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Abstract 

The article seeks to define and analyze work in the context of General Relativity. The definition of work 
in General Relativity as considered with this article is an extrapolation of what we have in Special 
Relativity.This definition as brought out in this paper takes into account the involvement of the 
curvature effects into  the definition of work. The paper also considers the weak field limit of work in 
relation to Schwarzschild’s Geometry. In the classical limit of weak space time curvature our definition 
produces the classical energy conservation formula: the sum of  potential and kinetic energy as defined 
classically is conserved when Schwarzschild geometry is treated in the weak field limit with our 
definition of work. 
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Introduction 

Work as defined in Special relativity may be extrapolated into the realm of General Relativity taking into 
account the effect of the metric coefficients characterizing the General Relativity metric. The basic tool 
used is the invariance of the four dot product. In the classical limit of weak space time curvature our 
definition produces the classical energy conservation formula: the sum of  potential and kinetic energy 
as defined classically is conserved when Schwarzschild geometry is treated in the weak field limit woth 
our definition of work. 

 Rudimentary Notions 

The definition of four velocity is identical in Special and in General Relativity. But the definition  of four 
acceleration is different. Curvature effects are involved in acceleration and hence in the concept of work 
in General relativity. 

 We first consider the differential relation 

𝑑𝑥̅𝜇 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼  

The above relation is a general mathematical statement for the transformation of rank one tensors. 

Dividing both sides by invariant proper time interval we have,  
𝑑𝑥̅𝜇

𝑑𝜏
=
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼

𝑑𝜏
⇒ 𝑣̅𝜇 =

𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑣𝛼 
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The same definition for four velocity is used for flat space time and curved space time since the above 
relation represents a tensor transformation in any situation 

Differentiating 
𝑑𝑥̅𝜇

𝑑𝜏
=
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼

𝑑𝜏
 with respect to proper time 𝜏 we have:

𝑑2𝑥̅𝜇

𝑑𝜏2
=
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑑2𝑥̅𝛼

𝑑𝜏2
+

𝑑

𝑑𝜏
(
𝜕𝑥̅𝜇

𝜕𝑥𝛼
)
𝑑𝑥𝛼

𝑑𝜏
 

 
𝑑2𝑥̅𝜇

𝑑𝜏2
does not behave as a rank one tensor unless 

𝜕𝑥̅𝜇

𝜕𝑥𝛼
 is a constant in which case 

𝑑

𝑑𝜏
(
𝜕𝑥̅𝜇

𝜕𝑥𝛼
)
𝑑𝑥𝛼

𝑑𝜏
= 0 

[Example: Lorentz  Transformations: 
𝜕𝑥̅𝜇

𝜕𝑥𝛼
 are constants] If 

𝜕𝑥̅𝜇

𝜕𝑥𝛼
=constant,

𝑑

𝑑𝜏
(
𝜕𝑥̅𝜇

𝜕𝑥𝛼
)being zero we do have 

a tensor transformation given by the equations :
𝑑2𝑥̅𝜇

𝑑𝜏2
=
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝑑2𝑥̅𝜇

𝑑𝜏2
 

The quantity 
𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
=
𝐷2𝑥𝛼

𝐷𝜏2
 is defined as four acceleration which behaves as a tensor . 

Thus Four acceleration [1]is defined by: 

(1)    
𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
=
𝐷2𝑥𝛼

𝐷𝜏2
 

It is important to take note of the fact that four acceleration=0 does not mean that four velocity,
𝑑𝑥𝛼

𝑑𝜏
, is 

constant as we have in Special Relativity. Rather four acceleration=0 implies 

Or, 

𝑑2𝑥𝛼

𝑑𝜏2
= −Γ𝛼𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

Proper velocity components 
𝑑𝑥𝛼

𝑑𝜏
≠ 𝑐onstant when four acceleration is zero. 

When we see an apple falling from a tree its radial component of  four acceleration is exactly zero----

quite different from what we observe:9.8m/s2.The quantity 
𝑑2𝑥𝛼

𝑑𝜏2
(=

𝑑2𝑟

𝑑𝜏2
) in the geodesic equation  

𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
= 0 ,relates to 9.8m/s2 in the weak space time context when physical and 

coordinate values are identical [approximately identical as for weak space time]: 
𝑑2𝑥𝛼

𝑑𝜏2
(=

𝑑2𝑟

𝑑𝜏2
) is the 

quantity we measure for acceleration  when we observe an apple falling from  a tree. The important 
point to appreciate is that gravity[space time curvature effects] causes acceleration that we 

measure[Example: 
𝑑2𝑥𝛼

𝑑𝜏2
(=

𝑑2𝑟

𝑑𝜏2
) for a falling apple]. For physical separations inj the strict sense of strong 

curvature, we have to use 𝑑𝑥𝛼𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = 𝑔𝛼𝛼𝑑𝑥
𝛼  [no summation on 𝛼: relations (5.1) to (5.4) coming 

up subsequently have to be considered] 

If the earth were a million times denser the radial component of a freely falling object would be exactly  
zero, the value of ‘g’ the acceleration due to  becoming enormously large. 

Work In General Relativity 

Considering curvature effects we define Work ,  as 

∆𝑊 (𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠) = 𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖,𝑖 running over spatial components. 
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We have used ∆𝑊 instead of 𝑑𝑊 since  we do not know whether the right side is a perfect differential. 

For gravity acting alone,
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
= 0.Four acceleration in presence of gravity alone is zero 

though it causes measurable amount of three  acceleration as observed in the free fall of a body. Then 
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
≠ 0 implies the involvement of non gravity agents .For non geodesic paths we may 

write: 

Then 
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
= 𝑓 ≠ 0, or 

𝑑2𝑥𝑖

𝑑𝜏2
= −Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
+ 𝑓, interpreting  −Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 as 

acceleration due to gravity [accelerating due to space time Geometry effects]and 𝑓 as acceleration due 
to non gravity agents. If gravity is turned off the path [world line on the manifold]itself changes resulting 

in a geodesic. In presenceof gravity alone 
𝑑2𝑥𝑖

𝑑𝜏2
 and Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 cancel out. Hence net work done is zero. 

but classical work should be in consideration of either 
𝑑2𝑥𝑖

𝑑𝜏2
 or Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
. It is not expected to be zero. 

Rather it should be in conformity with the work energy theorem 

Since 
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
≠ 0 in presence of non gravitational agents we may define 

(3) ∆𝑊 = 𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛼𝛽

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖[𝑖 running over 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 components].If four acceleration is not 

zero, ). In presence of gravity alone ∆𝑊 will be zero In presence of non gravity agents 𝑊𝑛𝑜𝑛_𝐺𝑟𝑎𝑣 will be 

represented by a non zero value.  

Special Relativity Perspectives 

The work energy theorem is an accepted idea in Special Relativity. It is used to deduce the kinetic 
energy[2] formula in Special relativity: 

KE=𝑚0𝑐
2 (

1

√1−𝑣2/𝑐2
− 1) = 𝑚𝑐2 −𝑚0𝑐

2 

Change in KE= 𝑚0𝑐
2(𝛾𝑓𝑖𝑛𝑎𝑙 − 𝛾𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

 

GR metric: 

(4)  𝑐2𝑑𝜏2 = 𝑔𝑡𝑡𝑑(𝑐𝑡)
2 − 𝑔𝑥𝑥𝑑𝑥

2 − 𝑔𝑦𝑦𝑑𝑦
2 − 𝑔𝑧𝑧𝑑𝑧

2 

(4.1)𝑐2 = 𝑔𝑡𝑡 (
𝑑(𝑐𝑡)

𝑑𝜏
)
2
− 𝑔𝑥𝑥 (

𝑑𝑥

𝑑𝜏
)
2
− 𝑔𝑦𝑦 (

𝑑𝑦

𝑑𝜏
)
2
− 𝑔𝑧𝑧 (

𝑑𝑧

𝑑𝜏
)
2

 

To apply the same in General Relativity we have to modify the General Relativity  metric by suitable 

transformations to obtain the flat space form of metric. This will enable us apply Special relativity 

formulas  in the general relativity context, using the transformed metric 
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The quantity 𝑐𝑡 has the dimension of length and 𝜏 has the dimension of time . Consequently  
𝑑(𝑐𝑡)

𝑑𝜏
 has 

the dimension of speed like 
𝑑𝑥𝑖

𝑑𝜏
; 𝑖 running over the spatial components. Thus in relations (1), (2) etc we 

have to use 𝑐𝑡 for 𝑡 keeping 𝜏 undisturbed. 

We use the following Transformations: 

(5.1)𝑑𝑇 = √𝑔𝑡𝑡𝑑𝑡     

(5.2) 𝑑𝑋 = √𝑔𝑥𝑥𝑑𝑥 

(5.3) 𝑑𝑌 = √𝑔𝑦𝑦𝑑𝑦 

(5.4) 𝑑𝑍 = √𝑔𝑧𝑧𝑑𝑧 

The metric GR metric now has the form of that of Minkowski space 

(6) 𝑐2𝑑𝜏2 = 𝑑(𝑐𝑇)2 − 𝑑𝑋2 − 𝑑𝑌2 − 𝑑𝑍2 

 

(7.1) ∆𝑊𝑔𝑟𝑎𝑣+𝑛𝑜𝑛 𝑔𝑟𝑎𝑣 =
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖[Minkowski form of metric is used] 

Three momentum component: 𝑝𝑖 = 𝑚
𝑑𝑥𝑖

𝑑𝑡
= 𝑚0𝛾

𝑑𝑥𝑖

𝑑𝑡
= 𝑚0

𝑑𝑡

𝑑𝜏

𝑑𝑥𝑖

𝑑𝑡
= 𝑚0

𝑑𝑥𝑖

𝑑𝜏
 

𝑚:relativistic mass;𝑚0: rest mass 

Three force in :𝐹𝑖 =
𝑑𝑃𝑖

𝑑𝑡
= 𝑚0

𝑑

𝑑𝑡
(𝛾

𝑑𝑥𝑖

𝑑𝑡
) = 𝑚0

𝑑

𝑑𝑡
(
𝑑𝑡

𝑑𝜏

𝑑𝑥𝑖

𝑑𝑡
) = 𝑚0

𝑑

𝑑𝑡
(
𝑑𝑥𝑖

𝑑𝜏
) = 𝑚0

𝑑

𝑑𝜏
(
𝑑𝑥𝑖

𝑑𝜏
)
𝑑𝜏

𝑑𝑡
=

𝑚0

𝛾

𝑑2𝑥𝑖

𝑑𝜏2
;i=1,2,3[spatial components] 

 [Remembering , 𝛾 =
𝑑𝑡

𝑑𝜏
, using Special relativity concepts; 𝑚:relativistic mass;𝑚0:rest mass] 

Four momentum component: 𝑝𝑖 = 𝑚0
𝑑𝑥𝑖

𝑑𝜏
= 𝑚0

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝑚0𝛾

𝑑𝑥𝑖

𝑑𝑡
= 𝑚

𝑑𝑥𝑖

𝑑𝑡
 

Four Force: 
𝑑𝑃𝑖

𝑑𝜏
= 𝑚0

𝑑

𝑑𝜏
(
𝑑𝑥𝑖

𝑑𝜏
) = 𝑚0

𝑑2𝑥𝑖

𝑑𝜏2
;[𝑖 = 0,1,2,3; ] 

The Metric and Energy Considerations 

We start with the metric: 

𝑐2𝑑𝜏2 = 𝑑(𝑐𝑡)2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 

Now we may apply the work energy theorem to derive the formula for Kinetic energy in the curved 

space time context[using the same method as applied for Special relativity] since the metric 

represented by (6) has the form of the  flat space time metric 
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𝑐2 = (
𝑑(𝑐𝑡)

𝑑𝜏
)
2

− (
𝑑𝑥

𝑑𝜏
)
2

− (
𝑑𝑦

𝑑𝜏
)
2

− (
𝑑𝑦

𝑑𝜏
)
2

 

Differentiating the above with respect to proper time 𝜏 , we obtain: 

0 = 𝑐2
𝑑𝑡

𝑑𝜏

𝑑2𝑡

𝑑𝜏2
−
𝑑𝑥

𝑑𝜏

𝑑2𝑥

𝑑𝜏2
−
𝑑𝑦

𝑑𝜏

𝑑2𝑦

𝑑𝜏2
−
𝑑𝑧

𝑑𝜏

𝑑2𝑧

𝑑𝜏2
⇒ 𝑐2

𝑑𝑡

𝑑𝜏

𝑑2𝑡

𝑑𝜏2
=
𝑑𝑡

𝑑𝜏

𝑑2𝑥

𝑑𝜏2
+
𝑑𝑡

𝑑𝜏

𝑑2𝑦

𝑑𝜏2
+
𝑑𝑡

𝑑𝜏

𝑑2𝑧

𝑑𝜏2
 

(7.2)𝑐2
𝑑2𝑡

𝑑𝜏2
=
𝑑2𝑥

𝑑𝜏2
+
𝑑2𝑦

𝑑𝜏2
+
𝑑2𝑧

𝑑𝜏2
 

We have, 

𝑑𝐸

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑚0𝛾𝑐

2) = 𝑚0𝑐
2
𝑑

𝑑𝑡
(
𝑑𝑡

𝑑𝜏
) = 𝑚0𝑐

2
𝑑

𝑑𝜏
(
𝑑𝑡

𝑑𝜏
)
𝑑𝜏

𝑑𝑡
= 𝑚0𝑐

2
1

𝛾

𝑑2𝑡

𝑑𝜏2
 

𝑑𝐸

𝑑𝑡
= 𝑚0𝑐

2 1

𝛾

𝑑2𝑡

𝑑𝜏2
 or,𝛾

𝑑𝐸

𝑑𝑡
= 𝑚0𝑐

2 𝑑
2𝑡

𝑑𝜏2
or,

𝑑𝐸

𝑑𝜏
= 𝑚0𝑐

2 𝑑
2𝑡

𝑑𝜏2
 

(8)
𝑑𝐸

𝑑𝜏
= 𝑚0𝑐

2
𝑑2𝑡

𝑑𝜏2
 

Defining Work for General Relativity 

Let us consider the four dot product[invariant] 

(9)𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)𝑑𝑥𝑖 = 𝐼𝑁𝑉, i running over spatial and time components 

Four dot product is independent of the choice of reference frames and transformations between them. 

Four acceleration[]   
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
transforms like a tensor irrespective of the nature of 

transformation so long as the determinant of the Jacobian is not zero. Same is true of the tensor  
(𝑑𝑡. 𝑑𝑥, 𝑑𝑦, 𝑑𝑧) is independent of the choice of transformation that takes us to a different frame of 
reference frame so long as the non singularity of the transformation matrix is maintained. 

For any instant during the motion of particle we transform to a frame where the spatial components of 
four velocity are momentarily zero;[for different instants we may choose different transformations] 

According to our choice 

(10) 
𝑑𝑥

𝑑𝜏
=
𝑑𝑦

𝑑𝜏
=
𝑑𝑧

𝑑𝜏
= 0 

[But 
𝑑2𝑥𝑖

𝑑𝜏2
 may not be zero ] 

We have from equation (9), 
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[𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)𝑑𝑥𝑖]

4−𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡:𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑓𝑟𝑎𝑚𝑒

= [𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)𝑑(𝑐𝑡) − 𝑔𝑥𝑥
𝑑2𝑥

𝑑𝜏2
𝑑𝑥 − 𝑔𝑦𝑦

𝑑2𝑦

𝑑𝜏2
𝑑𝑦

− 𝑔𝑥𝑥
𝑑2𝑧

𝑑𝜏2
𝑑𝑧]

𝑟𝑒𝑠𝑡 𝑓𝑟𝑎𝑞𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

 

[  𝑖 on the left side running over space and time coordinates] 

We set out to calculate the right side dropping the long suffix 

(10.1)𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)𝑑(𝑐𝑡) − 𝑔𝑥𝑥
𝑑2𝑥

𝑑𝜏2
𝑑𝑥 − 𝑔𝑦𝑦

𝑑2𝑦

𝑑𝜏2
𝑑𝑦 − 𝑔𝑥𝑥

𝑑2𝑧

𝑑𝜏2
𝑑𝑧 = 4𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)
𝑑(𝑐𝑡)

𝑑𝑡
𝑑𝑡 − [𝑔𝑥𝑥

𝑑2𝑥

𝑑𝜏2
𝑑𝑥

𝑑𝑡
+ 𝑔𝑦𝑦

𝑑2𝑦

𝑑𝜏2
𝑑𝑦

𝑑𝑡
+ 𝑔𝑦𝑦

𝑑2𝑧

𝑑𝜏2
𝑑𝑧

𝑑𝑡
] 𝑑𝑡

= 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)
𝑑(𝑐𝑡)

𝑑𝑡
𝑑𝑡 = 𝑔𝑡𝑡 (

𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)𝑑(𝑐𝑡)

= 𝐼𝑁𝑉[4𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 

The above invariant quantity calculated in any frame of reference will apply to all other frames. Our 
strategy would be to calculate the four dot product in a frame where the particle is momentarily at rest .  
The result will hold for all other frames. 

For a particle momentarily at rest[) 
𝑑𝑥

𝑑𝜏
=
𝑑𝑦

𝑑𝜏
=
𝑑𝑧

𝑑𝜏
= 0] the stated invariant quantity[four dot product] is 

equal to 

𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)
𝑑(𝑐𝑡)

𝑑𝑡
𝑑𝑡 = 𝑔𝑡𝑡 (

𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)

2

)𝑑(𝑐𝑡) 

𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)
2

)
𝑑(𝑐𝑡)

𝑑𝜏
𝑑𝜏 = 𝑔𝑡𝑡 (

𝑑2(𝑐𝑡)

𝑑𝜏2
𝑑(𝑐𝑡)

𝑑𝜏
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)
3

)𝑑𝜏 = 𝐼𝑁𝑉 

(11)𝑔𝑡𝑡 (
1

2

𝑑(
𝑑(𝑐𝑡)

𝑑𝜏
)
2

𝑑𝜏
+ Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)
3
)𝑑𝜏 = 𝐼𝑁𝑉[𝑓𝑜𝑢𝑟 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 

as  observed from (10) and (10.1) 

Again from the metric we have: 

𝑐2 = 𝑔𝑡𝑡 (
𝑑𝑐𝑡

𝑑𝜏
)
2

− 𝑔𝑥𝑥 (
𝑑𝑥

𝑑𝜏
)
2

− 𝑔𝑦𝑦 (
𝑑𝑦

𝑑𝜏
)
2

− 𝑔𝑧𝑧 (
𝑑𝑧

𝑑𝜏
)
2

 

For a particle momentarily at rest: 
𝑑𝑥

𝑑𝜏
=
𝑑𝑦

𝑑𝜏
=
𝑑𝑧

𝑑𝜏
= 0 . The above metric gives us. 
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(12.1)𝑐2 = 𝑔𝑡𝑡 (
𝑑(𝑐𝑡)

𝑑𝜏
)
2

 

Applying (12.1) on (11) 

𝑔𝑡𝑡 (
1

2

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
) + Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)
3

)𝑑𝜏 = (
1

2
𝑔𝑡𝑡

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
)+ 𝑔𝑡𝑡Γ

𝑡
𝑡𝑡
(
𝑑(𝑐𝑡)

𝑑𝜏
)
3

)𝑑𝜏

= (
1

2
𝑔𝑡𝑡

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
) + 𝑐2Γ𝑡𝑡𝑡

𝑑(𝑐𝑡)

𝑑𝜏
)𝑑𝜏 = 𝐼𝑁𝑉 

Now in  orthogonal coordinates we have : 

Γ𝑡𝑡𝑡 =
1

2𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕(𝑐𝑡)

 

1

2𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕(𝑐𝑡)
≠ 0for time dependent metrics 

Therefore 

𝑔𝑡𝑡 (
1

2

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
) + Γ𝑡𝑡𝑡 (

𝑑(𝑐𝑡)

𝑑𝜏
)
3

)𝑑𝜏 = (
1

2
𝑔𝑡𝑡

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
)+ 𝑔𝑡𝑡Γ

𝑡
𝑡𝑡
(
𝑑(𝑐𝑡)

𝑑𝜏
)
3

)𝑑𝜏

= (
1

2
𝑔𝑡𝑡

𝑑

𝑑𝜏
(
𝑐2

𝑔𝑡𝑡
) + 𝑐2Γ𝑡𝑡𝑡

𝑑(𝑐𝑡)

𝑑𝜏
)𝑑𝜏 = 𝐼𝑁𝑉 

Therefore, 

Four Dot product: (−
𝑐2

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡

𝑑𝜏
+

1

2𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑐𝑡
𝑐2

𝑑(𝑐𝑡)

𝑑𝜏
) 𝑑𝜏 = (−

𝑐2

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡

𝑑𝜏
+

𝑐2

2𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑐𝑡

𝑑(𝑐𝑡)

𝑑𝜏
) 𝑑𝜏 

Now, 

𝑑𝑔𝑡𝑡
𝑑𝜏

=
𝜕𝑔𝑡𝑡
𝜕(𝑐𝑡)

𝑑(𝑐𝑡)

𝑑𝜏
+
𝜕𝑔𝑡𝑡
𝜕𝑥

𝑑𝑥

𝑑𝜏
+
𝜕𝑔𝑡𝑡
𝜕𝑦

𝑑𝑦

𝑑𝜏
+
𝜕𝑔𝑡𝑡
𝜕𝑧

𝑑𝑧

𝑑𝜏
 

But  
𝑑𝑥

𝑑𝜏
=
𝑑𝑦

𝑑𝜏
=
𝑑𝑧

𝑑𝜏
= 0 according to our scheme[metric may or may not be time dependent] 

We have  
𝑑𝑔𝑡𝑡
𝑑𝜏

=
𝜕𝑔𝑡𝑡
𝜕(𝑐𝑡)

𝑑(𝑐𝑡)

𝑑𝜏
 

and consequently 

(−
c2

2gtt

dgtt
dτ

+
c2

2gtt

∂gtt
∂ct

d(ct)

dτ
)dτ = 0 

The concerned four dot product 

gii (
d2xi

dτ2
+ Γiβγ

dxβ

dτ

dxγ

dτ
)dxi = 0 
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[i = 0,1,2,3 indexing time and  spatial components] 

The result is true in presence of gravity alone or in presence of gravity along with other agents[non 
gravity agents] irrespective of time independence or time dependence of the metric 

(12.2)∆W = gii (
d2xi

dτ2
+ Γiβγ

dxβ

dτ

dxγ

dτ
)dxi = gtt (

d2(ct)

dτ2
+ Γtβγ

dxβ

dτ

dxγ

dτ
)d(ct);  on the left side i = 1,2,3; 

here i runs only over spatial components[General relation valid for time dependent or time independent 
cases].Absolute values of metric coefficients have been considered in the above. 

lsThe  above equation is true for an arbitrary reference frame as well as for a metric which may be a 
time dependent or a time independent one  .  Proper speed components in an arbitrary frame of 
reference , generally speaking, are not zero when non gravity agents are in action. 

In presence  of gravity alone  
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
= 0 for each ′𝑖′. Therefore, ∆𝑊 = 0 when gravity is 

acting alone. We must keep in mind that four force is different from three force in that four acceleration 
is quite different from what we understand by three acceleration in the usual sense: an apple dropping 
radially has four acceleration component exactly zero but three acceleration=9.8m/s2 

 when it is close to the earth’s surface. 

Calculating the Exact differentials 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
) = 𝑔𝑡𝑡 (

𝑑2𝑐𝑡

𝑑𝜏2
+ 2Γ𝑡𝑡𝑥

𝑑𝑐𝑡

𝑑𝜏

𝑑𝑥

𝑑𝜏
+

2Γ𝑡𝑡𝑦
𝑑𝑐𝑡

𝑑𝜏

𝑑𝑦

𝑑𝜏
+ 2Γ𝑡𝑡𝑧

𝑑𝑐𝑡

𝑑𝜏

𝑑𝑧

𝑑𝜏
+ Γ𝑡𝑡𝑡 (

𝑑𝑐𝑡

𝑑𝜏
)
2
+ Γ𝑡𝑥𝑥 (

𝑑𝑥

𝑑𝜏
)
2
+ Γ𝑡𝑦𝑦 (

𝑑𝑦

𝑑𝜏
)
2
+ Γ𝑡𝑧𝑧 (

𝑑𝑧

𝑑𝜏
)
2
+ 2Γ𝑡𝑥𝑦

𝑑𝑥

𝑑𝜏

𝑑𝑦

𝑑𝜏
+

2Γ𝑡𝑦𝑧
𝑑𝑦

𝑑𝜏

𝑑𝑧

𝑑𝜏
+ 2Γ𝑡𝑧𝑥

𝑑𝑧

𝑑𝜏

𝑑𝑥

𝑑𝜏
) 

What you have on the right side of the equation above is for frames where the proper speed 
components [spatial ones ] are not zero 

Now some results [3] for orthogonal systems, 

Γ𝑎𝑏𝑐 = 0 if𝑎 ≠ 𝑏 ≠ 𝑐; Γ
𝑎
𝑎𝑎 =

1

2𝑔𝑎𝑎

𝜕𝑔𝑎𝑎

𝜕𝑥𝑎
; Γ𝑎𝑎𝑏 =

1

2𝑔𝑎𝑎

𝜕𝑔𝑎𝑎

𝜕𝑥𝑏
;for𝑎 ≠ 𝑏;Γ𝑎𝑏𝑏 = −

1

2𝑔𝑎𝑎

𝜕𝑔𝑏𝑏

𝜕𝑥𝑎
;for  𝑎 ≠

𝑏;andΓ𝑡𝑏𝑏 = 0 for time independent metrics when 𝑡 ≠ 𝑏.Γ𝑎𝑎𝑎 =
1

2𝑔𝑎𝑎

𝜕𝑔𝑎𝑎

𝜕𝑥𝑎
and for For a=t, Γ𝑡𝑡𝑡 =

1

2𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑡
 

In general involving, independent metrics 

∆𝑊 = 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)𝑑(𝑐𝑡)  

= 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ 2Γttt (

𝑑𝑐𝑡

𝑑𝜏
)
2

2Γ𝑡
𝑡𝑥

𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑥

𝑑𝜏
+ 2Γ𝑡𝑡𝑦

𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑦

𝑑𝜏

+ 2Γ𝑡𝑡𝑧
𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑧

𝑑𝜏
)𝑑(𝑐𝑡) 
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(13) 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)
𝑑(𝑐𝑡)

𝑑𝜏
𝑑𝜏 = 𝑔𝑡𝑡 (

𝑑2(𝑐𝑡)

𝑑𝜏2
+

1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑐𝑡
(
𝑑𝑐𝑡

𝑑𝜏
)
2
+

1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑥

𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑥

𝑑𝜏
+

1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑦

𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑦

𝑑𝜏
+

1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑧

𝑑(𝑐𝑡)

𝑑𝜏

𝑑𝑧

𝑑𝜏
)
𝑑(𝑐𝑡)

𝑑𝜏
𝑑𝜏 

= 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
𝑑𝜏

𝑑(𝑐𝑡)
+
1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕𝑡

(
𝑑𝑐𝑡

𝑑𝜏
) +

1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕𝑥

𝑑𝑥

𝑑𝜏
+
1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕𝑦

𝑑𝑦

𝑑𝜏
+
1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕𝑧

𝑑𝑧

𝑑𝜏
) (
𝑑(𝑐𝑡)

𝑑𝜏
)
2

𝑑𝜏 

= 𝑔𝑡𝑡

(

 
1

2

𝑑 (
𝑑(𝑐𝑡)
𝑑𝜏

)
2

𝑑𝜏
(
𝑑𝜏

𝑑(𝑐𝑡)
)
2

+
1

𝑔𝑡𝑡

𝜕𝑔𝑡𝑡
𝜕𝑡

(
𝑑𝑐𝑡

𝑑𝜏
) +

𝜕ln (𝑔𝑡𝑡)

𝜕𝑥

𝑑𝑥

𝑑𝜏
+
𝜕ln (𝑔𝑡𝑡)

𝜕𝑦

𝑑𝑦

𝑑𝜏

+
𝜕ln (𝑔𝑡𝑡)

𝜕𝑧

𝑑𝑧

𝑑𝜏

)

 (
𝑑(𝑐𝑡)

𝑑𝜏
)
2

𝑑𝜏 

To note that 
𝑑𝑙𝑛(𝑔𝑡𝑡)

𝑑𝜏
=
𝜕ln (𝑔𝑡𝑡)

𝜕𝑡

𝑑𝑡

𝑑𝜏
+
𝜕ln (𝑔𝑡𝑡)

𝜕𝑥

𝑑𝑥

𝑑𝜏
+
𝜕ln (𝑔𝑡𝑡)

𝜕𝑦

𝑑𝑦

𝑑𝜏
+
𝜕ln (𝑔𝑡𝑡)

𝜕𝑧

𝑑𝑧

𝑑𝜏
 

 

(14)   ∆𝑊 = 𝑔𝑡𝑡

(

 
1

2

𝑑 (
𝑑(𝑐𝑡)
𝑑𝜏

)
2

𝑑𝜏
(
𝑑𝜏

𝑑(𝑐𝑡)
)
2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

)

 (
𝑑(𝑐𝑡)

𝑑𝜏
)
2

𝑑𝜏 

The above is valid in a general manner irrespective of time dependence or time independence of the 
metric 

 (14.1) ∆𝑊 = 𝑔𝑡𝑡 (
𝑑2(𝑐𝑡)

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)
𝑑𝑡

𝑑𝜏
𝑑𝜏 = 𝑔𝑡𝑡 (

1

2

𝑑(
𝑑(𝑐𝑡)

𝑑𝜏
)
2

𝑑𝜏
(
𝑑𝜏

𝑑(𝑐𝑡)
)
2
+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
)(

𝑑(𝑐𝑡)

𝑑𝜏
)
2
𝑑𝜏 

Let us go back to the metric for a moment 

𝑐2 = 𝑔𝑡𝑡 (
𝑑𝑐𝑡

𝑑𝜏
)
2

− 𝑔𝑥𝑥 (
𝑑𝑥

𝑑𝜏
)
2

− 𝑔𝑦𝑦 (
𝑑𝑦

𝑑𝜏
)
2

− 𝑔𝑧𝑧 (
𝑑𝑧

𝑑𝜏
)
2

 

𝑔𝑡𝑡 (
𝑑𝑐𝑡

𝑑𝜏
)
2

= 𝑐2 + 𝑔𝑥𝑥 (
𝑑𝑥

𝑑𝜏
)
2

+ 𝑔𝑦𝑦 (
𝑑𝑦

𝑑𝜏
)
2

+ 𝑔𝑧𝑧 (
𝑑𝑧

𝑑𝜏
)
2

 

𝑐2𝑔𝑡𝑡 (
𝑑𝑐𝑡

𝑑𝜏
)
2

= 𝑐4 + 𝑔𝑥𝑥𝑐
2 (
𝑑𝑥

𝑑𝜏
)
2

+ 𝑐2𝑔𝑦𝑦 (
𝑑𝑦

𝑑𝜏
)
2

+ 𝑔𝑧𝑧 (
𝑑𝑧

𝑑𝜏
)
2

 

Using (5.1) to (5.4) 

𝑚0
2𝑐2𝑔𝑡𝑡 (

𝑑𝑐𝑡

𝑑𝜏
)
2

= 𝑚0
2𝑐4 + 𝑐2𝑝2 

Where 𝑝2 = 𝑔𝑥𝑥 (
𝑑𝑥

𝑑𝜏
)
2
+ 𝑔𝑦𝑦 (

𝑑𝑦

𝑑𝜏
)
2
+ 𝑔𝑧𝑧 (

𝑑𝑧

𝑑𝜏
)
2
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[above is the dot product between 𝑝 and 𝑝: norm squared in the curved space time context; 𝑣⃗ =

(
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) 

But 𝑚0
2𝑐4 + 𝑐2𝑝2 = 𝐸2:Relaivistic expression for Energy 

𝐸2 = 𝑚0
2𝑐2𝑔𝑡𝑡 (

𝑑𝑐𝑡

𝑑𝜏
)
2

⟹𝐸2 = 𝑚0
2𝑐2 (

𝑑𝑐𝑇

𝑑𝜏
)
2

 

𝐸 = 𝑚0𝑐√𝑔𝑡𝑡
𝑑𝑐𝑡

𝑑𝜏
= 𝑚0𝑐

𝑑𝑐𝑇

𝑑𝜏
⟹ 𝐸 = 𝑚0𝑐

𝑑2𝑐𝑇

𝑑𝜏2
 

 (15)      (
𝒅𝒄𝑻

𝒅𝝉
)
𝟐
=

𝑬𝟐

𝒎𝟎
𝟐𝒄𝟐

 

[for unit rest mass 𝑚0 = 1𝑢𝑛𝑖𝑡] 

We re write  (14.1) [Time independent metrics] 

 

∆𝑊 = 𝑔𝑡𝑡 (
𝑑2𝑐𝑡

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)
𝑑𝑐𝑡

𝑑𝜏
𝑑𝜏 =

(

 
1

2

𝑑 (
𝑑(𝑐𝑡)
𝑑𝜏

)
2

𝑑𝜏
(
𝑑𝜏

𝑑(𝑐𝑡)
)
2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

)

 (
𝑑(𝑐𝑇)

𝑑𝜏
)
2

𝑑𝜏 

Since 𝑔𝑡𝑡 (
𝑑𝑐𝑡

𝑑𝜏
)
2
= (

𝑑𝑐𝑇

𝑑𝜏
)
2
[using (5.1) 

∆𝑊 = 𝑔𝑡𝑡 (
𝑑2𝑐𝑡

𝑑𝜏2
+ Γ𝑡𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
)
𝑑𝑡

𝑑𝜏
𝑑𝜏 = (

1

2

𝑑[
1

𝑔𝑡𝑡
(
𝑑𝑐𝑇

𝑑𝜏
)
2
]

𝑑𝜏
(
𝑑𝜏

𝑑𝑐𝑡
)
2
+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
)(

𝑑𝑐𝑇

𝑑𝜏
)
2
𝑑𝜏  [since 𝑑𝑇 = √𝑔𝑡𝑡𝑑𝑡] 

Important to note: 

𝑑𝑔𝑡𝑡

𝑑𝜏
=

𝜕𝑔𝑡𝑡

𝜕(𝑐𝑡)

𝑑(𝑐𝑡)

𝑑𝜏
for the special form where proper speed components[spatial] are zero 

∆𝑊 = (
1

2

1

𝑔𝑡𝑡

𝑑 (
𝑑𝑐𝑇
𝑑𝜏
)
2

𝑑𝜏
(
𝑑𝜏

𝑑𝑐𝑡
)
2

−
1

2𝑔𝑡𝑡
2

𝑑𝑔𝑡𝑡
𝑑𝜏

(
𝑑𝑐𝑇

𝑑𝜏
)
2

(
𝑑𝜏

𝑑𝑐𝑡
)
2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
)(
𝑑𝑐𝑇

𝑑𝜏
)
2

𝑑𝜏 

Work done per unit rest mass 

∆𝑊 = (
1

2

1

𝑔𝑡𝑡

𝑑 (
𝑑𝑐𝑇
𝑑𝜏
)
2

𝑑𝜏
(
𝑑𝜏

𝑑𝑐𝑇
)
2

𝑔𝑡𝑡 −
1

2𝑔𝑡𝑡
2

𝑑𝑔𝑡𝑡
𝑑𝜏

(
𝑑𝑐𝑇

𝑑𝜏
)
2

(
𝑑𝜏

𝑑𝑐𝑇
)
2

𝑔𝑡𝑡 +
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
)(
𝑑𝑐𝑇

𝑑𝜏
)
2

𝑑𝜏 

[From the second last step to the last one we have replaced dt by
1

√𝑔𝑡𝑡
𝑑𝑇in 

𝑑𝜏

𝑑𝑐𝑡
] 
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∆𝑊 = (
1

2

𝑑 (
𝑑𝑐𝑇
𝑑𝜏
)
2

𝑑𝜏
(
𝑑𝜏

𝑑𝑐𝑇
)
2

−
1

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡
𝑑𝜏

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
)(
𝑑𝑐𝑇

𝑑𝜏
)
2

𝑑𝜏 

∆𝑊 = (
1

2

𝑑 (
𝑑𝑐𝑇
𝑑𝜏
)
2

𝑑𝜏
−

1

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡
𝑑𝜏

(
𝑑𝑐𝑇

𝑑𝜏
)
2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏
(
𝑑𝑐𝑇

𝑑𝜏
)
2

)𝑑𝜏 

Applying (15) on the above, 

∆𝑊 = (
1

2

1

(𝑐2𝑚0
2
)

𝑑(𝐸2)

𝑑𝜏
−

1

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡
𝑑𝜏

𝐸2

𝑚0
2𝑐2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

𝐸2

𝑚0
2𝑐2
)𝑑𝜏 

∆𝑊 = (
1

2

1

(𝑐2𝑚0
2
)

𝑑(𝐸2)

𝑑𝜏
−
1

2

𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

𝐸2

𝑚0
2𝑐2

+
𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

𝐸2

𝑚0
2𝑐2
)𝑑𝜏 = 

∆𝑊 = (
1

2

1

(𝑐2𝑚0
2
)

𝑑(𝐸2)

𝑑𝜏
+
1

2

𝑑ln (𝑔𝑡𝑡)

𝑑𝜏

𝐸2

𝑐2𝑚0
2)𝑑𝜏 

Therefore, 

𝑐2𝑚0
2 𝑑𝑊

𝐸2
=
1

2

𝑑(𝐸2)

𝐸2
+
1

2
𝑑𝑙𝑛𝑔𝑡𝑡 ⇒ 𝑐2𝑚0

2 𝑑𝑊

𝐸2
=
𝑑𝐸

𝐸
+
1

2
𝑑𝑙𝑛𝑔𝑡𝑡 

⟹ 𝑐2𝑚0
2 ∆𝑊

𝐸2
= 𝑑𝑙𝑛𝐸 +

1

2
𝑑𝑙𝑛𝑔𝑡𝑡 ⇒ 𝑐2𝑚0

2 𝑑𝑊

𝐸2
= 𝑑𝑙𝑛(𝑚0𝛾𝑐

2) +
1

2
𝑑𝑙𝑛𝑔𝑡𝑡 −

𝜕ln (𝑔𝑡𝑡)

𝜕𝑡
𝑑𝑡 

⇒ 𝑐2𝑚0
2 ∆𝑊

𝐸2
= 𝑑(𝑙𝑛𝑚0𝑐

2) + 𝑑𝑙𝑛𝛾| +
1

2
𝑑𝑙𝑛𝑔𝑡𝑡 

⇒ 𝑐2𝑚0
2 ∆𝑊

𝐸2
= 𝑑𝑙𝑛𝛾 +

1

2
𝑑𝑙𝑛𝑔𝑡𝑡 

 (16)𝑐2
𝑔𝑡𝑡∆𝑊

𝐸2
= 𝑑 [𝑙𝑛𝛾 +

1

2
𝑙𝑛𝑔𝑡𝑡] ;Unit rest mass being considered. 

Relation (16) is valid irrespective of the time dependence or time independence of the metric. 

For geodesics ∆𝑊 = 0 since the four acceleration components involved in our definition of ∆𝑊 are zero. 

(17) 𝑐2
𝑔𝑡𝑡∆𝑊

𝐸2
=  𝑑 [𝑙𝑛𝛾 +

1

2
𝑙𝑛𝑔𝑡𝑡] = 0 ⇒ 𝑙𝑛𝛾 +

1

2
𝑙𝑛𝑔𝑡𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒ 𝑙𝑛𝛾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −

1

2
𝑙𝑛𝑔𝑡𝑡 

In presence of gravity alone: 

𝑙𝑛𝛾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
1

2
𝑙𝑛𝑔𝑡𝑡 

The same relation holds for the time independent case. 

The physical velocity depends only on 𝑔𝑡𝑡 
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It is  getting uniquely determined by 𝑔𝑡𝑡Components may change preserving the spatial magnitude [so 
long as gravity being the only agent in action]. If you push up a particle it will come down to the same 
point with the same speed. A satellite always has the same speed at the same point of the orbit. Actually 
the constant will be different for different motions[different initial conditions]. If I throw up a particle by 
exerting a greater force, it will move upwards with a greater speed and come down to the same spatial 
point[ 𝑙𝑛𝑔𝑡𝑡 being  independent of time since we are using time independent metrics] with the same 
speed at which it passed up. A particle may have different speeds at the same point due to different 
initial conditions brought about by nom gravity agents. Different initial conditions will change the value 
of the constant in (17) 

𝑙𝑛𝛾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) −
1

2
𝑙𝑛𝑔𝑡𝑡 

(18) ∫ 𝑐2
𝑔𝑡𝑡𝑑𝑊

𝐸2
𝐵

𝐴
= (𝑙𝑛𝛾𝐵 − 𝑙𝑛𝛾𝐴) +

1

2
(𝑙𝑛𝑔𝑡𝑡:𝐵 − 𝑙𝑛𝑔𝑡𝑡:𝐴) 

The right side is a function of only the initial point (A) and the final point (B). It may be used to develop a 
rigorous potential function in general relativity 

Verifying with Classical limit [as a limiting case of Schwarzschild Geometry]: 

∫ 𝑐2
𝑔𝑡𝑡𝑑𝑊

𝐸2

𝐵

𝐴

= (𝑙𝑛𝛾𝐵 − 𝑙𝑛𝛾𝐴) +
1

2
(𝑙𝑛𝑔𝑡𝑡:𝐵 − 𝑙𝑛𝑔𝑡𝑡:𝐴) 

For geodesic motion 𝑑𝑊 = 0 

⟹ (𝑙𝑛𝛾𝐵 − 𝑙𝑛𝛾𝐴) +
1

2
(𝑙𝑛𝑔𝑡𝑡:𝐵 − 𝑙𝑛𝑔𝑡𝑡:𝐴) = 0 

1)𝛾 =
1

√1−
𝑣2

𝑐2

= (1 −
𝑣2

𝑐2
)
−1/2

≈ 1 +
𝑣2

2𝑐2
 [First order approximation: binomial series] 

where 𝛾 =
1

√1−
𝑣2

𝑐2

 

Therefore,  

𝑙𝑛𝛾 = 𝑙𝑛 [1 +
𝑣2

2𝑐2
] =

1

2
(
𝑣2

𝑐2
) : 𝑙𝑜𝑔 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 

Therefore, 

(𝑙𝑛𝛾𝐵 − 𝑙𝑛𝛾𝐴) =
1

2𝑐2
(𝑣𝐵

2 − 𝑣𝐴
2) 

2) 𝑙𝑛𝑔𝑡𝑡:𝐵 − 𝑙𝑛𝑔𝑡𝑡:𝐴 = ln
𝑔𝑡𝑡:𝐵

𝑔𝑡𝑡:𝐴
= 𝑙𝑛

1−
2𝐺𝑀

𝑐2𝑟𝐵

1−
2𝐺𝑀

𝑐2𝑟𝐴

= 𝑙𝑛 (1 −
2𝐺𝑀

𝑐2𝑟𝐵
) (1 +

2𝐺𝑀

𝑐2𝑟𝐴
) = 𝑙𝑛 (1 +

2𝐺𝑀

𝑐2𝑟𝐴
−
2𝐺𝑀

𝑐2𝑟𝐵
+

ℎ𝑖𝑔ℎ𝑒𝑟𝑜𝑟𝑑𝑒𝑟𝑡𝑒𝑟𝑚𝑠) ≈
2𝐺𝑀

𝑐2𝑟𝐴
−
2𝐺𝑀

𝑐2𝑟𝐵
 

Therefore, 
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𝑙𝑛𝑔𝑡𝑡:𝐵 − 𝑙𝑛𝑔𝑡𝑡:𝐴 = ln
𝑔𝑡𝑡:𝐵

𝑔𝑡𝑡:𝐴
=
2𝐺𝑀

𝑐2𝑟𝐴
−
2𝐺𝑀

𝑐2𝑟𝐵
= −

2𝐺𝑀

𝑐2
(
1

𝑟𝐵
−

1

𝑟𝐴
) ; [First order approximation: log series 

expansion] 

Therefore, 

1

2𝑐2
(𝑣𝐵

2 − 𝑣𝐴
2) −

𝐺𝑀

𝑐2
(
1

𝑟𝐵
−
1

𝑟𝐴
) = 0 

1

2
𝑣𝐴
2 +

−𝐺𝑀

𝑟𝐴
=
1

2
𝑣𝐵
2 +

−𝐺𝑀

𝑟𝐵
[valid result in the classical limit] 

Supplementary Material 

From the invariance of the four dot product it follows  that 

𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖 = 𝑔𝑖𝑖 (

𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖      (1) 

The same does not hold when i runs only over spatial indices 

𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖 ≠ 𝑔𝑖𝑖 (

𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖   (2) 

Metric 

𝑐2𝑑𝜏2 = 𝑔𝑡𝑡𝑑(𝑐𝑡)
2 − 𝑔𝑥𝑥𝑑𝑥

2 − 𝑔𝑦𝑦𝑑𝑦
2 − 𝑔𝑧𝑧𝑑𝑧

2  (3) 

Using the transformations(5.1) to (5.4) in the original paper we obtain an equivalent metric Lorentzian in 
form 

Transformations: 

𝑑𝑇 = √𝑔𝑡𝑡𝑑𝑡     

(5.2) 𝑑𝑋 = √𝑔𝑥𝑥𝑑𝑥 

(5.3) 𝑑𝑌 = √𝑔𝑦𝑦𝑑𝑦 

(5.4) 𝑑𝑍 = √𝑔𝑧𝑧𝑑𝑧 

 

Equivalent metric: 

𝑐2𝑑𝜏2 = 𝑑(𝑐𝑇)2 − 𝑑𝑋2 − 𝑑𝑌2 − 𝑑𝑍2 (4) 

𝑐2 = (
𝑑(𝑐𝑇)

𝑑𝜏
)

2

− (
𝑑𝑋

𝑑𝜏
)
2

− (
𝑑𝑌

𝑑𝜏
)
2

− (
𝑑𝑍

𝑑𝜏
)
2

 (4.1) 

Differentiating with respect to proper time  
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0 = 2
𝑑(𝑐𝑇)

𝑑𝜏

𝑑2(𝑐𝑇)

𝑑𝜏2
− 2

𝑑𝑋

𝑑𝜏

𝑑2𝑋

𝑑𝜏2
− 2

𝑑𝑌

𝑑𝜏

𝑑2𝑌

𝑑𝜏2
− 2

𝑑𝑍

𝑑𝜏

𝑑2𝑍

𝑑𝜏2
 

𝑑𝑋

𝑑𝜏

𝑑2𝑋

𝑑𝜏2
+
𝑑𝑌

𝑑𝜏

𝑑2𝑌

𝑑𝜏2
+
𝑑𝑍

𝑑𝜏

𝑑2𝑍

𝑑𝜏2
=
𝑑2(𝑐𝑇)

𝑑𝜏2
𝑑(𝑐𝑇)

𝑑𝜏
 

Four dot product 
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖 = 0 ⟹ 𝑔𝑖𝑖 (

𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖 = 0 

Nevertheless an alternative mechanism has been provided in the original paper to show 

𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
)𝑑𝑥𝑖 = 0 

to corroborate the overall effectiveness of the transformed metric. 

Work for unit rest mass: 

𝑑𝑊 =
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖 =

𝑑2𝑋

𝑑𝜏2
𝑑𝑋 +

𝑑2𝑌

𝑑𝜏2
𝑑𝑌 +

𝑑2𝑍

𝑑𝜏2
𝑑𝑍 =

𝑑2(𝑐𝑇)

𝑑𝜏2
𝑑(𝑐𝑇) =

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 

𝑑𝑊 =
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖 =

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇  (5) 

[In the above ′𝑖′ is the spatial index. T refers to time with the transformed metric: no summation on T] 

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 =

d

d𝜏
(
𝑑𝑇

𝑑𝜏
)𝑑𝑇 =

d

d𝜏
(
√𝑔𝑡𝑡𝑑𝑡

𝑑𝜏
)√𝑔𝑡𝑡𝑑𝑇 = [√𝑔𝑡𝑡

𝑑2𝑡

𝑑𝜏2
+

1

2√𝑔𝑡𝑡

𝑑𝑔𝑡𝑡
𝑑𝜏

𝑑𝑡

𝑑𝜏
]√𝑔𝑡𝑡𝑑𝑡 

𝑑𝑊 =
𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑔𝑡𝑡 [

𝑑2𝑡

𝑑𝜏2
+

1

2𝑔𝑡𝑡

𝑑𝑔𝑡𝑡
𝑑𝜏

𝑑𝑡

𝑑𝜏
] 𝑑𝑡  (6) 

 

We digress for calculating the Lorentz factor in General Relativity 

𝑐2𝑑𝜏2 = 𝑐2𝑔𝑡𝑡𝑑𝑡
2 − 𝑔𝑥𝑥𝑑𝑥

2 − 𝑔𝑦𝑦𝑑𝑦
2 − 𝑔𝑧𝑧𝑑𝑧

2 

(
𝑑𝜏

𝑑𝑡
)
2

= 𝑔𝑡𝑡 −
1

𝑐2
𝑔𝑥𝑥𝑑𝑥

2 + 𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧
2

𝑑𝑡2
 

1

𝑔𝑡𝑡
(
𝑑𝜏

𝑑𝑡
)
2

= 1 −
1

𝑐2
𝑔𝑥𝑥𝑑𝑥

2 + 𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧
2

𝑔𝑡𝑡𝑑𝑡
2

 

(
𝑑𝜏

√𝑔𝑡𝑡𝑑𝑡
)

2

= 1 −
𝑣𝑝ℎ

2

𝑐2
 

𝑣𝑝ℎ =
𝑔𝑥𝑥𝑑𝑥

2 + 𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧
2

(√𝑔𝑡𝑡𝑑𝑡)
2
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(
𝑑𝜏

𝑑𝑇
)
2

= 1 −
𝑣𝑝ℎ

2

𝑐2
 

𝛾𝑝ℎ =
𝑑𝑇

𝑑𝜏
=

1

√1 −
𝑣𝑝ℎ2

𝑐2

  (7) 

Again 

(
𝑑𝜏

𝑑𝑡
)
2

= 𝑔𝑡𝑡 −
1

𝑐2
𝑔𝑡𝑡
𝑔𝑥𝑥𝑑𝑥

2 + 𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧
2

𝑔𝑡𝑡𝑑𝑡
2

 

(
𝑑𝜏

𝑑𝑡
)
2

= 𝑔𝑡𝑡 [1 −
1

𝑐2
𝑔𝑥𝑥𝑑𝑥

2 + 𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧
2

𝑔𝑡𝑡𝑑𝑡
2

] 

(
𝑑𝜏

𝑑𝑡
)
2

= 𝑔𝑡𝑡 [1 −
𝑣𝑝ℎ

2

𝑐2
] 

Again 

𝛾 =
𝑑𝑡

𝑑𝜏
=

1

√𝑔𝑡𝑡

1

√1 −
𝑣𝑝ℎ2

𝑐2

=
1

𝑔𝑡𝑡
× 𝛾𝑝ℎ   (7.1) 

Using work energy theorem we obtain by usual process the formula for kinetic energy. Since the 
converted/transformed metric is of Minkowski form we simply repeat the procedure for Special 
Relativity 

KE=𝑚𝑐2 −𝑚0𝑐
2 = 𝑚0𝛾𝑝ℎ𝑐

2 −𝑚0𝑐
2 

Work done =𝑚0𝛾′𝑝ℎ𝑐
2 −𝑚0𝛾𝑝ℎ𝑐

2 

Differential amount of work for unit mass 

𝑑𝑊 =
𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑐2𝑑𝛾𝑝ℎ(𝑡, 𝑥, 𝑦, 𝑧) 

     𝑑𝑊 = 𝛾𝑝ℎ
3𝑣𝑝ℎ𝑑𝑣𝑝ℎ 

Again 

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑔𝑡𝑡 [−Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
+
1

2

𝑑𝑙𝑛𝑔𝑡𝑡
𝑑𝜏

𝑑𝑡

𝑑𝜏
] 𝑑𝑡  (8) 

Using from the original paper, 

𝑑 [𝑙𝑛𝛾𝑝ℎ +
1

2
𝑙𝑛𝑔𝑡𝑡] = 0  (9) 

for geodesic motion, we obtain 
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𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑔𝑡𝑡 [−Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
−
𝑑𝑙𝑛𝛾𝑝ℎ

𝑑𝜏

𝑑𝑡

𝑑𝜏
] 𝑑𝑡 

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑔𝑡𝑡 [−Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
− 𝛾𝑝ℎ

2
1

𝑐2
𝑑(𝑣𝑝ℎ)

𝑑𝜏
𝛾] 𝑑𝑡 

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 = 𝑔𝑡𝑡 [−Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
−

1

𝛾𝑝ℎ𝑐
2

𝑑𝑊

𝑑𝜏
𝛾] 𝑑𝑡 

𝑑𝑃𝑇

𝑑𝜏
𝑑𝑇 + 𝑔𝑡𝑡

1

𝛾𝑝ℎ𝑐
2

𝑑𝑊

𝑑𝜏
𝛾𝑑𝑡 = −𝑔𝑡𝑡Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
𝑑𝑡 

𝑑𝑊 +
1

𝑐2
𝑑𝑊

𝑑𝜏
𝑑𝑡 = −𝑔𝑡𝑡Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
𝑑𝑡 

𝑑𝑊 [1 +
1

𝑐2
𝑑𝑡

𝑑𝜏
] = −𝑔𝑡𝑡Γ

𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
𝑑𝑡 

𝑑𝑊 =
1

1 +
1
𝑐2
𝛾
𝑑𝑡
𝑑𝜏

× [−𝑔𝑡𝑡Γ
𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
𝑑𝑡] ≠ 0   (10) 

[−𝑔𝑡𝑡Γ
𝑡
𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
𝑑𝑡]:Work done by Gravity: Christoffel Symbols are directly involved 

1

1 +
1
𝑐2
𝛾
𝑑𝑡
𝑑𝜏

=
1

1 +
1
𝑐2
𝛾2
: 𝑆𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟: 𝛾 =

𝑑𝑡

𝑑𝜏
 

The scale factor is approximately unity for n on relativistic motion. 

 

𝑑𝑊 ≠ 0 for geodesic motion when the definition of work is taken as 𝑑𝑊 =
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖, I being the spatial 

index. 

Classically and in Special Relativity  work done is either change in Kinetic energy or change of potential 
energy when conservative forces are in action 

∆W = ∆(Kinetic energy) 

For conservative forces: KE+PE=constant 

∆KE + ∆PE = 0 

In the General Relativity scenario: ∆W = 0in presence of gravity alone [geodesics]when 

∆W = 𝑔𝑖𝑖 (
𝑑2𝑥𝑖

𝑑𝜏2
+ Γ𝑖𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
) ; 𝑖 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 

But  
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∆W ≠ 0 

when ∆W is defined by 

∆W =
𝑑𝑃𝑖

𝑑𝜏
𝑑𝑋𝑖; 𝑖 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 

 

On Physical Speed: 

Referring to the metric: 

𝑐2𝑑𝜏2 = 𝑔𝑡𝑡𝑑(𝑐𝑡)
2 − 𝑔𝑥𝑥𝑑𝑥

2 − 𝑔𝑦𝑦𝑑𝑦
2 − 𝑔𝑧𝑧𝑑𝑧

2 

and the subsequent metric of flay space time orm as obtained by transformations 95.1) to (5.4) we have 

𝑐2𝑑𝜏2 = 𝑑(𝑐𝑇)2 − 𝑑𝑋2 − 𝑑𝑌2 − 𝑑𝑍2 

𝑐2𝑑𝜏2 = 𝑑(𝑐𝑇)2 − 𝑑𝐿2 

𝑑𝐿2 = 𝑑𝑋2 − 𝑑𝑌2 − 𝑑𝑍2 

𝑑𝐿 Spatial separation 

For null paths  

𝑑𝜏 = 0 

We have, 

0 = 𝑐2𝑑𝑇2 − 𝑑𝐿2 

For null geodesics  we have 

𝑑𝐿

𝑑𝑇
= 𝑐 

This formulation does not upset the speed barrier in that the metric is of Minkowski form. 

 

 

Conclusion 

Our definition of work is hinged on the invariance of dot product. In the weak field limit It reduces to the 
classical result of energy conservation.  Schwarzschild Geometry in the weak field limit  has been used 
for the verification. Our definition of work also coincides with that in Special Relativity in the limit of 
zero curvature with the disappearance of curvature in the flat space limit. The definition is an 
extrapolation of what we understand by work in Special Relativity. 
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