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Abstract

The article seeks to define and analyze work in the context of General Relativity. The definition of work
in General Relativity as considered with this article is an extrapolation of what we have in Special
Relativity.This definition as brought out in this paper takes into account the involvement of the
curvature effects into the definition of work. The paper also considers the weak field limit of work in
relation to Schwarzschild’s Geometry. In the classical limit of weak space time curvature our definition
produces the classical energy conservation formula: the sum of potential and kinetic energy as defined
classically is conserved when Schwarzschild geometry is treated in the weak field limit with our
definition of work.
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Introduction

Work as defined in Special relativity may be extrapolated into the realm of General Relativity taking into
account the effect of the metric coefficients characterizing the General Relativity metric. The basic tool
used is the invariance of the four dot product. In the classical limit of weak space time curvature our
definition produces the classical energy conservation formula: the sum of potential and kinetic energy
as defined classically is conserved when Schwarzschild geometry is treated in the weak field limit woth
our definition of work.

Rudimentary Notions

The definition of four velocity is identical in Special and in General Relativity. But the definition of four
acceleration is different. Curvature effects are involved in acceleration and hence in the concept of work
in General relativity.

We first consider the differential relation

s ot “
dx :mdx

The above relation is a general mathematical statement for the transformation of rank one tensors.

s . . . . . dx#*  ox* dx“® _ axH
Dividing both sides by invariant proper time interval we have, — = —— = p# = —p“%
dr 0x® dt ox%
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The same definition for four velocity is used for flat space time and curved space time since the above
relation represents a tensor transformation in any situation

dx*  9xHdx“ da’x* _ oxtd*x®  d (69?”) dx®
T \d0x%/ drt

leferentlatlng— = i with respect to proper time T we have: o7 = 5.8 a7

(%Z)?ﬂ

% T+ %
[Example Lorentz Transformations: — are constants] If— =constant,— ( xa)belng zero we do have

aa
d2x# 6x“d2x“
tensor transformation given h ions -— = ——
a tensor transformation given by the equations = Ix% de

dxP dx“ _ D%x“

BY 4o 4r = p.z s defined as four acceleration which behaves as a tensor .

Thus Four acceleration Mis defined by:

d?x® « dxPax®  p2x®
dr? BY “ar ar ~ D2

(1)

a

. . . dx® .
It is important to take note of the fact that four acceleration=0 does not mean that four velouty,%, is
constant as we have in Special Relativity. Rather four acceleration=0 implies

Or,

d?x® dxP dx®
27 _ _re, 2 77
dr? BY dr dr

. dx“® ..
Proper velocity components w7 constant when four acceleration is zero.

When we see an apple falling from a tree its radial component of four acceleration is exactly zero----

2 a 2
quite different from what we observe:9.8m/s%.The quantlty al (= %) in the geodesic equation

d?x® a dxP dx“ . . .
o BY ar ar = 0 ,relates to 9.8m/s? in the weak space time context when E)haysmal :md

dzr
coordinate values are identical [approximately identical as for weak space time]: al ( = 2) is the

guantity we measure for acceleration when we observe an apple falling from a tree. The important

point to appreciate is that gravity[space time curvature effects] causes acceleration that we
d?x®
dt?

da? . . . - .
measure[Example: (: d—f;) for a falling apple]. For physical separations inj the strict sense of strong
curvature, we have to use dx“ppysicar = JaadXx® [No summation on a: relations (5.1) to (5.4) coming

up subsequently have to be considered]

If the earth were a million times denser the radial component of a freely falling object would be exactly
zero, the value of ‘g’ the acceleration due to becoming enormously large.

Work In General Relativity

Considering curvature effects we define Work, as

d2xt i dxPdx

-— dxt,i running over spatial components.
dr? BY "ar dr) g p P

AW (per unit rest mass) = gy (



We have used AW instead of dIW since we do not know whether the right side is a perfect differential.

d?x Ba L . .
For gravity acting alone + gy ; % = (0.Four acceleration in presence of gravity alone is zero
though it causes measurable amount of three acceleration as observed in the free fall of a body. Then
a*xt | ;  dxPd
d; 'y %i # 0 implies the involvement of non gravity agents .For non geodesic paths we may
write:
dxB dx® d?xt i dxPax® i dxPax®
B R f#0,or Tz = af g g T f,interpreting —I" 5 T o as

acceleration due to gravity [accelerating due to space time Geometry effects]and f as acceleration due
to non gravity agents. If gravity is turned off the path [world line on the manifoldlitself changes resulting

dxPB dx@ .
a,; ———— cancel out. Hence net work done is zero.
d dt

in a geodesic. In presenceof gravity alon

dxP d
ﬁy ; xT It is not expected to be zero.

Rather it should be in conformity with the work energy theorem

dxP d
a/; %L # 0 in presence of non gravitational agents we may define

Sinc
. B
(3)AW =g (d ad +Tep d; de ) dx'[i running over spatial components].If four acceleration is not

zero, ). In presence of gravity alone AW will be zero In presence of non gravity agents W, grqv Will be
represented by a non zero value.

Special Relativity Perspectives

The work energy theorem is an accepted idea in Special Relativity. It is used to deduce the kinetic
energy!? formula in Special relativity:

1

J1-v2/c?

Change in KE= moCZ(Vfinaz - Yfinitial)

KE=mgc? ( - 1) =mc? — myc?

To apply the same in General Relativity we have to modify the General Relativity metric by suitable

transformations to obtain the flat space form of metric. This will enable us apply Special relativity
formulas in the general relativity context, using the transformed metric

GR metric:

(4) c?dr? = gttd(Ct)z - gxxdx2 - gyydyz - .gzzde

(4.1)C2 = Gt (d‘(icrt))z — Gxx (Z_:) — Gyy (Zﬁ) zz (%)2




The quantity ct has the dimension of length and t has the dimension of time . Consequently % has

. . ., dxto, . . . .
the dimension of speed like d—i; i running over the spatial components. Thus in relations (1), (2) etc we
have to use ct for t keeping T undisturbed.

We use the following Transformations:
(5.1)dT = /gy dt

(5.2) dX = \[gxrdx

(5.3)dY = [g,,dy

(5.4)dZ = \[g,,dz

The metric GR metric now has the form of that of Minkowski space

(6) c?2dt? = d(cT)? — dX? — dY? — dZ?

Now we may apply the work energy theorem to derive the formula for Kinetic energy in the curved
space time context[using the same method as applied for Special relativity] since the metric
represented by (6) has the form of the flat space time metric

(7.1) AWyrapsnon grav = ‘Z—i dX*[Minkowski form of metric is used]

dx’ duxt dtdx! _ dxt

ci — — ax _ o, dtax _ . ax
Three momentum component: p* = m—— = mgy — = Mo _——~ = Mo —-

m:relativistic mass;mg: rest mass

Three force in _Fi_dPi_m d( dxi)_m d(dtdxi)_m d(dxi)_m d(dxi)dr_
T E G T Mo Y ) T Mo \Grar) T Mo \ar ) T Mo \ae Jae =

dzxt . .
% d; ;i=1,2,3[spatial components]

. at . . . R
[Remembering ,y = —, using Special relativity concepts; m:relativistic mass;mg:rest mass]
i dxt dxtdt dxt dxt
Four momentum component: p't = myg—=my——=myYy—=m—
at dt dt dt dt

apt d (dxt
Four Force:— =my—|——
dt dr \dt

2,0
) =me Tl = 01,2,3;]
The Metric and Energy Considerations

We start with the metric:

c?dr? = d(ct)? — dx? — dy? — dz*



2 2 2 2
(%) - @ -@) - (@)

Differentiating the above with respect to proper time 7, we obtain:

,dtd*t dxd’x dyd’y dzd®z  ,dtd’t dtd’x dtd’y dtd’z

= rde? drdi? drde? drdr S @de drde? Tdrde? | dede?
d’t d?x d?y d?z

72)P—=—4+—+4+—
(7.2)e dt? dT2+dT2+dT2
We have,
dE_d( 2) = 2d(dt)_ Zd(dt)dr_ 21d2t
dt _de ere ) =M g \ar) T ar\ad) ar T ™ Y a2
dE 2 1d%t dE 2 d%t dE 2 d%t
E_ oC ]_/F r,yE—moc For,d——mo F
dE d?t
(S)E—moczﬁ

Defining Work for General Relativity

Let us consider the four dot product[invariant]

azxt i dxPaxv i . . . .
(9)gii (d—; + ‘By%d—xr) dx' = INV, i running over spatial and time components

Four dot product is independent of the choice of reference frames and transformations between them.
d2xt i dxP
a T Upy o
transformation so long as the determinant of the Jacobian is not zero. Same is true of the tensor

(dt.dx, dy, dz) is independent of the choice of transformation that takes us to a different frame of

reference frame so long as the non singularity of the transformation matrix is maintained.

. dx¥ . . .
Four acceleration!! ?transforms like a tensor irrespective of the nature of

For any instant during the motion of particle we transform to a frame where the spatial components of
four velocity are momentarily zero;[for different instants we may choose different transformations]

According to our choice

dx _dy _dz _

(lo)dr_dr_dr_o
d2xt

[But 2.z Mmay not be zero |

We have from equation (9),



d?xt dx?f dx¥

2 By
dr dr dr 4—dot product:arbitrary frame

d2(ct) d(ct)\?
It <F+ Fttt( ) )

dt
d?z ]
rest fraqme of particle

o

2

- gxxﬁdz

[ i on the left side running over space and time coordinates]

We set out to calculate the right side dropping the long suffix

d°x
d(ct) — gxxﬁdx

d?y
— Gyy de

d*(ct) . (d(ct) 2 d?x d?y d?z
(10.1) g4t Iz | I d(ct) — gxxﬁdx — gyyﬁdy — gxxﬁdz = 4dot product
d?(ct) re (4 2\ d(ct) ” d%x dx . d%y dy . d%zdz
e\ "2 \ "dr dt Yo qezae "I azar T 9 azae

d?(ct)

=Gt (W 1ﬂttt <

= INV[4dot product]

d(ct)
drt

d(ct)
dt

d?(ct)

dt = g (—

drt?

))

The above invariant quantity calculated in any frame of reference will apply to a

Fttt <

d(ct)

dr

2
> )d(ct)

Il other frames. Our

strategy would be to calculate the four dot product in a frame where the particle is momentarily at rest .

The result will hold for all other frames.

For a particle momentarily at rest[) % = % = % = 0] the stated invariant quantity[four dot product] is
equal to
d*(ct) ., (d(ct) \d(ct) d?(ct) ., (d(ct) 2
gz P\ "qr ) JTar ¥ =9\ gz t e\ Ty ) 4D
d?(ct) d(ct) d(ct) d?(ct) d(ct) . (d(ct)

T

2
Gt < ) ) = gt (
d(ct)
(11)gee (1 «

2
3
5—) + Ity (M) ) dt = INV[four dot product]
as observed from (10) and (10.1)

_ 7 t _~ 7 77
dt? r “( dt dt dt? drt r tt(

dt
dt dt

Again from the metric we have:

dt

3
) >dT=1NV

) det\? dx\? dy 2 dz\*
=0u(G) ~om(G) ~9 (&) ~9(5)
For a particle momentarily at rest: % = % = % = 0. The above metric gives us



d(ct))z

2
(12.1)c? = g, (2

Applying (12.1) on (11)
1d [c? d(ct)\? 1 d[c? d(ct)\?
et B t [z, 2 t
Yt <2 dt (gtt> T “( dt ) )dT (2 et g (gtt>+gttr “( dt ) )dT

(L d (< + Tt d(ct) dt = INV
= thtd_[ Jee €™l et dr T=

Now in orthogonal coordinates we have :

Fttt: 1 09
29:: 0(ct)
L 00 o Ofor time dependent metrics
29 9(ct)
Therefore
1d (e, (d(ct))3 Y N 0 W (d(“)f d
et 2dt \ gst ®\ dr t= thth it el e dr '
Y O (0 W (GO ) PP
= thtd‘[ et c tt dr 1=
Therefore,

c? d 19 d(ct c? d c? dgy d(ct
gtt_l_ it c2 ( )) dr = (_ et Gee d( ))

2g¢ dt 2gse Oct dt 2ge dt 2gse Oct  dt

Four Dot product: (—
Now,

dgie _ 09 d(ct) agttd_x_l_agttd_y_l_agtt%
dr  0d(ct) dr dx dt Jdy dt 0z drt

d d d . , .
But d—: = d—f = d—: = 0 according to our scheme[metric may or may not be time dependent]

We have

dgie _ 09 d(ct)
dt 0d(ct) drt

and consequently

c? d 2 9gd(ct
_ gtt+ c® 0gy d(ct) dt =0
2g dt  2g Oct dt

The concerned four dot product

d2x! : dxP dxY .
gilge T e grar )X =0



[i = 0,1,2,3 indexing time and spatial components]

The result is true in presence of gravity alone or in presence of gravity along with other agents[non
gravity agents] irrespective of time independence or time dependence of the metric

dzx! . dxBaxy d2(ct) dxB dxY
(122)AW = g;; (53 + Mgy 5= o) dx! = gy (S + My o) d(ct); on the left side i = 1,2,3;

here i runs only over spatial components[General relation valid for time dependent or time independent
cases].Absolute values of metric coefficients have been considered in the above.

IsThe above equation is true for an arbitrary reference frame as well as for a metric which may be a
time dependent or a time independent one . Proper speed components in an arbitrary frame of
reference , generally speaking, are not zero when non gravity agents are in action.

dxP dxY

In presence of gravity anne + Flﬂy e = 0 for each 'i’. Therefore, AW = 0 when gravity is

acting alone. We must keep in mmd that four force is different from three force in that four acceleration
is quite different from what we understand by three acceleration in the usual sense: an apple dropping
radially has four acceleration component exactly zero but three acceleration=9.8m/s?

when it is close to the earth’s surface.

2 B dxY
Calculating the Exact differentials g, (d ) t, 4X X ) et (d ¢ 4 ort,, KLdx

dr? BY “ar d‘r dt dr? & gt dr
dct dy t dctdz t (dct t dx t dy t dz t dxay
2rt, —== 42T +T r — r — r — 2T _——
arar T tZ gr ar ttar + xX \dt + wle) Thz\g + arar T
21—,[: dy dZ t %d_x
YZ 4t dr ZX gt dt

What you have on the right side of the equation above is for frames where the proper speed
components [spatial ones ] are not zero

Now some results ! for orthogonal systems,

a _Qn; .ra _ 1 09aa.ra _ 1 094aa 1 dgpp
.=0ifa#b#cT “a_ZQaaW'F ab = 5= wofora # bl = — 700 xd —for a #
L . 1 9
b;andI't;,, = 0 for time independent metrics whent # b.I'?;, = > ai“;and for Fora=t, I't;, =
a
1 0gu
tht at

In general involving, independent metrics

d? (ct) de dx?

d?(ct dct\? d(ct) dx d(ct) d
=gn< ( ) 2Ftu(—) ort (ct) . d(ct)ydy
tx

dr2 dr dr a7 Y Tar a4t

+ zrttzdilc )ZZ> d(ct)



d?(ct) dxP dxy) d(ct) d*(ct) | 1 0get (dct)z 1 dgyd(ct) dx
(13)gt ( +I BY ar “ar dr dr = ‘gtt( dt? Jee Oct \dt +gtt dx dt drt
1 9geed(ct)dy | 1 dge d(ct) dz) d(ct) dr

Jdee 0y dt dt Eaz dr dr) drt

dt2 d(ct) g 0t \dt/)  gq Ox dt dt

_ d?(ct) dr 1 09+t (dct) 1 dgyrdx 1 0gee dy 1 09 dz <d(ct))2
- Jee 0x dT | gy Oy dt | gy 0z dt

4 (e ,
_ 1 dt ( dt ) L1 1 09 (dct)_l_aln(gtt) dx+6ln(gtt) dy
~ G \z dt \d(ct)) g, ot \dt ox dr ' 9y dt

dIn(ge,) dz (d(ct))z
+ 0z drt dt de

din oln(gery dt |, 9In(geeydx | dln d dln d
To note that (ge) _ 9In( t dt ¢ tn dx (Gee) Ay (gee) dz

dr at dt dx dt dy drt dz dt
d(d(ct))z , ,
_ dt dt din(ge) (d(Ct)>
(149 AW = g 2 dr (d(ct)) * dr dr dr

The above is valid in a general manner irrespective of time dependence or time independence of the
metric

d(ct)\2

d?(ct) ¢ dxPax¥yat . 1 d(w) dr \? | din(ger) | (d(ct))?
(14 1) AW = gtt( +T By dr dt ) dt dr = Gee (2 dt (d(ct)) + dt ( dt ) dr
Let us go back to the metric for a moment

. det\?
C™ = Gt (E) — Gxx

dx\? dy dz
@) ~9n(3) ~92(3)

Using (5.1) to (5.4)

dct\? 5
my2c gtt(dr) = my2c* + ¢?p?

Where ﬁz = YGxx (%)2 + 9yy (%)2 t 92z (Zi)
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[above is the dot product between p and p: norm squared in the curved space time context; ¥ =

(dx dy dz)
dt’dt’dr

But my?c* + ¢?p? = E?:Relaivistic expression for Energy
det\? dcT\*
2 _ o 2 2 _ 0 2.2 (250
B = my’cgu(g7) = B =mo’e? ()
dct dcT d?cT
E= moc,/gttﬁ = mocF =F = mocF
dcT\ 2 E2
1) () =nea
[for unit rest mass my = lunit]
We re write (14.1) [Time independent metrics]
d d(ct) X
AW = d?ct Lt dxP dx¥ dctd 1 dt ( dt ) N din(gep <d(cT)
9\ ez T B T Tar Jar T \2 dr  \d(ct) dt

Since gyt (dCt) = (%)Z[USing (5.1)
2
d2ct dxP dxV\ dt 15 (3) | far\2 | a
o = g (52 4 1y 2220 2~ (sl g,
Important to note:

dge _ 09Ge d(Cf)f
dt 6(ct) dr

In(ger) (ﬂ
dt dt

dr/

2
) dt [since dT =

or the special form where proper speed components[spatial] are zero

dcT\*
AW = 1 d(dr) (dr)z 1 dge (dcT)2<dr)2
"\ 29 dr \det) 2g,7% dr \dr/) \dct
Work done per unit rest mass
dcT\?
AW = 1 d(d‘r) (dr )2 1 dgtt<dcT)2<dT )2 N
|\ 2g, dr der) 91t 75 gt dt \dr /) \dcT Yrt

[From the second last step to the last one we have replaced dt by

—dTln

N

dln dcT\?
(gtt) (L) dr
dt

dt

dt dt

]

din(gyr) (dﬂ)z

2
)dr

Jeedt]

T
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dcTy?
AW = 1d(w) (dr )2 1 dgtt_l_dln(gtt) (dcT)Zd
(27 ac \der) " 2g, dr dt ar ) “*
dcT? 5 2
AW = ld(ﬁ) 1 dgy (dCT) | dn(gey (dcT) i
2 dr 2gs dt \drt dt dt

Applying (15) on the above,

1 1 d(E? 1 d E? dln E?
aw == _ ( )_ It — (gtt) __ dr
Z(CZmO ) dt 2g¢ dTt my?c dt mgy“c

1 1 d(E*» 1dn E? dln E?
AW = (= _ ( )__ (gtt) — (gtt) _ d
Z(szo ) dt 2 dt my?c dt  my?c

1 1 d(E? 1dln E?
AW = (= _ (E%) 1 (gtt) . dr
2 (C2m0 ) dT 2 dT C2m0
Therefore,

2dW  1d(E?) 1 ,dW dE 1

c?my Ez2 ~ 2 E2 + Edlngtt = c?my 2 F + Edlngtt
2 AW 1 2dW 1 dIn(gy,
= c?mq w7 = dInE + Edlngtt = c?myg 7= din(mgyc?) + Edlngtt % ) dt

,  2AW ) 1
= cmy 7 = d(inmyc?) + diny| +Edlngtt

,  2AW 1
= c*“my = diny + Edlngtt

A . . .
(16)c? ‘gt;_—zw =d [lny + % lngtt] ;Unit rest mass being considered.
Relation (16) is valid irrespective of the time dependence or time independence of the metric.
For geodesics AW = 0 since the four acceleration components involved in our definition of AW are zero.

5 Jee AW 1 1 1
17)c = d [lny + Elngtt] =0=Iny+ Elngtt = Constant = Iny = Constant — Elngtt
In presence of gravity alone:
1
Iny = Constant — 5 Ingy:

The same relation holds for the time independent case.

The physical velocity depends only on g;;
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Itis getting uniquely determined by g;;Components may change preserving the spatial magnitude [so
long as gravity being the only agent in action]. If you push up a particle it will come down to the same
point with the same speed. A satellite always has the same speed at the same point of the orbit. Actually
the constant will be different for different motions[different initial conditions]. If | throw up a particle by
exerting a greater force, it will move upwards with a greater speed and come down to the same spatial
point[ Ing,, being independent of time since we are using time independent metrics] with the same
speed at which it passed up. A particle may have different speeds at the same point due to different
initial conditions brought about by nom gravity agents. Different initial conditions will change the value
of the constant in (17)

1
Iny = Constant(initial conditions) — Elngtt

B 2 gttdW

(18) f = (Inyg — Iny,) + % (Ingte.p — Ger.n)

The right side is a function of only the initial point (A) and the final point (B). It may be used to develop a
rigorous potential function in general relativity

Verifying with Classical limit [as a limiting case of Schwarzschild Geometry]:

B

g dW 1
f 22E = (Inyp — Iny,) + 2 (Ingte.p — INGee.n)
A

For geodesic motion dW = 0

1
= (Inyg — lny,y) + > (Ingee.p — INGeea) = 0

1 'UZ _1/2 172
l)y = == (1 - C—Z) ~1+ 202 [First order approximation: binomial series]
-z
wherey = L
v2
iz
Therefore,
v? v?
Iny =In [1 + ﬁ] =3 <C—2> :log series approximation, first order
Therefore,
1 2 2
(Inyg — Iny,) = 202 (vg* —v,°)
GM
2) Ingerp — INGerp = IN L2 = T 1y (1-Z)(1+5) =m(1+22 -2+
gtt:B gtt:A Gita 1_szcr1\: c2rg c2r, c?r,  c?rg

2GM 2GM

higherorderterms) ~ = >
C°Tyg c°rp

Therefore,
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Jdies  2GM  2GM 26M (1 1 . L .
Ingir.g —Inger.4a = In = - =——(———)'F|r rder roximation: | ri
9tt:B Jtt:a Gen — Era  Zra 2 \ry ; [First order approximation: log series
expansion]
Therefore,

1, , 0 GM/1 1
X

117
2 VA

2+ _rG = = % vp® + —_rGM[ valid result in the classical limit]
A B

Supplementary Material

From the invariance of the four dot product it follows that

dpt d?xt o dxPdx®\
o X =g gy g ) @

The same does not hold when i runs only over spatial indices

dpt d?xt o dxPdx®\
i dX' + gy _d‘l.'z +FBYF i dx' (2)

Metric
c2dt? = gy d(ct)® — gurdx? — gy, dy* — g,,dz* (3)

Using the transformations(5.1) to (5.4) in the original paper we obtain an equivalent metric Lorentzian in
form

Transformations:

dT = \[gecdt

(5.2) dX =/ gyrdx

(5.3) dY = /gy, dy
(5.4)dZ = ,/g,,dz

Equivalent metric:

c?dt? = d(cT)? —dX? —dY? —dZ? (4)

() (@) -G - () oo

Differentiating with respect to proper time
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d(cT)d?(cT) _dXd*X ) dy d?y ) dzZ d*Z
dr dt? dt dt? dt dt? dt dt?

dx dZX dy d?y Lz dZd*Z _ d*(cT)d(cT)

dr dTZ drdt? ' drdt?  di? dr

dxP dx®

dapt _ d?xt i i
Four dot productEdX 0=g; ( sy )d =0

Nevertheless an alternative mechanism has been provided in the original paper to show

d?xt i dxP dx“ dxi= 0
i\ 72 Brar ar ) T

to corroborate the overall effectiveness of the transformed metric.

Work for unit rest mass:

aw =Pyt = Xy Yy s S 4y LD oy = gy
dt = dt? dr? dt2 " dt? dr
aw =% ldX‘—dPTdT 5
a7 X =g )

[In the above 'i’ is the spatial index. T refers to time with the transformed metric: no summation on T]

daprT d /dT d [/ gedt 1 dg.dt
——dT = (d )dT dT( - > GeedT = [Jgt +———L | [g.dt

drt dr 2 / dT drt
dPT d?t 1 dg dt

dt drz 29: dt dt

We digress for calculating the Lorentz factor in General Relativity

c2dt? = c? gy dt? — gy dx?® — gy, dy* — g,,dz*

(dr)z _ 1 guxdx? + dy? + g,,dz?
atc) ~ 9T 2 dt?

1 (@)2 _ 1 _ L guxdx® +dy? + gppdz?
Jee \dt c? Jredt?

o
Jeedt c?
_ Guxdx® + dy? + g,,d2*

V. h =
P (Jgerdt)?
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() -1
dT c?
dT 1 )
th I
dt _ vp;h
2
Again
(dr)z 3 1 Guxdx? +dy? + g,,dz?
dat) Gt 2 It Jo dt?
(dr)z 3 . 1 guxdx? + dy? + g,,dz?
de) ~ 9t c? Jerdt?
dr\? Vpn?
(E> = Ju (1= c?
Again

dt

1 1 L _—
Yy=—= = — ]/ph .
dt v Gt ’1_vph2 Gt
C2

Using work energy theorem we obtain by usual process the formula for kinetic energy. Since the
converted/transformed metric is of Minkowski form we simply repeat the procedure for Special
Relativity

KE=mc? — moc? = moypnc? — myc?

Work done =mgy’pnc? — moypnc?
Differential amount of work for unit mass

dpT 5
dW = FdT = c*dypn(t, x,,2)

dW = yph3vphdvph
Again

dpP”

?dT = gtt[

e dxﬁdx“_l_ldlngttdt it (8
By dr dr "2 dr dr (8)

Using from the original paper,

1
d [lnyph + Elngtt] =0 (9)

for geodesic motion, we obtain
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_rt dxﬁdx“_dlnyphﬁ it
By dr dr dt dt

?dT = gtt[

apT dxP dx® 1d
B [ xP dx - (Uph)]/ it

_rt - - _
Uy dr dr 'Ph 2 gr

dxP dx® 1 dw

dpP"
—Tt — -
BY ar dr Ypnc? dt

FdT = gtt[

yldt

P Law dxP dx®
gttyphcz L G

dt

dxP dx®

W= e, S0 L0 o
ava

B a
[—gttl"tﬁy %%dt]:Work done by Gravity: Christoffel Symbols are directly involved

1 1 Scale fact dt

= .ocale jactor:y = —
1 dt 1, dr
tazvag 1+ay

The scale factor is approximately unity for n on relativistic motion.

i .
dW # 0 for geodesic motion when the definition of work is taken as dW :CZ—P; dX', | being the spatial
index.

Classically and in Special Relativity work done is either change in Kinetic energy or change of potential
energy when conservative forces are in action

AW = A(Kinetic energy)
For conservative forces: KE+PE=constant
AKE + APE =0
In the General Relativity scenario: AW = 0in presence of gravity alone [geodesics]when

d?xt . dxPdx®\ | o
AW = g;; dZ + T, ar dr )it spatial index

But
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AW = 0
when AW is defined by
i

dt

AW = dX%; i spatial index

On Physical Speed:

Referring to the metric:
c?dr? = g d(ct)? — guxdx? — gyydy? — g,,dz*
and the subsequent metric of flay space time orm as obtained by transformations 95.1) to (5.4) we have
c?dr? = d(cT)? — dX? — dY? — dZ?
c?dr? = d(cT)? — dL?
dL? = dX? —dy? — dz?
dL Spatial separation
For null paths
dt=0
We have,
0 = c2dT? — dI?
For null geodesics we have

dL
ar ¢

This formulation does not upset the speed barrier in that the metric is of Minkowski form.

Conclusion

Our definition of work is hinged on the invariance of dot product. In the weak field limit It reduces to the
classical result of energy conservation. Schwarzschild Geometry in the weak field limit has been used
for the verification. Our definition of work also coincides with that in Special Relativity in the limit of
zero curvature with the disappearance of curvature in the flat space limit. The definition is an
extrapolation of what we understand by work in Special Relativity.
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