1 / 7 \times 2 / 3,1 / 11 \times 2 / 3 \times 6 / 7,1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11 \ldots$,

Let N_{o} represent any odd number, the chance of N_{o} to be a non-prime is: $[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)$ $+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$
$(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+\ldots]\}---------F o r m u l a 1$

Any odd number cannot be divisible by 2 and any odd number with 5 as its last digit is not a prime except 5 .

Let \sum represent the sum of the infinite terms and $\Delta=1-\sum$, according to Euclid's proof ${ }^{[3]}$ that the set of prime numbers is endless. Δ is the chance of any odd number to be a prime. \sum may be very close to 1 when N is growing to ∞, but always less than 1 . Let $\Delta=1-\sum$, when N is growing to ∞, Δ may be very close to 0 , but always more than 0 according to Euclid's proof that the set of prime numbers is endless. If Δ is 0 , then there is no prime, that is not true.

The sum of first 20 terms $=[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)$
$+(1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)$
$+(1 / 31 \times 2 / 3 \times 6 / 7 x 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 37 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$
$(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+$

```
(1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
(1/47x2/3\times6/7x10/11x12/13\times16/17x18/19x22/23\times28/29x30/31x36/37x40/41\times42/43) +
(1/53x2/3x6/7x 10/11x 12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
(1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) +
(1/61x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59) +
(1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43\times46/47x52/53x58/59x60/61) +
(1/71x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67) +
(1/73x2/3x6/7x10/11\times12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41\times42/43\times46/47\times52/53\times58/59x60/61\times66/67x70/71) +
(1/79x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43\times46/47x52/53x58/59x60/61x66/67x70/71x72/73)
=[0.333333+0.095238+0.051948+0.039960 +0.028207+0.023753+0.018590 + 0.014102+0.012738+0.010328+0.009370 +
0.008436 + 0.007538 + 0.006543+0.005766 + 0.005483+0.004910 + 0.004564 + 0.004377 + 0.003831] =0.689015
For the first 20 term: \(\sum=0.689015, \Delta=1-\sum=0.310985\)
The chance of \(\mathrm{N}_{\mathrm{o}}\) to be a prime is: \(\Delta=1-[[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+\) \((1 / 19 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 23 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23)\) \(+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+\) \((1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37)+\) \((1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41)+\) ( \(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43+\ldots]\}----------\) Formula 2
```

Let us consider the following cases:

1. When any even integer (N) has 0 as its last digit, such as $10,20,30,40,110,120,1120,1130, \ldots$, then $\mathrm{N} / 2$ has only 0 or 5 as its last digit:

1a. Except 5 and 2, any prime must have $1,3,7$, or 9 as its last digit. When both N and $N / 2$ have 0 as their last digit, then N must be 20,
$40,60,80,100,120, \ldots, N$. For enough large number N, Let's consider $N=O_{1}+O_{2}=(N / 2+L+3)+(N / 2-L-3), O_{1}$ and O_{2} is an odd number. $\mathrm{O}_{1}>\mathrm{O}_{2}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+6, \mathrm{~L}=0,5,10,15,20,25,30 \ldots \mathrm{~L}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+6=6,26,46,66,86,106,126, \ldots,(2 \mathrm{~L}+6)$, then O_{1} is an odd number with 3 as its last digit, O_{2} is an odd number with 7 as its last digit.

Also we can have $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+7)+(\mathrm{N} / 2-\mathrm{L}-7), \mathrm{O}_{1}$ and O_{2} is an odd number. $\mathrm{O}_{1}>\mathrm{O}_{2}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+14, \mathrm{~L}=0,10,20,30 \ldots \mathrm{~L}, \mathrm{O}_{1-}-$ $\mathrm{O}_{2}=2 \mathrm{~L}+14=14,34,54,74,94,114,134, \ldots(2 \mathrm{~L}+14)$, then O_{1} is an odd number with 7 as its last digit, O_{2} is an odd number with 3 as its last digit.

Then, we have odd number pairs as listed in table 1:

Table 1. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+3)+(\mathrm{N} / 2-\mathrm{L}-3)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+7)+(\mathrm{N} / 2-\mathrm{L}-7)$

| $\mathrm{N}-7$ | $\mathrm{~N}-17$ | $\mathrm{~N}-37$ | $\mathrm{~N}-47$ | $\mathrm{~N}-67$ | $\mathrm{~N}-97$ | \ldots | $\mathrm{~N} / 2+\mathrm{L}+3$ | $\mathrm{~N} / 2-\mathrm{L}-7$ | \ldots | 83 | 73 | 53 | 43 | 23 | 13 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 17 | 37 | 47 | 67 | 97 | \ldots | $\mathrm{~N} / 2-\mathrm{L}-3$ | $\mathrm{~N} / 2+\mathrm{L}+7$ | \ldots | $\mathrm{~N}-83$ | $\mathrm{~N}-73$ | $\mathrm{~N}-53$ | $\mathrm{~N}-43$ | $\mathrm{~N}-23$ | $\mathrm{~N}-13$ | $\mathrm{~N}-3$ |

Let $\$ 1$ represents a prime with 1 as its last digit, such as $11,31,41,61,71,101,131,151,181,191, \ldots ; \$ 3$ represents a prime with 3 as its last digit, such as $3,13,23,43,53,73,83,103,113,163,193 \ldots$; $\$ 7$ represents a prime with 7 as its last digit, such as, $7,17,37,47$, $67,97,107,127,137,157,167,197 \ldots$; and $\$ 9$ represents a prime with 9 as its last digit, such as $19,29,59,79,89,109,139,149,179$, 199,....

Let O 1 represents an odd number with 1 as its last digit, such as $11,21,31,41,51,61,71, \ldots ; \mathrm{O} 3$ represents an odd number with 3 as its last digit, such as $3,13,23,33,43,53,63,73, \ldots$; O7 represents an odd number with 7 as its last digit, such as, 7, 17, 27, 37, 47, $57,67,77 \ldots$; and O 9 represents an odd number with 9 as its last digit, such as $9,19,29,39,49,59,69,79, \ldots$.

Fundamental theorem of arithmetic states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors.

Every odd number with 3 as its last digit is a product of $\$ 3 x \$ 1$ or $\$ 7 x \$ 9 ; \$ 1$ is decided by $\$ 3$ or $\$ 3$ is decided by $\$ 1$ and $\$ 9$ is decided by $\$ 7$ or $\$ 7$ is decided by 9 , so we need to consider only $\$ 3$ and $\$ 7, \$ 1$ and $\$ 9, \$ 3$ and $\$ 9$, or $\$ 1$ and $\$ 7$.

For number N, there are $5 \times \mathrm{N} / 10$ odd numbers, $\mathrm{N} / 10$ odd numbers with 1 as its last digit, $\mathrm{N} / 10$ odd numbers with 3 as its last digit, $\mathrm{N} / 10$ odd numbers with 5 as its last digit, $\mathrm{N} / 10$ odd numbers with 7 as its last digit, and $\mathrm{N} / 10$ odd numbers with 9 as its last digit. Odd numbers with 5 as its last digit is not primes except 5. According to Euclid's proof, primes are endless and it is easy to prove that prime with $1,3,7$, or 9 as its last digit is also endless.

Let's select $\$ 3$ to be a product of $\$ 3$ and $\$ 1$ or $\$ 7$ and $\$ 9$. If a number ($\mathrm{N}>3$) is not divisible by 3 or any prime which is smaller or equal to $N / 3$, it must be a prime; any number is divisible by 7 , it have $1 / 3$ chance is divisible by 3 ; any number is divisible by 13 , it has $1 / 3$ chance to be divisible 3 and $1 / 7$ chance to be divisible by 7 , so on, so we have terms: $1 / 3,1 / 7 \times 2 / 3,1 / 13 \times 2 / 3 \times 6 / 7 \ldots$. For number N , there are $\mathrm{N} / 10$ odd number with 1 as its last digit, $\mathrm{N} / 10$ odd number with 3 as its last digit, $\mathrm{N} / 10$ odd number with 7 as its last digit, and $\mathrm{N} / 10$ odd number with 9 as its last digit.

The chance of any odd number with 3 as its last digit to be a non-prime is: $[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)$ $+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+$ (1/47x2/3x6/7x12/13x16/17x36/37x22/23x42/43) +...]\} ---------(Formula 3)

The number (n) of primes in $\mathrm{N} / 10$ odd number with 3 as its last digit: $\mathrm{n}_{3}=\mathrm{N} / 10-\{\mathrm{N} / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)+\ldots]\}--------(F o r m u l a 4)$

For infinite terms, the number will grow slowly and will be close to 1 , but never equal to 1 (if it equal to 1 , we will have 0 prime) according to Euclid's proof of endless prime numbers. Let \sum_{3} represents the sum of the above infinite terms and Δ_{3} represents the chance of any odd number to be a prime. When N is growing to ∞, and $\Delta_{3}=1-\sum_{3}$ may be close to 0 , but never be 0 .

The sum of first 20 terms $=[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43 \times 46 / 47)+(1 / 67 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43 \times 46 / 47 \times 52 / 53)+$

```
(1/73x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67) +
(1/83x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73) +
(1/97x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73\times82/83) +
(1/103x2/3x6/7x 12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97) +
(1/107x2/3x6/7x 12/13x 16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x 102/103) +
(1/113x2/3x6/7x 12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x 102/103x106/107) +
(1/127x2/3x6/7x 12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x102/103x106/107x112/113) +
(1/137x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x102/103x106/107x112/113x126/127) +
(1/157x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x102/103x106/107x112/113x126/127x13
6/137) +
(1/163x2/3x6/7x12/13x16/17x36/37x22/23x42/43x46/47x52/53x66/67x72/73x82/83x96/97x102/103x106/107x112/113x126/127x13
6/137x156/157) =
[1/3+1/10.5+1/22.75+1/32.23+1/46.33+1/77.92+1/93.07+1/104.15+1/120+1/164.61+1/171.01+1/197.14+1/233.2+1/250.2+1/262.47
+1/279.80+1/317.27+1/344.97+1/398.24+1/416.11=[0.333333+0.095238+0.043956+0.031028+0.021585+0.012834+0.010745+0.00
9602+0.008333+0.006075+0.005848+0.0050773+0.004288+0.003997+0.003810+0.003574+0.003152+0.002899+0.002511+0.0024
03+0.002331] =0.6102883
```

For the first 20 term: $\sum_{3}=0.6103, \Delta_{3}=1-\sum_{3}=0.3897$
For $N=600$, the smallest prime $\$ 1$ is 11 , it decided the possible largest prime $\$ 3$ is 53 , the smallest prime $\$ 9$ is 19 , but 3×3 is 9 , so the possible largest prime $\$ 7$ is 47 , $47 \times 3 \times 3=423$ (the next will $67 \times 3 \times 3=603>600$), so we have: Prime number with 3 as its last digit $=600 / 10-\{600 / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 x 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 x 42 / 43)$ $+(1 / 53 x 2 / 3 x 6 / 7 x 12 / 13 x 16 / 17 \times 36 / 37 x 22 / 23 x 42 / 43 x 46 / 47)]=600 / 10-600 / 10[0.333333+0.095238+0.043956+0.031028+$ $0.021585+0.012834+0.010745+0.009602+0.008333=60-60 x 0.566654=60-34=26$, it is 3 less than 29 primes (in total 60 odd number) with 3 as their last digit from 1 to 600 because 600 is not a big enough number, when N is big enough, the calculated number will be very close to the real number of primes. For $\mathrm{N}=600$, we have $\Delta_{3}=1-\sum_{3}=1-0.566654=0.433346$, every odd number with 3 as its last digit has almost 43% chance to be a prime number smaller than 600, every odd number with 3 as its last digit has more than 43% chance to be a prime; for a number bigger than 600 , every odd number with 3 as its last digit has less than 43% chance to be a prime.

Every odd number with 7 as its last digit is a product of $\$ 3 \mathrm{x} \$ 9$ or $\$ 7 \mathrm{x} \$ 1 ; \$ 1$ is decided by $\$ 7$ and $\$ 9$ is decided by $\$ 3$, so we need to consider only $\$ 3$ and $\$ 7$ (we have other selections too, $\$ 9$ and $\$ 7$, $\$ 9$ and $\$ 1$, or $\$ 3$ and $\$ 1$).

The chance of any odd number with 7 as its last digit to be a non-prime is: $[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)$ $+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+$ (1/47x2/3x6/7x12/13x16/17x36/37x22/23x42/43) +...]\} ---------(Formula 3)

The number (n) of primes in $\mathrm{N} / 10$ odd number with 7 as its last digit is: $\mathrm{n}=\mathrm{N} / 10-\{\mathrm{N} / 10[(1 / 3)+(1 / 7 \mathrm{x} 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+$ $(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+$
$(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)+\ldots]\}-------F o r m u l a 4$.
That mean we have almost same number of primes with 7 as their last digit as the number of primes with 3 as their last digit. From above formula, we can know smaller number N has high percentage to be primes than bigger number N .

Let \sum_{7} represent the sum of the above infinite terms. $\sum_{7}=\sum_{3}$, when N is growing to ∞, and $\Delta_{7}=1-\sum_{7}$ may be close to 0 , but never be 0 .
For simple, to find out at least one pair primes of $(\mathrm{N} / 2+\mathrm{m})+(\mathrm{N} / 2-\mathrm{m})$, we need to fix $(\mathrm{N} / 2+\mathrm{m})$ or $(\mathrm{N} / 2-\mathrm{m})$ to be a prime as the list (half in left side and half in right side) in table 1. Let see $\$ 7=7$ first (left side of table 1), we can know there is a bigger chance for (N $\$ 7$) to be a prime with 3 as its last digit than (N-O7). If N-7 can be divisible by 7 , then ($\mathrm{N}-7$) $+7[7 \mathrm{a}+7=7(\mathrm{a}+1)$, 7 a and $7(\mathrm{a}+1)$ must be divisible by 7] will be divisible by 7 , but N with 0 as its last digit and only $70,140,210,280,350,420,490,560,630, \ldots$ are divisible by 7 , but we worked on only N and $\mathrm{N} / 2$ with 0 as their last digit, only $140,280,420,560, \ldots$,(1 in 14) can be divisible by 7 , so the term ($1 / 7 \mathrm{x} 13 / 14$) should be taken off from Formula 3.

For the next prime $\$ 7=17$, ($\mathrm{N}-17$) cannot be divisible by 17 except $340,680, \ldots$, so ($1 / 17 \mathrm{x} 33 / 34$) should be taken off from Formula 3, so on.

Let n_{7} represents the total number of primes (\$7) with 7 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 7$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 7 x 13 / 14)]+(1 / 17 x 33 / 34)+(1 / 37 x 73 / 74) \ldots .]\}.--------F o r m u l a 5$

When the number of $\$ 7$ is 5 or more, $5 \mathrm{x}[(1 / 7 \mathrm{x} 13 / 14)+(1 / 17 \times 33 / 34)+(1 / 37 \times 73 / 74) \ldots]>1$, so every 5 primes with 7 as their last digit (\$7) will have at least 1 prime of $\mathrm{N}-\$ 7$ to form 1 pair of primes in which one has 7 as its last digit and another has 3 as its last digit and their sum is any number N in which N and $\mathrm{N} / 2$ have 0 as its last digit.

For enough large number N , Let's consider $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+1)+(\mathrm{N} / 2-\mathrm{L}-1), \mathrm{O}_{1}$ and O_{2} are odd numbers. $\mathrm{O}_{1}>\mathrm{O}_{2}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+2, \mathrm{~L}=0$, $10,20,30 \ldots . \mathrm{L}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+2=2,22,42,62,82,102,122, \ldots(2 \mathrm{~L}+2)$, then O_{1} is an odd number with 1 as its last digit, O_{2} is an odd number with 9 as its last digit.

Also we can have $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+9)+(\mathrm{N} / 2-\mathrm{L}-9), \mathrm{O}_{1}$ and O_{2} are odd numbers. $\mathrm{O}_{1}>\mathrm{O}_{2}, \mathrm{O}_{1}-\mathrm{O}_{2}=2 \mathrm{~L}+18, \mathrm{~L}=0,10,20,30 \ldots . \mathrm{L}, \mathrm{O}_{1-}-$ $\mathrm{O}_{2}=2 \mathrm{~L}+18=18,38,58,78,98,118,138, \ldots,(2 \mathrm{~L}+18)$, then O_{1} is an odd number with 9 as its last digit, O_{2} is an odd number with 1 as its last digit.

These odd number pairs are listed in table 2 :

Table 2. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+1)+(\mathrm{N} / 2-\mathrm{L}-1)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+9)+(\mathrm{N} / 2-\mathrm{L}-9)$

| N-9 | N-19 | N-29 | N-39 | N-59 | N-79 | N-89 | \ldots | $\mathrm{N} / 2+\mathrm{L}+1$ | $\mathrm{~N} / 2-\mathrm{L}-9$ | \ldots | 101 | 71 | 61 | 41 | 31 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $9(3 \times 3)$ | 19 | 29 | 39 | 59 | 79 | 89 | \ldots | $\mathrm{~N} / 2-\mathrm{L}-1$ | $\mathrm{~N} / 2+\mathrm{L}+9$ | \ldots | $\mathrm{~N}-101$ | $\mathrm{~N}-71$ | $\mathrm{~N}-61$ | $\mathrm{~N}-41$ | $\mathrm{~N}-31$ | $\mathrm{~N}-11$ |

Every odd number (O1) with 1 as its last digit is a product of $\$ 1 \mathrm{x} \$ 1, \$ 3 \mathrm{x} \$ 7$, and $\$ 9 \mathrm{x} \$ 9$. The first $\$ 9$ is 19 , but the odd number $9=3 \times 3$, so 3 is the smallest prime for $\$ 9$.

The chance of any odd number with 1 as its last digit to be a non-prime is: $[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+$ $(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+$ $(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ (1/43x2/3x10/11x12/13x18/19x22/23x28/29x30/31x40/41)+...]------------Formula 6

The number (n) of primes in $\mathrm{N} / 10$ odd number with 1 as its last digit is: $\mathrm{n}=\mathrm{N} / 10-\{\mathrm{N} / 10[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+$ $(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+$ $(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+$ (1/43x2/3x10/11x12/13x18/19x22/23x28/29x30/31x40/41)+...]\} ------------Formula 7

The sum of first 20 terms $=[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+$ $(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$
$(1 / 41 \times 2 / 3 \times 10 / 11 \mathrm{x} 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+(1 / 43 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \mathrm{x} 40 / 41)+$
$(1 / 53 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43)+$
$(1 / 59 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53)+$
$(1 / 61 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59)+$
$(1 / 71 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61)+$
$(1 / 73 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71)+$
$(1 / 79 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73)+$
$(1 / 83 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73 \times 78 / 79)+$ $(1 / 89 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73 \times 78 / 79 \times 82 / 83)+$ $(1 / 101 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73 \times 78 / 79 \times 82 / 83 \times 88 / 89)+$ $(1 / 103 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73 \times 78 / 79 \times 82 / 83 \times 88 / 89 \times 100 / 101)$
$+$
($1 / 109 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41 \times 42 / 43 \times 52 / 53 \times 58 / 59 \times 60 / 61 \times 70 / 71 \times 72 / 73 \times 78 / 79 \times 82 / 83 \times 88 / 89 \times 100 / 101 \times 1$ $02 / 103)]=0.333333+0.060606+0.046620+0.029444+0.046086+0.01748+0.01568+0.011966+0.010747+0.008517+$ $0.007506+0.006484+0.006032+0.005783+0.00529+0.004953+0.004564+0.003976+0.003861+0.003612=0.63254$

Every odd number (O9) with 9 as its last digit is a product terms of $\$ 1 \mathrm{x} \$ 9, \$ 3 \mathrm{x} \$ 3$ or $\$ 7 \mathrm{x} \$ 7$. We need to consider only $\$ 1, \$ 3$, and $\$ 7$.
The chance of any odd number with 9 as its last digit to be a non-prime is: $[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)$ $+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)+(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ ($1 / 47 \times 2 / 3 \times 6 / 7 x 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 x 30 / 31 \times 36 / 37 x 40 / 41 x 42 / 43) \ldots]-------------$ Formula 8
the number (n) of primes in $\mathrm{N} / 10$ odd number with 9 as its last digit: $\mathrm{n}=\mathrm{N} / 10-\{\mathrm{N} / 10[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+$ $(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+$ $(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)+$ $(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ (1/47x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43)...]\}-----------Formula 9

The sum of first 20 terms $=[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)]$ $+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)$ $+(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+$ $(1 / 53 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47)+$ $(1 / 61 \times 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53)+$ $(1 / 67 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61)+$ $(1 / 71 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23 \mathrm{x} 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \mathrm{x} 46 / 47 \mathrm{x} 52 / 53 \mathrm{x} 60 / 61 \mathrm{x} 66 / 67)+$ $(1 / 73 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71)+$ $(1 / 83 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \mathrm{x} 72 / 73)+$ $(1 / 97 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 82 / 83)]+$ $(1 / 101 \times 2 / 3 \times 6 / 7 \mathrm{x} 10 / 11 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 22 / 23 \times 30 / 31 \mathrm{x} 36 / 37 \mathrm{x} 40 / 41 \mathrm{x} 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \mathrm{x} 66 / 67 \mathrm{x} 70 / 71 \mathrm{x} 72 / 73 \mathrm{x} 82 / 83 \mathrm{x} 96 / 97)+$ $1 / 103 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43 \times 46 / 47 \times 52 / 53 \times 60 / 61 \times 66 / 67 \times 70 / 71 \times 72 / 73 \times 82 / 83 \times 96 / 97 x 100 / 10$ $1)]==0.333333+0.095238+0.051948+0.039960+0.030558+0.021258+0.013926+0.011291+0.010740+0.009222+$ $0.008928+0.007323+0.006097+0.005460+0.005076+0.004867+0.004323+0.003569+0.003393+0.003294=0.669804$

Let see $\$ 9=9$ (3×3) first (left side of table 2), we can know there is a bigger chance for ($\mathrm{N}-\$ 9$) to be a prime with 1 as its last digit than (N-O9). If N-9 can be divisible by 9 , then (N-9)+9($=\mathrm{N}$) $[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9$]$ will be divisible by 3 or 9 , but N with 0 as its last digit and only $30,60,90,120,150,180,210,240,260, \ldots$ are divisible by 3 or $9, \ldots$, and we worked on only N and $\mathrm{N} / 2$ with 0 as their last digit, only $60,120,180,240, \ldots$, (1 in 6) can be divisible by 3 or 9 , so the term ($1 / 3 \times 5 / 6$) should be taken off from Formula 6.

For the next prime $\$ 9=19$, ($\mathrm{N}-19$) cannot be divisible by 19 except $380,760, \ldots$, so $(1 / 19 x 37 / 38)$ should be taken off from Formula 6 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 1 as its last digit to be a prime is: $\Delta_{1}=1-\sum_{1}=1-\{[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)$ $+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$ $(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+(1 / 43 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41)+\ldots]-[(1 / 3 \times 5 / 6)]+$ $(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]\}.--------F o r m u l a 10$

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots.]>1$, so every $4 \$ 9$ will have at least 1 prime of $\mathrm{N}-\$ 9$ to form 1 pair of primes in which one has 9 as its last digit and another has 1 as its last digit and their sum is any number N in which N and $\mathrm{N} / 2$ have 0 as its last digit.

For $\mathrm{N}=600$ (see table 3), 600 can be expressed as the sum of 15 pairs of primes in which one prime with 3 as its last digit and another prime with 7 as its last digit and 600 can be expressed as the sum of 16 pairs of primes in which one prime with 1 as its last digit and another prime with 9 as its last digit.

7	17	27	37	47	57	67	77	87	97	107	117	127	137	147	157	167	177	187
Prime	Prime	3 x 9	Prime	prime	3×19	Prime	7x11	3×29	Prime	prime	$3 \times 3 \times 13$	Prime	prime	$3 \times 7 \times 7$	prime	prime	3×59	11x17
593	583	573	563	553	543	533	523	513	503	493	483	473	463	453	443	433	423	413
Prime	11×53	3×191	Prime	7×79	3×181	13×41	prime	$\begin{aligned} & 3 \times 3 \times 3 \times 1 \\ & 9 \end{aligned}$	Prime	17×29	$3 \times 7 \times 23$	11x43	prime	3×151	Prime	prime	$\begin{aligned} & 3 \times 3 \times 4 \\ & 7 \end{aligned}$	7×59

223 prime	$\begin{aligned} & \hline 233 \\ & \text { prime } \end{aligned}$	$\begin{array}{\|l\|} \hline 243 \\ 3 \times 3 \times 3 \\ \times 3 \times 3 \end{array}$	$\begin{aligned} & \hline 253 \\ & 11 \times 23 \end{aligned}$	$\begin{aligned} & \hline 263 \\ & \text { prime } \end{aligned}$	$\begin{aligned} & 273 \\ & 3 \times 7 \times 13 \end{aligned}$	$\begin{aligned} & \hline 283 \\ & \text { prime } \end{aligned}$	$\begin{aligned} & \hline 293 \\ & \text { prime } \end{aligned}$	$\begin{aligned} & \hline 303 \\ & 3 \times 101 \end{aligned}$	$\begin{aligned} & \hline 313 \\ & \text { Prime } \end{aligned}$	$\begin{aligned} & \hline 323 \\ & 17 \times 19 \end{aligned}$	$\begin{aligned} & \hline 333 \\ & 3 \times 111 \end{aligned}$	$\begin{aligned} & 343 \\ & 7 \times 7 \times 7 \end{aligned}$	353 Prime	$\begin{aligned} & \hline 363 \\ & 3 \times 11 \mathrm{x} \\ & 11 \end{aligned}$	373 Prime	$\begin{aligned} & \hline 383 \\ & \text { Prime } \end{aligned}$	$\begin{aligned} & 393 \\ & 3 \times 131 \end{aligned}$	$\begin{aligned} & \hline 403 \\ & 13 \times 31 \end{aligned}$
377	367	357	347	337	327	317	307	297	287	277	267	257	247	237	227	217	207	197
13x29	prime	$\begin{array}{\|l} \hline 3 \times 7 \times 1 \\ 7 \end{array}$	prime	prime	3x109	Prime	prime	$3 \times 3 \times 33$	7x41	Prime	3x89	Prime	13x19	3x79	Prime	7x31	$\begin{aligned} & 3 \times 3 \times 2 \\ & 3 \end{aligned}$	Prime
387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	537	547	557	567
$3 \times 3 \times 43$	prime	11×37	3×139	7x61	23x19	3x149	prime	prime	$\begin{aligned} & 3 \times 3 \times 5 \\ & 3 \end{aligned}$	prime	7x71	$3 \times 13 x$	11×47	17×31	3x179	prime	prime	$\begin{aligned} & 3 \times 3 \times 3 \\ & \times 3 \times 7 \end{aligned}$
213	203	193	183	173	163	153	143	133	123	113	103	93	83	73	63	53	43	33
3x71	7x29	prime	3×61	Prime	prime	$\begin{aligned} & 3 \times 3 \times 1 \\ & 7 \end{aligned}$	11x13	7x19	3×41	$\begin{aligned} & 3 \times 3 \times 1 \\ & 3 \end{aligned}$	prime	3×31	prime	7x11	$3 \times 3 \times 7$	prime	prime	3×11
																3	13	23
																Prime	Prime	prime
																597	587	577
																3x199	prime	prime
589	579	569	559	549	539	529	519	509	499	489	479	469	459	449	439	429	419	409
19x31	3x193	Prime	13x43	$\begin{aligned} & 3 \times 3 \times 6 \\ & 1 \end{aligned}$	7x7x11	23x23	3x178	Prime	Prime	3x163	Prime	7×67	$\begin{aligned} & 3 \times 3 \times 3 \\ & \times 17 \end{aligned}$	Prime	Prime	$\begin{aligned} & 3 \mathrm{x} 11 \mathrm{x} \\ & 13 \end{aligned}$	Prime	Prime
11	21	31	41	51	61	71	81	91	101	111	121	131	141	151	161	171	181	191
Prime	3×7	Prime	Prime	3×17	Prime	Prime	$3 \times 3 \times 3$	7x13	Prime	3×37	11x11	Prime	3×47	Prime	7x23	$\begin{aligned} & 3 \times 3 \times 1 \\ & 9 \end{aligned}$	Prime	Prime

381	371	361	351	341	331	321	311	301	291	281	271	261	251	241	231	221	211	201
3×127	7x53	19x19	$\begin{aligned} & 3 \times 3 \times 3 \\ & \times 13 \end{aligned}$	11×31	Prime	3x107	Prime	7 x 43	3x97	Prime	Prime	$\begin{aligned} & 3 \times 3 \times 2 \\ & 9 \end{aligned}$	Prime	Prime	$\begin{aligned} & 3 \times 7 \times 1 \\ & 1 \end{aligned}$	13x17	Prime	3×67
219	229	239	249	259	269	279	289	299	309	319	329	339	349	359	369	379	389	399
3x73	Prime	Prime	3x83	7x37	Prime	$\begin{aligned} & 3 \times 3 \times 3 \\ & 1 \end{aligned}$	17x17	13×23	3x103	11×29	7×47	3x113	Prime	Prime	$\begin{aligned} & 3 \times 3 \times 4 \\ & 1 \end{aligned}$	prime	Prime	$\begin{aligned} & 3 \times 7 \times 1 \\ & 9 \end{aligned}$
209	199	189	179	169	159	149	139	129	119	109	99	89	79	69	59	49	39	29
11x19	Prime	$3 \times 3 \times 7$	Prime	13x13	3x53	Prime	Prime	3x43	7x17	Prime	$3 \times 3 \times 11$	Prime	Prime	3x23	Prime	7 x 7	3x13	Prime
391	401	411	421	431	441	451	461	471	481	491	501	511	521	531	541	551	561	571
17x23	Prime	3x137	Prime	Prime	$\begin{aligned} & 3 x 3 x 7 x \\ & 7 \end{aligned}$	11x41	Prime	3×157	13x37	Prime	3x167	7×73	Prime	$\begin{aligned} & 3 \times 3 \times 5 \\ & 9 \end{aligned}$	Prime	19x29	$\begin{aligned} & 3 \times 11 x \\ & 17 \end{aligned}$	Prime
																	$\begin{aligned} & 591 \\ & 3 \times 197 \end{aligned}$	$\begin{aligned} & \hline 581 \\ & 7 \times 81 \end{aligned}$
																	9 3×3	$\begin{aligned} & \hline 19 \\ & \text { Prime } \end{aligned}$

1b. When both N has 0 as its last digit, and $\mathrm{N} / 2$ has 5 as its last digit.

Table 3. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-2)+(\mathrm{N} / 2-\mathrm{L}+2)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+2)+(\mathrm{N} / 2-\mathrm{L}-2)$

$\mathrm{N}-7$	$\mathrm{~N}-17$	$\mathrm{~N}-37$	$\mathrm{~N}-47$	$\mathrm{~N}-67$	$\mathrm{~N}-97$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-2$	$\mathrm{~N} / 2-\mathrm{L}-2$	\ldots	83	73	53	43	23	13	3
7	17	37	47	67	97	\ldots	$\mathrm{~N} / 2-\mathrm{L}+2$	$\mathrm{~N} / 2+\mathrm{L}+2$	\ldots	$\mathrm{~N}-83$	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

Let see $\$ 7=7$ first (left side of table 3), we can know there is a bigger chance for ($\mathrm{N}-\$ 7$) to be a prime with 3 as its last digit than (N O7). If $\mathrm{N}-7$ can be divisible by 7 , then $(\mathrm{N}-7)+7(=\mathrm{N})[7 \mathrm{a}+7=7(\mathrm{a}+1), 7 \mathrm{a}$ and $7(\mathrm{a}+1)$ must be divisible by 7$]$ will be divisible by 7 , but N with 0 as its last digit and only $70,140,210,280,350,420,490,560,630, \ldots$ are divisible by 7 , but we worked on only N with 0 as their last digit and $\mathrm{N} / 2$ with 5 as their last digit, so only $70,210,350,490, \ldots,(1 \mathrm{in} 14)$ can be divisible by 7 , so the term ($1 / 7 \mathrm{x} 13 / 14$) should be taken off from Formula 3.

For the next prime $\$ 7=17$, ($\mathrm{N}-17$) cannot be divisible by 17 except $170,510, \ldots$, so $(1 / 17 \times 33 / 34)$ should be taken off from Formula 3, so on.

Let n_{7} represents the total number of primes (\$7) with 7 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 7$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 7 \times 13 / 14)]+(1 / 17 x 33 / 34)+(1 / 37 \times 73 / 74) \ldots .]$.

When the number of $\$ 7$ is 5 or more, $5 \mathrm{x}[(1 / 7 \mathrm{x} 13 / 14)+(1 / 17 \mathrm{x} 33 / 34)+(1 / 37 \mathrm{x} 73 / 74) \ldots]>1$, so every $5 \$ 7$ will have at least 1 prime of $\mathrm{N}-\$ 7$ to form 1 pair of primes in which one has 7 as its last digit and another has 3 as its last digit and their sum is any number N in which N have 0 as its last digit and $\mathrm{N} / 2$ have 5 as its last digit.

Table 4. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-4)+(\mathrm{N} / 2-\mathrm{L}+4)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-6)+(\mathrm{N} / 2-\mathrm{L}+6)$

N-9	N-19	N-29	$\mathrm{N}-59$	$\mathrm{~N}-79$	$\mathrm{~N}-89$	\ldots	$\mathrm{~N} / 2+1-4$	$\mathrm{~N} / 2-\mathrm{L}+6$	\ldots	101	71	61	41	31	11
$9(3 \times 3)$	19	29	59	79	89	\ldots	$\mathrm{~N} / 2-\mathrm{L}+4$	$\mathrm{~N} / 2+\mathrm{L}-6$	\ldots	$\mathrm{~N}-101$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-11$

Let see $\$ 9=9$ (3×3) first (left side of table 4), we can know there is a bigger chance for ($\mathrm{N}-\$ 9$) to be a prime with 1 as its last digit than (N-O9). If N-9 can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9$]$ will be divisible by 3 or 9 , but N with 0 as its last digit and only $30,60,90,120,150,180,210,240,260, \ldots$ are divisible by 3 or $9, \ldots$, but we worked on only N with 0 as their last digit and $\mathrm{N} / 2$ with 5 as its last digit, only $30,90,150,210, \ldots,(1$ in 6) can be divisible by 3 or 9 , so the term $(1 / 3 \times 5 / 6)$ should be taken off from Formula 6.

For the next prime $\$ 9=19$, ($N-19$) cannot be divisible by 19 except $190,570, \ldots$, so $(1 / 19 x 37 / 38)$ should be taken off from Formula 6 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 1 as its last digit to be a prime is: $\Delta_{1}=1-\sum_{1}=1-\{[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)$
$+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$ $(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+(1 / 43 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41)+\ldots]-[(1 / 3 \times 5 / 6)]+$ $(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots.]>1$, so every $4 \$ 9$ will have at least 1 prime of $\mathrm{N}-\$ 9$ to form 1 pair of primes in which one has 9 as its last digit and another has 1 as its last digit and the sum is any number N in which N has 0 as its last digit and $\mathrm{N} / 2$ has 5 as its last digit.
2. When any even integer (N) has 2 as its last digit, such as $12,22,32,42,112,122,1122,1132, \ldots$, then $\mathrm{N} / 2$ has only 6 or 1 as its last digit.

2a. When any even integer (N) has 2 as its last digit, such as $12,32,52,112,1132, \ldots$, then $\mathrm{N} / 2$ has 6 as its last digit:

Table 5. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-3)+(\mathrm{N} / 2-\mathrm{L}+3)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+3)+(\mathrm{N} / 2-\mathrm{L}-3)$

N-9	N-19	$\mathrm{N}-29$	$\mathrm{~N}-59$	$\mathrm{~N}-79$	$\mathrm{~N}-89$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-3$	$\mathrm{~N} / 2-\mathrm{L}-3$	\ldots	83	73	53	43	23	13	3
$9(3 \times 3)$	19	29	59	79	89	\ldots	$\mathrm{~N} / 2-\mathrm{L}+3$	$\mathrm{~N} / 2+\mathrm{L}+3$	\ldots	$\mathrm{~N}-83$	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

Let see $\$ 9=9$ first (left side of table 5), if $N-9$ can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9] will be divisible by 3 or 9 , but N with 2 as its last digit and only 12, 42, 72, 102, 132, 162, 192, 222, 252, 282, 312, $342,372,402,432,462,492,522,552, \ldots$ are divisible by 3 or $9, \ldots$, but we worked on only N with 2 as their last digit and N/2 with 6 as their last digit, only $12,72,132,192,252, \ldots$, (1 in 6) can be divisible by 3 or 9 , so the term ($1 / 3 \times 5 / 6$) should be taken off from Formula 3.

For the next prime $\$ 9=19$, ($\mathrm{N}-19$) cannot be divisible by 19 except $552,932, \ldots$, so $(1 / 19 x 37 / 38)$ should be taken off from Formula 3 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23)+(1 / 43 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 12 / 13 \times 22 / 23)+(1 / 47 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 22 / 23 \mathrm{x} 42 / 43)$ $+\ldots,]-[(1 / 3 x 5 / 6)]+(1 / 19 x 37 / 38)+(1 / 29 \times 57 / 58) \ldots .]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]>1$, so every $4 \$ 9$ will have at least 1 prime of N $\$ 9$ to form 1 pair of primes in which one has 9 as its last digit and another has 3 as its last digit and their sum is any number N in which N has 2 as its last digit and $\mathrm{N} / 2$ has 6 as its last digit.

Table 6. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-5)+(\mathrm{N} / 2-\mathrm{L}+5)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-5)+(\mathrm{N} / 2-\mathrm{L}+5)$

$\mathrm{N}-11$	$\mathrm{~N}-31$	$\mathrm{~N}-41$	$\mathrm{~N}-61$	$\mathrm{~N}-71$	$\mathrm{~N}-101$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-5$	$\mathrm{~N} / 2-\mathrm{L}+5$	\ldots	101	71	61	41	31	11
11	31	41	61	71	101	\ldots	$\mathrm{~N} / 2-\mathrm{L}+5$	$\mathrm{~N} / 2+\mathrm{L}-5$	\ldots	$\mathrm{~N}-101$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-11$

Let see $\$ 1=11$ first (left side of table 6), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11,[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by 11 , but N with 2 as its last digit and only $132,242,352,462,572,682,792,902, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 2 as their last digit and $\mathrm{N} / 2$ with 6 as its last digit, only $132,352,572,792, \ldots,(1$ in 22$)$ can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 6.

For the next prime $\$ 1=31$, ($\mathrm{N}-31$) cannot be divisible by 31 except $372,992, \ldots$, so $(1 / 31 \times 61 / 62)$ should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes (\$1) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 1 as its last digit to be a prime is: $\Delta_{1}=1-\sum_{1}=1-\{[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)+$
$(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$ $(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+(1 / 43 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41)+\ldots]-$ $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots .]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots.]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which both have 1 as its last digit and their sum is any number N in which N has 2 as its last digit and N/2 has 6 as its last digit.

2b. When any even integer (N) has 2 as its last digit, such as $22,42,62,82,102,1122, \ldots$, then $\mathrm{N} / 2$ has 1 as its last digit:
Table 7. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+2)+(\mathrm{N} / 2-\mathrm{L}-2)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}+2)+(\mathrm{N} / 2+\mathrm{L}-2)$

$\mathrm{N}-9$	$\mathrm{~N}-19$	$\mathrm{~N}-29$	$\mathrm{~N}-39$	$\mathrm{~N}-49$	$\mathrm{~N}-59$	\ldots	$\mathrm{~N} / 2+\mathrm{L}+2$	$\mathrm{~N} / 2-\mathrm{L}+2$	\ldots	73	63	53	43	33	23	13	3
9	19	29	59	79	89	\ldots	$\mathrm{~N} / 2-\mathrm{L}-2$	$\mathrm{~N} / 2+\mathrm{L}-2$	\ldots	$\mathrm{~N}-73$	$\mathrm{~N}-63$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-33$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

Let see $\$ 9=9$ first (left side of table 7), if $N-9$ can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9] will be divisible by 3 or 9 , N with 2 as its last digit and only $12,42,72,102,132,162,192,222,252,282,312$, $342,372,402,432,462,492,522,552, \ldots$ are divisible by 3 or $9, \ldots$, but we worked on only N with 2 as their last digit and N/2 with 1 as their last digit, only $42,102,162,222,282,342,402, \ldots(1$ in 6$)$ can be divisible by 3 or 9 , so the term $(1 / 3 \times 5 / 6)$ should be taken off from Formula 3.

For the next prime $\$ 9=19$, $(\mathrm{N}-19)$ cannot be divisible by 19 except $552,932, \ldots$, so $(1 / 19 \times 37 / 38)$ should be taken off from Formula 3 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots .]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]>1$, so every $4 \$ 9$ will have at least 1 prime of N $\$ 9$ to form 1 pair of primes in which one has 9 as its last digit and another has 3 as its last digit and their sum is any number N in which N has 2 as its last digit and $\mathrm{N} / 2$ has 1 as its last digit.

Table 8. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+0)+(\mathrm{N} / 2-\mathrm{L}-0)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-0)+(\mathrm{N} / 2-\mathrm{L}+0)$

N-11	N-21	N-31	N-41	N-51	N-61	$\mathrm{N}-71$	\ldots	$\mathrm{~N} / 2+\mathrm{L}+0$	$\mathrm{~N} / 2-\mathrm{L}+0$	\ldots	81	71	61	51	41	31	21	11
11	21	31	41	51	61	71	\ldots	$\mathrm{~N} / 2-\mathrm{L}-0$	$\mathrm{~N} / 2+\mathrm{L}-0$	\ldots	$\mathrm{~N}-81$	$\mathrm{~N}-71$	$\mathrm{~N}-61$	$\mathrm{~N}-51$	$\mathrm{~N}-41$	$\mathrm{~N}-31$	$\mathrm{~N}-21$	$\mathrm{~N}-11$

Let see $\$ 1=11$ first (left side of table 8), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11(=\mathrm{N})[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by $11, \mathrm{~N}$ with 2 as its last digit and only $132,242,352,462,572,682,792,902, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 2 as their last digit and $\mathrm{N} / 2$ with 1 as its last digit, only $22,242,462,682, \ldots,(1 \mathrm{in} 22)$ can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 6.

For the next prime $\$ 1=31$, ($\mathrm{N}-31$) cannot be divisible by 31 except $62,682, \ldots$, so $(1 / 31 \times 61 / 62)$ should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes ($\$ 1$) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 1 as its last digit to be a prime is: $\Delta_{1}=1-\sum_{1}=1-\{[(1 / 3)+(1 / 11 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 10 / 11)+(1 / 19 \times 2 / 3 \times 10 / 11 \times 12 / 13)$
$+(1 / 23 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19)+(1 / 29 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23)+(1 / 31 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29)+$ $(1 / 41 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31)+(1 / 43 \times 2 / 3 \times 10 / 11 \times 12 / 13 \times 18 / 19 \times 22 / 23 \times 28 / 29 \times 30 / 31 \times 40 / 41)+\ldots]-[(1 / 11 \times 21 / 22)]$ $+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which both have 1 as its last digit and their sum is any number N in which N has 2 as its last digit and N/2 has 1 as its last digit.

3a. When any even integer (N) has 4 as its last digit, such as $24,44,64,84,104,1124, \ldots$, then $\mathrm{N} / 2$ has 2 as its last digit:
Table 9. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+1)+(\mathrm{N} / 2-\mathrm{L}+7)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}+1)+(\mathrm{N} / 2+\mathrm{L}+7)$

N-7	N-17	N-37	N-47	N-67	N-97	N-107	\ldots	$\mathrm{N} / 2+L-5$	$\mathrm{~N} / 2-L-5$	\ldots	107	97	67	47	37	17	7
7	17	37	47	67	97	107	\ldots	$\mathrm{~N} / 2-L+5$	$\mathrm{~N} / 2+\mathrm{L}+5$	\ldots	$\mathrm{~N}-107$	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$

Let see $\$ 7=7$ first (left side of table 9), we can know there is a bigger chance for ($\mathrm{N}-\$ 7$) to be a prime with 7 as its last digit than (N O7). If $\mathrm{N}-7$ can be divisible by 7 , then $(\mathrm{N}-7)+7(=\mathrm{N})[7 \mathrm{a}+7=7(\mathrm{a}+1), 7 \mathrm{a}$ and $7(\mathrm{a}+1)$ must be divisible by 7$]$ will be divisible by 7 , but N with 4 as its last digit and only $14,84,154,224,294,364,434,504,574, \ldots$ are divisible by 7 , but we worked on only N with 4 as their last digit and $\mathrm{N} / 2$ with 2 as their last digit, only $84,224,364,504, \ldots$, (1 in 14) can be divisible by 7 , so the term ($1 / 7 \mathrm{x} 13 / 14$) should be taken off from Formula 3.

For the next prime $\$ 7=17$, ($\mathrm{N}-17$) cannot be divisible by 17 except $204,544,884, \ldots$, so $(1 / 17 \times 33 / 34)$ should be taken off from Formula 3, so on.

Let n_{7} represents the total number of primes (\$7) with 7 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 7$ with 7 as its last digit to be a prime is: $\Delta_{7}=1-\sum_{7}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 7 \times 13 / 14)]+(1 / 17 \times 33 / 34)+(1 / 37 \times 73 / 74) \ldots]$.

When the number of $\$ 7$ is 5 or more, $5 \mathrm{x}[(1 / 7 \mathrm{x} 13 / 14)+(1 / 17 \mathrm{x} 33 / 34)+(1 / 37 \mathrm{x} 73 / 74) \ldots]>1$, so every $5 \$ 7$ will have at least 1 prime of $\mathrm{N}-\$ 7$ to form 1 pair of primes in which both have 7 as its last digit and the sum is any number N in which N have 4 as its last digit and $\mathrm{N} / 2$ have 2 as its last digit.

Table 10. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+1)+(\mathrm{N} / 2-\mathrm{L}-1)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-1)+(\mathrm{N} / 2-\mathrm{L}+1)$

| $\mathrm{N}-11$ | $\mathrm{~N}-21$ | $\mathrm{~N}-31$ | $\mathrm{~N}-41$ | $\mathrm{~N}-51$ | $\mathrm{~N}-61$ | $\mathrm{~N}-71$ | $\mathrm{~N}-81$ | \ldots | $\mathrm{~N} / 2+\mathrm{L}+1$ | $\mathrm{~N} / 2-\mathrm{L}+1$ | \ldots | 103 | 83 | 53 | 43 | 23 | 13 | 3 |
| :--- |
| 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 | \ldots | $\mathrm{~N} / 2-\mathrm{L}-1$ | $\mathrm{~N} / 2+\mathrm{L}-1$ | \ldots | $\mathrm{~N}-71$ | $\mathrm{~N}-61$ | $\mathrm{~N}-51$ | $\mathrm{~N}-41$ | $\mathrm{~N}-31$ | $\mathrm{~N}-21$ | $\mathrm{~N}-11$ |

Let see $\$ 1=11$ first (left side of table 10), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11(=\mathrm{N})[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by $11, \mathrm{~N}$ with 4 as its last digit and only $44,154,264,374,484,594,704,814, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 4 as their last digit and $\mathrm{N} / 2$ with 2 as its last digit, only $44,264,484,704, \ldots,(1 \mathrm{in} 22)$ can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 3.

For the next prime $\$ 1=31$, $(N-31)$ cannot be divisible by 31 except $124,744, \ldots$, so $(1 / 31 \times 61 / 62)$ should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes ($\$ 1$) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which one prime has 1 as its last digit and another has 3 as its last digit and their sum is any number N in which N has 4 as its last digit and $\mathrm{N} / 2$ has 2 as its last digit.

3b. When any even integer (N) has 4 as its last digit, such as $14,34,54,74,94,1114, \ldots$, then $\mathrm{N} / 2$ has 7 as its last digit:
Table 11. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+0)+(\mathrm{N} / 2-\mathrm{L}+0)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}+0)+(\mathrm{N} / 2+\mathrm{L}+0)$

| $N-7$ | $\mathrm{~N}-17$ | $\mathrm{~N}-37$ | $\mathrm{~N}-47$ | $\mathrm{~N}-67$ | $\mathrm{~N}-97$ | $\mathrm{~N}-107$ | \ldots | $\mathrm{~N} / 2+\mathrm{L}+0$ | $\mathrm{~N} / 2-\mathrm{L}+0$ | \ldots | 107 | 97 | 67 | 47 | 37 | 17 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 17 | 37 | 47 | 67 | 97 | 107 | \ldots | $\mathrm{~N} / 2-\mathrm{L}+0$ | $\mathrm{~N} / 2+\mathrm{L}+0$ | \ldots | $\mathrm{~N}-107$ | $\mathrm{~N}-97$ | $\mathrm{~N}-67$ | $\mathrm{~N}-47$ | $\mathrm{~N}-37$ | $\mathrm{~N}-17$ | $\mathrm{~N}-7$ |

Let see $\$ 7=7$ first (left side of table 11), we can know there is a bigger chance for ($\mathrm{N}-\$ 7$) to be a prime with 7 as its last digit than (N O7). If $\mathrm{N}-7$ can be divisible by 7 , then $(\mathrm{N}-7)+7(=\mathrm{N})[7 \mathrm{a}+7=7(\mathrm{a}+1), 7 \mathrm{a}$ and $7(\mathrm{a}+1)$ must be divisible by 7$]$ will be divisible by 7 , but N with 4 as its last digit and only $14,84,154,224,294,364,434,504,574, \ldots$ are divisible by 7 , but we worked on only N with 4 as their last digit and $\mathrm{N} / 2$ with 7 as their last digit, only $14,154,294,434,574, \ldots,(1 \mathrm{in} 14)$ can be divisible by 7 , so the term ($1 / 7 \times 13 / 14$) should be taken off from Formula 3.

For the next prime $\$ 7=17$, ($\mathrm{N}-17$) cannot be divisible by 17 except $34,374,714, \ldots$, so $(1 / 17 \times 33 / 34)$ should be taken off from Formula 3, so on.

Let n_{7} represents the total number of primes (\$7) with 7 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 7$ with 7 as its last digit to be a prime is: $\Delta_{7}=1-\sum_{7}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23)+(1 / 43 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 12 / 13 \times 22 / 23)+(1 / 47 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 22 / 23 \mathrm{x} 42 / 43)$ $+\ldots,]-[(1 / 7 x 13 / 14)]+(1 / 17 x 33 / 34)+(1 / 37 x 73 / 74) \ldots .]$.

When the number of $\$ 7$ is 5 or more, $5 \mathrm{x}[(1 / 7 \mathrm{x} 13 / 14)+(1 / 17 \mathrm{x} 33 / 34)+(1 / 37 \mathrm{x} 73 / 74) \ldots]>1$, so every $5 \$ 7$ will have at least 1 prime of $\mathrm{N}-\$ 7$ to form 1 pair of primes in which both have 7 as its last digit and the sum is any number N in which N have 4 as its last digit and $\mathrm{N} / 2$ have 7 as its last digit.

Table 12. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-4)+(\mathrm{N} / 2-\mathrm{L}+4)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+4)+(\mathrm{N} / 2-\mathrm{L}-4)$

N-11	$\mathrm{N}-31$	$\mathrm{~N}-41$	$\mathrm{~N}-51$	$\mathrm{~N}-61$	$\mathrm{~N}-71$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-4$	$\mathrm{~N} / 2-\mathrm{L}-4$	\ldots	73	53	43	23	13	3
11	31	41	51	61	71	\ldots	$\mathrm{~N} / 2-\mathrm{L}+4$	$\mathrm{~N} / 2+\mathrm{L}+4$	\ldots	$\mathrm{~N}-73$	$\mathrm{~N}-53$	$\mathrm{~N}-43$	$\mathrm{~N}-23$	$\mathrm{~N}-13$	$\mathrm{~N}-3$

Let see $\$ 1=11$ first (left side of table 12), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11(=\mathrm{N})[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by $11, \mathrm{~N}$ with 4 as its last digit and only $44,154,264,374,484,594,704,814, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 4 as their last digit and $\mathrm{N} / 2$ with 7 as its last digit, only $154,374,594,814, \ldots(1$ in 22) can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 3.

For the next prime $\$ 1=31$, ($\mathrm{N}-31$) cannot be divisible by 31 except $434,1054, \ldots$, so $(1 / 31 \times 61 / 62)$ should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes (\$1) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which one prime has 1 as its last digit and another have 3 as its last digit and their sum is any number N in which N has 4 as its last digit and $\mathrm{N} / 2$ has 7 as its last digit.

4a. When any even integer (N) has 6 as its last digit, such as $26,46,66,86,106,1126, \ldots$, then $\mathrm{N} / 2$ has 3 as its last digit:
Table 13. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+0)+(\mathrm{N} / 2-\mathrm{L}+0)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}+0)+(\mathrm{N} / 2+\mathrm{L}+0)$

| $\mathrm{N}-3$ | $\mathrm{~N}-13$ | $\mathrm{~N}-23$ | $\mathrm{~N}-43$ | $\mathrm{~N}-53$ | $\mathrm{~N}-73$ | $\mathrm{~N}-83$ | \ldots | $\mathrm{~N} / 2+\mathrm{L}+0$ | $\mathrm{~N} / 2-\mathrm{L}+0$ | \ldots | 83 | 73 | 53 | 43 | 23 | 13 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 13 | 23 | 43 | 53 | 73 | 83 | \ldots | $\mathrm{~N} / 2-\mathrm{L}+0$ | $\mathrm{~N} / 2+\mathrm{L}+0$ | \ldots | $\mathrm{~N}-83$ | $\mathrm{~N}-73$ | $\mathrm{~N}-53$ | $\mathrm{~N}-43$ | $\mathrm{~N}-23$ | $\mathrm{~N}-13$ | $\mathrm{~N}-3$ |

Let see $\$ 3=3$ first (left side of table 13), we can know there is a bigger chance for ($\mathrm{N}-\$ 3$) to be a prime with 3 as its last digit than (N O3). If $\mathrm{N}-3$ can be divisible by 3 , then $(N-3)+3(=N)[3 a+3=3(a+1), 3 a$ and $3(a+1)$ must be divisible by 3$]$ will be divisible by 3 , but N with 6 as its last digit and only $6,36,66,96,126,156,186,216,246, \ldots$ are divisible by 3 , but we worked on only N with 6 as their last digit and $N / 2$ with 3 as their last digit, only $6,66,126,186,246, \ldots,(1$ in 6$)$ can be divisible by 3 , so the term ($1 / 3 \times 5 / 6$) should be taken off from Formula 3.

For the next prime $\$ 3=13$, ($\mathrm{N}-13$) cannot be divisible by 13 except $26,286,546, \ldots$, so ($1 / 13 \times 25 / 26$) should be taken off from Formula 3, so on.

Let n_{3} represents the total number of primes ($\$ 3$) with 3 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 3$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 13 \times 25 / 26)+(1 / 23 \times 45 / 46)+\ldots]$.

When the number of $\$ 3$ is 3 or more, $3 \times[([(1 / 3 \times 5 / 6)]+(1 / 13 \times 25 / 26)+(1 / 23 \times 45 / 46) \ldots]>$.1 , so every $3 \$ 3$ will have at least 1 prime of $\mathrm{N}-\$ 3$ to form 1 pair of primes in which both have 3 as its last digit and their sum is any number N in which N has 6 as its last digit and N/2 has 3 as its last digit.

Table 14. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-4)+(\mathrm{N} / 2-\mathrm{L}+4)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+4)+(\mathrm{N} / 2-\mathrm{L}-4)$

N-7	N-17	N-37	N-47	$\mathrm{N}-67$	$\mathrm{~N}-97$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-4$	$\mathrm{~N} / 2-\mathrm{L}-4$	\ldots	89	79	59	29	19
7	17	37	47	67	97	\ldots	$\mathrm{~N} / 2-\mathrm{L}+4$	$\mathrm{~N} / 2+\mathrm{L}+4$	\ldots	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$

Let see $\$ 7=7$ first (left side of table 11), we can know there is a bigger chance for ($\mathrm{N}-\$ 7$) to be a prime with 7 as its last digit than (N O7). If $\mathrm{N}-7$ can be divisible by 7 , then $(\mathrm{N}-7)+7(=\mathrm{N})[7 \mathrm{a}+7=7(\mathrm{a}+1), 7 \mathrm{a}$ and $7(\mathrm{a}+1)$ must be divisible by 7$]$ will be divisible by 7 , but N with 6 as its last digit and only $56,126,196,266,336,406,476,546,616, \ldots$ are divisible by 7 , but we worked on only N with 6 as their last digit and $\mathrm{N} / 2$ with 3 as their last digit, only $126,266,406,546, \ldots,(1$ in 14) can be divisible by 7 , so the term ($1 / 7 \mathrm{x} 13 / 14$) should be taken off from Formula 8.

For the next prime $\$ 7=17$, ($\mathrm{N}-17$) cannot be divisible by 17 except $226,566,906, \ldots$, so $(1 / 17 \times 33 / 34)$ should be taken off from Formula 8, so on.

Let n_{7} represents the total number of primes (\$7) with 7 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 7$ with 9 as its last digit to be a prime is: $\Delta_{9}=1-\sum_{9}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)$ $+(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)+(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+$ $(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$
$(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+\ldots,]-[(1 / 7 \times 13 / 14)]+(1 / 17 \times 33 / 34)+(1 / 37 \times 73 / 74)+\ldots]$.
When the number of $\$ 7$ is 5 or more, $5 x[(1 / 7 x 13 / 14)+(1 / 17 x 33 / 34)+(1 / 37 x 73 / 74) \ldots]>1$, so every $5 \$ 7$ will have at least 1 prime of $\mathrm{N}-\$ 7$ to form 1 pair of primes in which 1 prime has 7 as its last digit and another has 9 as its last digit and their sum is any number N in which N has 6 as its last digit and $N / 2$ have 3 as its last digit.

4b. When any even integer (N) has 6 as its last digit, such as $16,36,56,76,96,1116, \ldots$, then $\mathrm{N} / 2$ has 8 as its last digit:
Table 15. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-1)+(\mathrm{N} / 2-\mathrm{L}+1)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}-1)+(\mathrm{N} / 2+\mathrm{L}+1)$

N-9	N-19	N-29	N-59	N-79	N-89	N-109	\ldots	$\mathrm{N} / 2+\mathrm{L}-1$	$\mathrm{~N} / 2-\mathrm{L}-1$	\ldots	107	97	67	47	37	17	7
$9(3 \times 3)$	19	29	59	79	89	109	\ldots	$\mathrm{~N} / 2-\mathrm{L}+1$	$\mathrm{~N} / 2+\mathrm{L}+1$	\ldots	$\mathrm{~N}-107$	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$

Let see $\$ 9=9$ first (left side of table 15), if $N-9$ can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9] will be divisible by 3 or 9 , N with 6 as its last digit and only $36,66,96,126,156,186,216,246,276,306,336$, $366,396,426,456,486,516,546, \ldots$ are divisible by 3 or $9, \ldots$, but we worked on only N with 6 as their last digit and $\mathrm{N} / 2$ with 8 as their last digit, only $36,96,156,216,276,336,396,456,516, \ldots(1$ in 6$)$ can be divisible by 3 or 9 , so the term $(1 / 3 x 5 / 6)$ should be taken off from Formula 3.

For the next prime $\$ 9=19$, ($\mathrm{N}-19$) cannot be divisible by 19 except $76,456,836, \ldots$, so $(1 / 19 x 37 / 38)$ should be taken off from Formula 3 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 7 as its last digit to be a prime is: $\Delta_{7}=1-\sum_{7}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]>1$, so every $4 \$ 9$ will have at least 1 prime of N $\$ 9$ to form 1 pair of primes in which one has 9 as its last digit and another has 7 as its last digit and their sum is any number N in which N has 6 as its last digit and $\mathrm{N} / 2$ has 8 as its last digit.

Table 16. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-5)+(\mathrm{N} / 2-\mathrm{L}+5)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-5)+(\mathrm{N} / 2-\mathrm{L}+5)$

| $\mathrm{N}-3$ | $\mathrm{~N}-13$ | $\mathrm{~N}-23$ | $\mathrm{~N}-43$ | $\mathrm{~N}-53$ | $\mathrm{~N}-73$ | $\mathrm{~N}-83$ | \ldots | $\mathrm{~N} / 2+\mathrm{L}-5$ | $\mathrm{~N} / 2-\mathrm{L}+5$ | \ldots | 83 | 73 | 53 | 43 | 23 | 13 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 13 | 23 | 43 | 53 | 73 | 83 | \ldots | $\mathrm{~N} / 2-\mathrm{L}+5$ | $\mathrm{~N} / 2+\mathrm{L}-5$ | \ldots | $\mathrm{~N}-83$ | $\mathrm{~N}-73$ | $\mathrm{~N}-53$ | $\mathrm{~N}-43$ | $\mathrm{~N}-23$ | $\mathrm{~N}-13$ | $\mathrm{~N}-3$ |

Let see $\$ 3=3$ first (left side of table 16), we can know there is a bigger chance for ($\mathrm{N}-\$ 3$) to be a prime with 3 as its last digit than (N O3). If $\mathrm{N}-3$ can be divisible by 3 , then $(N-3)+3(=N)[3 a+3=3(a+1), 3 a$ and $3(a+1)$ must be divisible by 3$]$ will be divisible by 3 , but N with 6 as its last digit and only $6,36,66,96,126,156,186,216,246, \ldots$ are divisible by 3 , but we worked on only N with 6 as their last digit and $\mathrm{N} / 2$ with 8 as their last digit, only $36,96,156,216, \ldots,(1$ in 6$)$ can be divisible by 3 , so the term $(1 / 3 \times 5 / 6)$ should be taken off from Formula 3.

For the next prime $\$ 3=13$, ($\mathrm{N}-13$) cannot be divisible by 13 except $156,416,676, \ldots$, so $(1 / 13 \times 25 / 26)$ should be taken off from Formula 3, so on.

Let n_{3} represents the total number of primes (\$3) with 3 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 3$ with 3 as its last digit to be a prime is: $\Delta_{3}=1-\sum_{3}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 16 / 17 \times 36 / 37 \times 12 / 13 \times 22 / 23)+(1 / 47 \times 2 / 3 \times 6 / 7 \times 12 / 13 \times 16 / 17 \times 36 / 37 \times 22 / 23 \times 42 / 43)$ $+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 13 \times 25 / 26)+(1 / 23 \times 45 / 46)+\ldots]$.

When the number of $\$ 3$ is 3 or more, $3 \times[([(1 / 3 \times 5 / 6)]+(1 / 13 \times 25 / 26)+(1 / 23 \times 45 / 46) \ldots]>$.1 , so every $3 \$ 3$ will have at least 1 prime of $\mathrm{N}-\$ 3$ to form 1 pair of primes in which both have 3 as its last digit and their sum is any number N in which N has 6 as its last digit and $\mathrm{N} / 2$ has 8 as its last digit.

5a. When any even integer (N) has 8 as its last digit, such as $28,48,68,88,108,1128, \ldots$, then $\mathrm{N} / 2$ has 4 as its last digit:
Table 17. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-1)+(\mathrm{N} / 2-\mathrm{L}+5)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}-1)+(\mathrm{N} / 2+\mathrm{L}+5)$

N-9	N-19	$\mathrm{N}-29$	$\mathrm{~N}-59$	$\mathrm{~N}-79$	$\mathrm{~N}-89$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-5$	$\mathrm{~N} / 2-\mathrm{L}+5$	\ldots	89	79	59	29	19	$9(3 \times 3)$
$9(3 \times 3)$	19	29	59	79	89	\ldots	$\mathrm{~N} / 2-\mathrm{L}+5$	$\mathrm{~N} / 2+\mathrm{L}-5$	\ldots	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$	$\mathrm{~N}-9$

Let see $\$ 9=9$ first (left side of table 17), if $N-9$ can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9] will be divisible by 3 or 9 , N with 8 as its last digit and only $18,48,78,108,138,168,198,228,258,288,318, \ldots$ are divisible by 3 or $9, \ldots$, but we worked on only N with 8 as their last digit and $\mathrm{N} / 2$ with 4 as their last digit, only $48,108,168,228$, $288, \ldots$ (1 in 6) can be divisible by 3 or 9 , so the term ($1 / 3 \times 5 / 6$) should be taken off from Formula 3.

For the next prime $\$ 9=19$, ($\mathrm{N}-19$) cannot be divisible by 19 except $228,608,988 \ldots$, so $(1 / 19 \times 37 / 38)$ should be taken off from Formula 3, so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 9 as its last digit to be a prime is: $\Delta_{9}=1-\sum_{9}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+$ $(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)$ $+(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]>1$, so every $4 \$ 9$ will have at least 1 prime of $\mathrm{N}-\$ 9$ to form 1 pair of primes in which both have 9 as its last digit and their sum is any number N in which N has 8 as its last digit and N/2 have 4 as its last digit.

Table 18. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+3)+(\mathrm{N} / 2-\mathrm{L}-3)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-3)+(\mathrm{N} / 2-\mathrm{L}+3)$

$\mathrm{N}-11$	$\mathrm{~N}-31$	$\mathrm{~N}-41$	$\mathrm{~N}-61$	$\mathrm{~N}-71$	$\mathrm{~N}-101$	\ldots	$\mathrm{~N} / 2+\mathrm{L}+3$	$\mathrm{~N} / 2-\mathrm{L}+3$	\ldots	97	67	47	37	17	7
11	31	41	61	71	101	\ldots	$\mathrm{~N} / 2-\mathrm{L}-3$	$\mathrm{~N} / 2+\mathrm{L}-3$	\ldots	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$

Let see $\$ 1=11$ first (left side of table 18), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11(=\mathrm{N})[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by $11, \mathrm{~N}$ with 8 as its last digit and only $88,198,308,418,528,638,748,858,968, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 8 as their last digit and $\mathrm{N} / 2$ with 4 as its last digit, only $88,308,528,748,968, \ldots$ (1 in 22) can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 3.

For the next prime $\$ 1=31$, ($\mathrm{N}-31$) cannot be divisible by 31 except $248,868, \ldots$, so $(1 / 31 \times 61 / 62)$ should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes ($\$ 1$) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 7 as its last digit to be a prime is: $\Delta_{7}=1-\sum_{7}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23)+(1 / 43 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 12 / 13 \times 22 / 23)+(1 / 47 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 12 / 13 \times 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 22 / 23 \mathrm{x} 42 / 43)$ $+\ldots,]-[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots.]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which one prime has 1 as its last digit and another have 7 as its last digit and their sum is any number N in which N has 8 as its last digit and $\mathrm{N} / 2$ has 4 as its last digit.

5b. When any even integer (N) has 8 as its last digit, such as $18,38,58,78,98,1118, \ldots$, then $\mathrm{N} / 2$ has 9 as its last digit:
Table 19. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-0)+(\mathrm{N} / 2-\mathrm{L}+0)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2-\mathrm{L}-0)+(\mathrm{N} / 2+\mathrm{L}+0)$

N-9	N-19	$\mathrm{N}-29$	$\mathrm{~N}-59$	$\mathrm{~N}-79$	$\mathrm{~N}-89$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-0$	$\mathrm{~N} / 2-\mathrm{L}+0$	\ldots	89	79	59	29	19	$9(3 \times 3)$
$9(3 \times 3)$	19	29	59	79	89	\ldots	$\mathrm{~N} / 2-\mathrm{L}+0$	$\mathrm{~N} / 2+\mathrm{L}-0$	\ldots	$\mathrm{~N}-89$	$\mathrm{~N}-79$	$\mathrm{~N}-59$	$\mathrm{~N}-29$	$\mathrm{~N}-19$	$\mathrm{~N}-9$

Let see $\$ 9=9$ first (left side of table 19), if $N-9$ can be divisible by 9 , then $(N-9)+9(=N)[9 a+9=9(a+1), 9 a$ and $9(a+1)$ must be divisible by 3 or 9] will be divisible by 3 or $9, \mathrm{~N}$ with 8 as its last digit and only 18, 48, 78, 108, 138, 168, 198, 228, 258, 288, 318, ... are divisible by 3 or $9, \ldots$, but we worked on only N with 8 as their last digit and $\mathrm{N} / 2$ with 9 as their last digit, only $18,78,138,198$, $258,318, \ldots$, (1 in 6) can be divisible by 3 or 9 , so the term ($1 / 3 \times 5 / 6$) should be taken off from Formula 3.

For the next prime $\$ 9=19$, ($\mathrm{N}-19$) cannot be divisible by 19 except $38,418,798 \ldots$, so ($1 / 19 \times 37 / 38$) should be taken off from Formula 3 , so on.

Let n_{9} represents the total number of primes (\$9) with 9 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 9$ with 9 as its last digit to be a prime is: $\Delta_{9}=1-\sum_{9}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 11 \times 2 / 3 \times 6 / 7)+(1 / 13 \times 2 / 3 \times 6 / 7 \times 10 / 11)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13)+$ $(1 / 23 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17)+(1 / 31 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23)+(1 / 37 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31)$ $+(1 / 41 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37)+(1 / 43 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41)+$ $(1 / 47 \times 2 / 3 \times 6 / 7 \times 10 / 11 \times 12 / 13 \times 16 / 17 \times 22 / 23 \times 30 / 31 \times 36 / 37 \times 40 / 41 \times 42 / 43)+\ldots,]-[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots]$.

When the number of $\$ 9$ is 4 or more, $4 \times[(1 / 3 \times 5 / 6)]+(1 / 19 \times 37 / 38)+(1 / 29 \times 57 / 58) \ldots.]>1$, so every $4 \$ 9$ will have at least 1 prime of $\mathrm{N}-\$ 9$ to form 1 pair of primes in which both have 9 as its last digit and their sum is any number N in which N has 8 as its last digit and $\mathrm{N} / 2$ have 9 as its last digit.

Table 20. The odd number pairs in $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}-2)+(\mathrm{N} / 2-\mathrm{L}+2)$ and $\mathrm{N}=\mathrm{O}_{1}+\mathrm{O}_{2}=(\mathrm{N} / 2+\mathrm{L}+2)+(\mathrm{N} / 2-\mathrm{L}-2)$

$\mathrm{N}-11$	$\mathrm{~N}-31$	$\mathrm{~N}-41$	$\mathrm{~N}-61$	$\mathrm{~N}-71$	$\mathrm{~N}-101$	\ldots	$\mathrm{~N} / 2+\mathrm{L}-2$	$\mathrm{~N} / 2-\mathrm{L}-2$	\ldots	97	67	47	37	17	7
11	31	41	61	71	101	\ldots	$\mathrm{~N} / 2-\mathrm{L}+2$	$\mathrm{~N} / 2+\mathrm{L}+2$	\ldots	$\mathrm{~N}-97$	$\mathrm{~N}-67$	$\mathrm{~N}-47$	$\mathrm{~N}-37$	$\mathrm{~N}-17$	$\mathrm{~N}-7$

Let see $\$ 1=11$ first (left side of table 20), we can know there is a bigger chance for ($\mathrm{N}-\$ 1$) to be a prime with 1 as its last digit than (N O1). If $\mathrm{N}-11$ can be divisible by 11 , then $(\mathrm{N}-11)+11(=\mathrm{N})[11 \mathrm{a}+11=11(\mathrm{a}+1), 11 \mathrm{a}$ and $11(\mathrm{a}+1)$ must be divisible by 11$]$ will be divisible by $11, \mathrm{~N}$ with 8 as its last digit and only $88,198,308,418,528,638,748,858,968, \ldots$ are divisible by $11, \ldots$, but we worked on only N with 8 as their last digit and $\mathrm{N} / 2$ with 9 as its last digit, only $198,418,638,858, \ldots$ (1 in 22) can be divisible by 11 , so the term ($1 / 11 \times 21 / 22$) should be taken off from Formula 3.

For the next prime $\$ 1=31$, ($\mathrm{N}-31$) cannot be divisible by 31 except $558,1178 \ldots$, so ($1 / 31 \mathrm{x} 61 / 62$) should be taken off from Formula 6 , so on.

Let n_{1} represents the total number of primes ($\$ 1$) with 1 as their last digit in any number N , the chance of every $\mathrm{N}-\$ 1$ with 7 as its last digit to be a prime is: $\Delta_{7}=1-\sum_{7}=1-\{[(1 / 3)+(1 / 7 \times 2 / 3)+(1 / 13 \times 2 / 3 \times 6 / 7)+(1 / 17 \times 2 / 3 \times 6 / 7 \times 12 / 13)+(1 / 23 \times 2 / 3 \times 12 / 13 \times 6 / 7 \times 16 / 17)+$ $(1 / 37 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 22 / 23)+(1 / 43 \mathrm{x} 2 / 3 \mathrm{x} 6 / 7 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 12 / 13 \times 22 / 23)+(1 / 47 \mathrm{x} 2 / 3 \times 6 / 7 \mathrm{x} 12 / 13 \mathrm{x} 16 / 17 \mathrm{x} 36 / 37 \mathrm{x} 22 / 23 \mathrm{x} 42 / 43)$ $+\ldots,]-[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots]$.

When the number of $\$ 1$ is 11 or more, $[(1 / 11 \times 21 / 22)]+(1 / 31 \times 61 / 62)+(1 / 41 \times 81 / 82) \ldots.]>1$, so every $11 \$ 1$ will have at least 1 prime of $\mathrm{N}-\$ 1$ to form 1 pair of primes in which one prime has 1 as its last digit and another have 7 as its last digit and their sum is any number N in which N has 8 as its last digit and $\mathrm{N} / 2$ has 9 as its last digit.

For any even number, Goldbach's conjecture is true.

References:

1. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Theorem 2.
2. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Lemma 5.
3. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., p. 10, section 2.
4. Zhang, Yitang (2014). "Bounded gaps between primes".Annals of Mathematics. 179 (3): 1121-1174
