Physical Interpretation of the 30 8-simplexes in the E8 240-Polytope:

Frank Dodd (Tony) Smith, Jr. 2017 - viXra 1702.0058
248-dim Lie Group E8 has 240 Root Vectors arranged on a 7-sphere S7 in 8-dim space.
The 12 vertices of a cuboctahedron live on a 2 -sphere S 2 in 3 -dim space.

They are also the $4 \times 3=12$ outer vertices of 4 tetrahedra (3-simplexes) that share one inner vertex at the center of the cuboctahedron.

This paper explores how the 240 vertices of the E8 Polytope in 8 -dim space are related to the $30 x 8=240$ outer vertices (red in figure below) of 308 -simplexes whose 9th vertex is a shared inner vertex (yellow in figure below) at the center of the E8 Polytope.

The 8 -simplex has 9 vertices, 36 edges, 84 triangles, 126 tetrahedron cells, 126 4-simplex faces, 845 -simplex faces, 366 -simplex faces, 97 -simplex faces, and 18 -dim volume

The real 4_21 Witting polytope of the E8 lattice in R8 has 240 vertices; 6,720 edges; 60,480 triangular faces;
241,920 tetrahedra; 483,840 4-simplexes; 483,840 5-simplexes 4_00;
$138,240+69,1206$-simplexes 4_10 and 4_01; and $17,280=2,160 \times 8$ 7-simplexes 4_20 and 2,160 7-cross-polytopes 4_11.

The cuboctahedron corresponds by Jitterbug Transformation to the icosahedron. The 20 2-dim faces of an icosahedon in 3-dim space
(image from spacesymmetrystructure.wordpress.com)

Twenty tetrahedra almost fitting together to make an icosahedron
are also the 20 outer faces of 20 not-exactly-regular-in-3-dim tetrahedra (3-simplexes) that share one inner vertex at the center of the icosahedron, but that correspondence does not extend to the case of 8-simplexes in an E8 polytope, whose faces are both 7-simplexes and 7-cross-polytopes, similar to the cubocahedron, but not its Jitterbug-transform icosahedron with only triangle $=2$-simplex faces.

However, since the E8 lattice in R8 has a counterpart in C4, the self-reciprocal honeycomb of Witting polytopes, a lattice of all points whose 4 coordinates are Eisenstein integers with the equivalent congruences

$$
\begin{gathered}
\mathrm{u} 1+\mathrm{u} 2+\mathrm{u} 3=\mathrm{u} 2-\mathrm{u} 3+\mathrm{u} 4=0(\bmod \mathrm{i} \operatorname{sqrt}(3)) \text { and } \\
\mathrm{u} 3-\mathrm{u} 2=\mathrm{u} 1-\mathrm{u} 3=\mathrm{u} 2-\mathrm{u} 1=\mathrm{u} 4(\bmod \mathrm{i} \operatorname{sqrt}(3))
\end{gathered}
$$

all of whose cells are similar, the icosahedron-type correspondence may exist for the self-reciprocal Witting polytope in C4 which has

240 vertices, 2,160 edges, 2,160 faces, and 240 cells.
It has 27 edges at each vertex.
Its symmetry group has order 155,520=3x51,840.
It is 6-symmetric, so its central quotient group has order 25,920.
It has 40 diameters orthogonal to which are 40 hyperplanes of symmetry, each of which contains 72 vertices.
It has a van Oss polygon in C2, its section by a plane joining an edge to the center, that is the $3\{4\} 3$ in C 2 , with 24 vertices and 24 edges.

In 8-dim space it seems to me that the 8×30 outer vertices of $\mathbf{3 0} \mathbf{8}$-simplexes sharing a common vertex at the center of an E8 Polytope correspond to 240 vertices of the E8 Polytope, as is the case of 4 tetrahedra and the cuboctahedron.

However,
my E8 Physics model (viXra 1602.0319) is based on a projection to a 2-dim plane, as is the widely used 8 circles of 30 vertices each projection,
so, for the purpose of visualization in practical applications, it seems useful to try to describe the relations of 30 8-simplexes to the E8 Polytope in terms of those projections to 2-dim.

My E8 Physics model represents the 240 E8 Root Vectors in 2-dim space as

To understand the Geometry related to the 240 E8 Root Vectors, consider that 248 -dim E8 = 120-dim Spin(16) D8 + 128-dim half-spinor of Spin(16) D8 and
240 E8 Root Vectors = 112 D8 Root Vectors + 128 D8 half-spinors.
There are two ways to see a maximal symmetric subspace of E8 and E8 Root Vectors:
the symmetric space corresponding to the 128 D8 half-spinors
E8 / D8 = 128-dim Octonion-Octonionic Projective Plane (OxO)P2 and
the symmetric space corresponding to the 112 D8 Root Vectors
E8 / E7 x SU(2) = 112-dim set of (QxO)P2 in OxO)P2
where (QxO)P2 = Quaternion-Octonion Projective Planes
Also, D8 / D4 x D4 = 64-dim Grassmannian $\operatorname{Gr}(8,16)$

Geometric Structure leads to physical interpretation of the E8 Root Vectors as:

$\mathrm{E}=$ electron,
$\mathrm{UQr}=$ red up quark, $\mathrm{UQg}=$ green up quark, $\mathrm{UQb}=$ blue up quark
$\mathrm{Nu}=$ neutrino,
$\mathrm{DQr}=$ red down quark, $\mathrm{DQg}=$ green down quark, $\mathrm{DQb}=$ blue down quark
$P=$ positron,
aUQar = anti-red up antiquark, aUQag = anti-green up antiquark, aUQab = anti-blue up antiquark
aNu = antineutrino,
aDQar = anti-red down antiquark, aDQag = anti-green down antiquark,
aDQab = anti-blue down antiquark

Each Lepton and Quark has 8 components with respect to M4 x CP2 Kaluza-Klein where M4 = 4-dim Minkowski Physical Spacetime and CP2 $=\operatorname{SU}(3) / \operatorname{SU}(2) x U)(1)=4$-dim Internal Symmetry Space

The 24 orange vertices are Root Vectors of a D4 of D8 / D4xD4 that represents Standard Model gauge bosons and Ghosts of Gravity. Denote it by D4sm. 6 orange $\operatorname{SU}(3)$ and 2 orange $\operatorname{SU}(2)$ represent Standard Model root vectors $24-6-2=16$ orange represent $U(2,2)$ Conformal Gravity Ghosts

The 24 yellow vertices are Root Vectors of a D4 of D8 / D4xD4 that represents Gravity gauge bosons and Ghosts of the Standard Model. Denote it by D4g. 12 yellow $\operatorname{SU}(2,2)$ represent Conformal Gravity $\operatorname{SU}(2,2)$ root vectors 24-12 = 12 yellow represent Standard Model Ghosts
$32+32=64$ blue of D8 / D4 x D4 = 64-dim Grassmannian $\operatorname{Gr}(8,16)$ represent 4+4 dim Kaluza-Klein spacetime position and momentum.

The 240-polytope has 240 vertices and 8 -simplex has 9 vertices, 8 of which are outer if the 8 -simplexes all share a central vertex.

Therefore it takes 240 / $8=30$ 8-simplexes sharing a central vertex to make up the 240 vertices of the 240-polytope.

30 sets $=16$ of Fermions
+ 8 of M4 x CP2 Kaluza-Klein Spacetime
+ 3 of Standard Model and Ghosts of Gravity
+ 3 of Gravity and Ghosts of Standard Model

These 16 sets of 8 vertices correspond to the 8 first-generation Fermion Particles (green and cyan) and the 8 first-generation Fermion AntiParticles (red and magenta)

These 8 sets of 8 vertices correspond to the 4 dimensions of M4 Minkoski Physical Spacetime (the 4 horizontal sets)
and
the 4 dimensions of CP2 Internal Symmetry Space (the 4 vertical sets)

These 3 sets of 8 vertices correspond to
8 Root Vectors of Standard Model SU(3)xSU(2)xU(1) (orange boxes) and
Ghosts of the 16 -dim Conformal Group $\mathbf{U}(2,2)$ of Gravity (white boxes)

These 3 sets of 8 vertices correspond to
12 Root Vectors of Conformal Group U(2,2) of Gravity (yellow box) and
Ghosts of the 12-dim Standard Model SU(3)xSU(2)xU(1) (orange boxes)

The 12+12 Physical Interpretation of 24 Root Vectors does not exactly correspond to their $8+8+8$ decomposition in terms of 8 -simplexes (white boxes)

30 8-simplexes in the E8 240-Polytope can also be seen in terms of 8 Circles of 30 Root Vectors projected into 2-dim:

Consider the 240 Root Vectors of E8, based on 8-dim Octonionic spacetime being seen as $4+4$-dim Quaternionic M4 x CP2 Kaluza-Klein Spacetime:

120 of the 240 (yellow dots) represent aspects of First-Generation Fermions, Gauge Bosons and Ghosts, and Position and Momentum related to M4 Physical Spacetime.

120 of the 240 (orange dots) represent aspects of First-Generation Fermions, Gauge Bosons and Ghosts, and Position and Momentum related to $\mathrm{CP} 2=\mathrm{SU}(3) / \mathrm{SU}(2) \mathrm{xU}(1)$ Internal Symmetry Space.

In the above 2-dim projection the M4 120 have larger radii from the center than the CP2 120 by a factor of the Golden Ratio.

If you look at the 240-polytope in the 2-dim projection of 8 circles of 30 vertices each, you can see that each of the 308 -simplexes has outer vertices like the 8 vertices connected by green lines in the image below.

How consistent with E8 Physics is this representation of $\mathbf{2 4 0}$ as 30×8 outer vertices of $\mathbf{8}$-simplexes ?

My E8 Physics model Physical Interpretation of the E8 Root Vectors is:
64 blue = Spacetime
64 green and cyan = Fermion Particles
64 red and magenta = Fermion AntiParticles
24 yellow $=\mathrm{D} 4 \mathrm{~g}$ Root Vectors $=12$ Root Vectors of $\operatorname{SU}(2,2)$ Conformal Gravity
+12 Ghosts of Standard Model $\operatorname{SU}(3) x S U(2) x U(1)$
24 orange $=$ D4sm Root Vectors $=8$ Root Vectors of Standard Model SU(3)xSU(2)xU(1)
+16 Ghosts of $U(2,2)$ of Conformal Gravity

The Spacetime (blue) and Fermion (green, cyan, red, magenta) vertices

are represented by Outer Vertices of 24 of 308 -simplexes that share a central vertex

$$
(24 \times 8=192=64+32+32+32+32)
$$

Each of those 24 sets of 8 Outer Vertices is of the form shown by red or green lines:

As to the other $(30-24)=6=3+3$ sets of 8 E8 Root Vectors, they fall into two sets of $3 \times 8=24$ vertices (orange and yellow).

The orange $\mathbf{2 4}$ = D4sm Root Vectors are in the CP2 part of the E8 Polytope:
8 Root Vectors of Standard Model SU(3)xSU(2)xU(1)
+16 Ghosts of $U(2,2)$ of Conformal Gravity
The 8 Root Vectors of Standard Model SU(3)xSU(2)xU(1)
fall into two sets of Root Vectors indicated by orange lines:
$3+3=6$ Root Vectors of Standard Model SU(3) and
2 Root Vectors of Standard Model SU(2)xU(1)
The 16 Ghosts of $\mathbf{U}(2,2)$ of Conformal Gravity fall into 2 sets:
12 for Root Vectors of $\operatorname{SU}(2,2)=$ Spin $(2,4)$ of Conformal Gravity and 4 for Cartan Subalgebra elements of $U(2,2)$

The yellow 24 = D4g Root Vectors are in the M4 part of the E8 Polytope:
12 Root Vectors of Conformal Gravity SU(2,2) $=$ Spin $(2,4)$
+12 Ghosts of Standard Model SU(3)xSU(2)xU(1)
The 12 Root Vectors of Conformal Gravity SU(2,2) = Spin(2,4)
The central 4 are Root Vectors of Lorentz $\operatorname{Spin}(1,3)$.
The two sets of 4 are Translations and Special Conformal Transformations.
The 12 Ghosts of Standard Model SU(3)xSU(2)xU(1)
are the other half of the 24
On the following page is a summary of the Physical Interpretation of the 240 E8 Root Vectors in terms of
the 8 Circles of 30 Root Vectors projected into 2-dim:
Note that deviations from the direct correspondence between the 240 E8 Polytope vertices and the 30×8 outer vertices of 8 -simplexes have useful Physical Interpretations.

Neutrino + RGB Down Quarks
M4 Minkowski Physical Spacetime

