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ABSTRACT 

A hydrodynamic model of the motion of galaxies, planets and moons is proposed 
in this paper. The solution of the Euler equation gives the description of the rotation 
curves with the positive parts of the Bessel functions J1(βr), where r  is the distance 
from the object to the axis of rotation, and β — is the parameter depending upon the 
angular velocities, the dimension of the system and the velocity of the progressive 
motion of the system. In the dimensionless units the case with β>>1 corresponds to 
the rotation curves of the planets and moons and in this limit coincides with the Kep-
ler-Newton law.  In the case of parameters β≤1 we have the rotation curves of the 
galaxies. The hydrodynamic theory describes the rotation curves of both the galaxies 
and the planets systems without invoking dark matter hypothesis. 

Within the limit of motion of the cosmic objects in the ideal medium, the expres-
sion of the generalized attractive force is derived.  In the case of planets (β>>1), the 
form of the attractive force coincides with the Newton law; in the case of the galax-
ies, the attractive force differs sufficiently from the Newton law. 

The distribution of the energy-density for the cosmic objects is obtained. For the 
Solar system, the distances between the planets and the Sun are derived. For small 
planets, the calculation agrees well with the observed values at the parameters 
β≈80÷90 and for the planets-giants — at β≈40÷50.  

Key words: hydrodynamics; galaxies: kinematics and dynamics; cosmology: dark 
matter; gravitation.  
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1. INTRODUCTION 
The planets of the Solar system have a ro-

tation curve which is well-described by the 
Kepler-Newton  law: the orbital velocity, 

)(RV   , is equal to  
R
MGRV =)(   where M    

is   the central mass, G     is   the gravitation 
constant and  R  is the distance from the 
planet to the Sun.  

The attempts to use the Kepler-Newton 
law for the description of the rotation curves 
of the galaxies, have led to failure. The gal-
axies rotation curves are varied and differ 
strongly  on the Keplerian form. L.Volders 
was one of the first scientists who noticed 
this distinction. In 1959, he demonstrated 

(Volders 1959), that the rotation curve of the 
spiral galaxy M33 differed strongly from the 
Kepler law.  During the 1960s-1980s, 
V.Rubin and K.Ford, and O.Sofue , V.Rubin 
investigated the spiral galaxies(Rubin & Ford  
1970),  (Sofue & Rubin 2001). They showed 
that there are three types of the rotation 
curves, and all of them differ from the Kep-
lerian form . Their results have been con-
firmed over subsequent decades. (Faber & 
Gallagher 1979); (Bosma et al. 1992); (Zasov 
& Hoperskov 2003); ( Stabile &  Capozziello 
2013); (Roscoe 1997); (Noordermeer  2007 ); 
(Begeman et al.  1991); (Moran et al.  2007); 
(Simard & Pritchet  1998); (Wechakama & 
Ascasibar 2011); (Lukash et al. 2011); 
(Doroshkevich et al. 2012);  
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Previously, astronomers thought that disk 
galaxies had mass distribution similar to the 
observed shining distributions of stars and 
gas, therefore the orbital speed would decline 
with the increasing distances in the same way 
as do the planets of the Solar System or 
moons of Earth, Jupiter et al. But it is not the 
case. Moreover, the rotation curves of the 
spiral galaxies are often asymmetric.   

The galaxies masses calculated from the 
observed rotation curves and law of gravity, 
and the mass profiles of galaxies, calculated 
from the luminosity profiles and the mass-to-
light ratio in the stellar disks, do not match 
one another. The rotation curves imply that 
the mass continues to increase linearly with 
radius. Therefore, it has been postulated that 
a large amount of dark matter what extends 
galaxy into the galaxy’s halo and permits to 
explain the observed rotation curves.  

To calculate the speeds of the stars in the 
galaxies and the gas clouds speeds, the Dop-
pler Effect is used. The measurement of the 
frequency (more exactly- the frequency shift 
relative to its position in free reference 
frame) is carried out on different spectro-
graphs and optical interferometers. However, 
these methods allow to measure the spectrum 
velocities not of one star (there are a lot of 
stars in the galaxy), but some average inte-
grated spectrum   of emission, emitted by the 
large amount of indistinguishable emitters-
stars.   

The stars velocities are determined using 
the optical range of spectrum. The velocities 
of the gas clouds are measured also with the 
use of radio irradiation (usually with the help 
of frequency of the neutral hydrogen, it is the 
most widespread in the Universe,   ( 21=λ   
cm), and of CO-molecules line  in mm –
range). 

Unfortunately, the accuracy of such a 
method of calculation )(RV  is small due to 
the contribution to the frequency shift both 
the Doppler effect (due to the approximately 
progressive orbital motion) and the Sagnac 
effect (Sagnac 1913, 1914),  which is caused 
by the star rotation  around its axis. Perhaps, 
namely the considerable influence of the 

Sagnac effect leads to the asymmetry of the 
rotation curves, which is often observed. 

Therefore, the calculation of true rotation 
curve )(RV   for the galaxies on the basis of 
the observed data, averaged on a large 
amount of stars, is very difficult.   

Several alternative hypotheses were pro-
posed to explain the discrepancies of the ob-
served rotation curves from the Kepler-
Newton form.  

1. F. I. Cooperstock and S. Tieu 
(Cooperstock & Tieu 2005) 

thought that the Newton linear gravity 
is not applicable to the galaxies and it is 
necessary to account the relativity nonlin-
earity, although the velocities of the stars 
and gas clouds in galaxies are not large 
enough, the relativistic effects to take 
place. They have proposed the stationary 
model of galaxy as liquid which don’t un-
dergo pressure and have the axial sym-
metry. From the equations of the general 
theory of relativity for this model, they 
have obtained two equations (linear and 
nonlinear) which connect the angular ve-
locity and density of liquid. For some gal-
axies (the Milky Way, NGC 3031, 
NGC 3198, NGC 7331) they have ob-
tained the rotation curves similar to ob-
served ones, which correspond well to the 
distribution of the mass density of the 
usual visible matter, which are present in 
the galaxies disks. 

F. I. Cooperstock and S. Tieu conclud-
ed that it is unnecessary to introduce the 
dark matter. 

But their theory cannot explain the ro-
tation curves of a lot of galaxies.  

2. John Moffat     (Brownstein &  

Moffat  2006) 
 have proposed a nonsymmetrical grav-

itational theory with incorporated a sym-
metric field (gravity) and an antisymmet-
ric field. He supposed that the antisym-
metric component is another manifestation 
of gravity, and it may be massive. These 
two fields modify the strength of gravity 
at large distances. This theory describes 
the rotation curves and the mass profiles 
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of X-ray galaxy clusters without invoking 
dark matter.  

3. Mordehai Milgrom  (Milgrom  
1983) 
proposed the “modified Newton dynam-
ics”, “modified gravity”, MOND, to ex-
plain the fact that the observed velocities 
in the galaxies are greater than the New-
ton mechanics prescribes. He proposed 
that the gravity force is not proportional to 
the centripetal acceleration but to its 
square. Then it is possible to match the 
calculated rotation curves to the observed 
ones in some cases. For example, for spi-
ral galaxies.  
 

There are several other prepositions to 
avoid invoking dark matter.  

We propose the new natural approach to 
this problem, without artificial introduction 
of doubtful fields and accelerations: the hy-
drodynamic description of the motion of all 
cosmic objects: galaxies, stars, planets, 
moons. This has led to fruitful results. 

2. THE MOTION OF THE COS-
MIC OBJECTS 

The galaxies consist of  a huge communi-
ty of stars, quasars, gas clouds, consisting of 
(according to modern  knowledge)   high 
temperature plasmas, the gaseous clouds of  
hydrogen, helium and some other light ele-
ments, molecules CO et al. (heavy elements 
and solid state materials, perhaps, are present 
only on small and cold cosmic objects- plan-
ets, asteroids et al.).  Therefore, it is natural 
to use hydrodynamics to describe the motion 
of cosmic objects.  

The hydrodynamic model is productive 
for the description of motion of the cosmic 
objects. Most of them rotates (with the angu-
lar velocityΩ

!
) and simultaneously move 

progressively with some velocity 0V   . This 
is a motion along the screw line. Consider the 
rotation around z   axis. The left and right 
screw lines are possible. It’s convenient to 

use the cylindrical coordinates. The paramet-
ric equations for the motion along the screw 
lines: 

tVzta 0;; =Ω±== ϕρ  

 We’ll consider one of them with sign (+).  
Introduce the vector of velocity for an ele-
ment of the cosmic matter: ),,( zr UUUU ϕ

!
 .  

At first, we consider the propagation of the 
cosmic object through the ideal media, with-
out collisions. It can be considered as incom-
pressible liquid. In the case of rotation, the 
Euler equation has the form:
 

)(1][2)( pgradUUU
t
U

fρ
−=×Ω⋅+⋅∇⋅+

∂

∂ !!!!
!

    (1)
 

Suppose, that small vibrations of media 
take place when the cosmological object 
moves, and neglect the second term on the 
left side (Landau & Lifshitz  1986). The Eu-
ler equation has the form: 

'1][2 pU
t
U

f

∇−=×Ω⋅+
∂

∂

ρ

!!
!

 (2)
 

Here the second term on the left side is  
the Coriolis force (with the sign (-)), 'p∇  — 
is the gradient of the variable part of the 
pressure in a medium, included the centrifu-

gal force 2][
2
1 r!
!
×Ω∇    and  other possible 

forces in the Universe  (Landau & Lifshitz  
1986). 

The solution of the equation (2) is given in 
Appendix 1. In the dimensionless values the 
components of the velocity are equal to: 

)()exp(),( 1 βω ⋅⋅⋅= rJtiCtrUr  
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)(2)exp(),( 1 β
ω

ωϕ rJtiiCtrU ⋅
Ω

⋅=  (3)
 

)(14)exp(),( 02

2

β
ω

ω rJtiiCtrU z ⋅−
Ω

⋅⋅=
 

Here  
0

1

R
rr = ; 14

2

2

0

0 −
Ω

=
ω

ω
β

V
R

;      

1r    is  a dimension coordinate,  −0R  is  
some characteristic dimension of the cosmic 
object. As the velocity is positive value, then 
only positive parts of the Bessel functions 
have the physical sense. The possible mean-
ings of the frequency ω  are restricted with 
the condition Ω< 2ω , because only in this 
case the equation for rU   has the finite solu-
tions. As a result, we have the quantized 
function on  r   for all three components of 
velocity.     

3.  THE ROTATION CURVES OF 
THE COSMIC OBJECTS 

The obtained results for the velocity com-
ponents allow conducting an analysis of the 
possible rotation curves of the cosmic ob-
jects. The orbital velocity is proportional to 

),( trUϕ  component: )(2~ 1 β
ωϕ rJU ⋅
Ω .  The 

Bessel function  J1(x), has asymptotic form  
for x>>1   : 

)
4
3cos(12)(1 π

π
−⋅⋅→ x

x
xJ  (4) 

The positive part of it coincides with the 
Kepler-Newton law. In Fig.1, the rotation 
curves for the Solar system are given: sym-
bols — the orbital velocities of nine planets 
of the Solar system; dotted line — the Kepler 
law and solid line — the Bessel function 
J1(x) with  

..40;200;10 0
0

1 uaR
R
rr ==÷== β .  In the 

case of the  planets  1>>β  .  

The form of the rotation curves depends 
on the  parameter β    ( fig 2). 

	
	 	

Fig. 2 The rotation curves for the parameter       
= 0.5 (solid line); = 2 (dotted line);    
= 5 (dashed line);   = 50 (dot-and-dash line). 

In Fig. 2, it is seen that the form of the ro-
tation curves depends on the parameter β . 
The case 1>>β  corresponds to the rotation 
curves of the planets and moons and coin-
cides with the Kepler law. Hence, the Kepler 
approach is good for the planets. The other 
limited case, 1≤β , corresponds  to the rota-
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Fig. 1 The rotation curves for the Solar system 
are given: symbols – the orbital velocities of 
nine planets of the Solar system; dotted line – 
the Kepler-Newton  law and solid line – the 

Bessel function with  200=β . 
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tion curves of  the stars and gas clouds  in the 
galaxies.   

In Fig.3 the rotation curves are given in 
the case of a group of stars with the different 
parameters β .  It is seen, that they are close 
to the measured ones. It agrees with the fact 
that the measured curves corresponds to the 
group of different stars with different rotation 
parameters β  . 

If the motion of the galaxy takes place in 
medium with some “viscosity”, we have to 
use the Navier-Stokes equation.  At the same 
conditions, the linear approach and the in-
compressible medium ( 0=Udiv

!
) the equa-

tion has the form: 

 

)(1][2 pgradUDU
t
U

ρ
−=Δ⋅−×Ω⋅+

∂

∂ !!!!
!

 (5) 

Where the components of the coefficient 
of “viscosity” Di  , generally speaking, can be 
different for different coordinates. In the ide-
al medium all coefficients of “viscosity” are 
equal to zero and we return to the Euler equa-

tion. If we take account the coefficients of  
“viscosity” for three coordinates, we’ll have 
the equation of high order which can be 
solved only numerically. Therefore, to esti-
mate the influence of “viscosity”, we consid-
er the more simple case — of the ”viscosity” 
only along radial direction (as the most rele-
vant).   

The solution of the equation (5) is given in 
Appendix 2. In the dimensionless values the 
components of the velocity are equal: 

)()exp(),( 1 brJtiCtrUr ⋅⋅⋅= ω  

)()exp(2
12 brJti

i
CU ⋅⋅⋅

Ω
−= ω

ωϕ  (6) 

)()exp(),( 0
0

3 rbJbti
i
V

iCtrU z ⋅⋅⋅= ω
ω  

Here   

))0((

4

2
0

2
0

2
22

0

→

→
−

+−Ω

⋅=

r

r

r

Dwhen
DiV

V
Di

Rb β
ω

ω
ωω

   

Now the parameter b — is complex, there-
fore, in this case, the solutions of the equa-
tion are the Bessel functions of the complex 
variable. 

The approximate solutions of another two 
cases — the “viscosity” in the directions  z,ϕ  
, are the Bessel functions of the complex var-
iable as well, with something different pa-
rameters b .  

In Fig.4 the calculated rotation curves at 
the small “viscosity” in the radial direction 
are given for different parameters b. (Only 
positive parts of  b are present).  

Probably, in the inner parts of the galaxies 
the “viscosity” is absent and the case of zero 
velocity at  0→r  and the ideal medium is 
realized (as in Fig. 5, at 0→r  ). For many 
galaxies the increase of the velocity near the 
center of the axis of rotation is observed,   

	

Fig. 3 The rotation curves at the sum of the stars 
parameters: β=0.1; 0.5;5 (solid line); β=0.1; 0.5; 
0.7; 2 (dotted line); β=0.1 ; 0.5;  2;  5;  15 (dashed 
line); β=50 — dot-and-dash line (the Kepler-
Newton law). 
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then — the flat regions, which can corre-
spond to the parameters 51÷≈b  . 

 

Fig.4. The rotation curves of galaxies with ac-
counting of the small “viscosity” at the parame-

ters:   b  =0.1 (solid line); b =3 (dotted line); b =4 

(dashed line); b =5   -  (dot-and-dash line). 

  

Fig.5. The rotation curves of galaxies at account-
ing of the small “viscosity”, except the region 
near the center of the galaxy,  at the parameters: 
b=0.5 (solid line); b=2 (dotted line); b=4 (dashed 
line). 

 
4.  THE ATTRACTIVE FORCE  

Let us estimate the attractive force, which 
is peculiar both to the stars in the galaxies 
and the planets in the star systems. Consider 
the motion of the cosmic object on the circu-
lar orbit around the galaxy (or star) center 
and assume that the attractive force is bal-
anced against the centripetal force of this 
object. If the medium is ideal, the velocity of 
an object is determined by the Euler equation 
and the orbital velocity is proportional to the 
positive part of the Bessel function:  

)(2)exp(),( 1 β
ω

ωϕ rJtiiCtrU ⋅
Ω

⋅=  .  The 

attractive force is equal to: 
r
U

VFa
2
ϕρ=  , 

where V  is a volume of the object.    

Note the positive part of the Bessel func-
tion  )(1 βrJ   as )(1 βrG    . The attractive 
force is equal: 

2
12

22

)]([14)( β
ω

ρ rG
r

CVrFa ⋅⋅
Ω

=  (7) 

In the limit of big parameter β  ( 1>>β    
for the planet), we have the Newton law: 

2)(
r
GMmrFa =   . Here the parameter GM   

corresponds to 2

224
ω
ΩC   .  
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(a) 

 

(b) 

Fig.6. The dependence of the attractive force 
)(raF on the distance from the rotation axis. The 

parameters: β=100 (planets, solid line); and for 
galaxies: β=2 (dotted line); β=0.5 (dashed line). 
The Newton law — dot-and-dash line. 

a) Corresponds to the maximum distance R0;  
b) the maximum distance  5 R0 

In Fig. 6 the dependences of the attractive 
force )(rFa   on the distance from the center 
of the rotation axis are given for the cosmic 
objects, both the planets and stars.  It is seen 
that for the planet the attractive force coin-
cides with the Newton law, at the edge of a 
system 0)( →rFa  , whereas for the galaxies 
it is not the case: the attractive force is ex-
tended far from the edge of a system, it is not 
monotone. After zero point there are regions 

where forces are still strong enough. The 
form of )(rF  depends strongly on the pa-
rameter β . 

The attractive force for the group of 
neighboring stars with different parameters 
β , can have more complicated form, for 
example, is present in Fig. 7. The stars attrac-
tive forces are extended far into space, much 
further than the Newton force and it can cap-
ture from the space other cosmic objects. 
Perhaps, owing to this fact, the large rarefied 
regions of gas clouds, asteroids and small 
planets exist far from the lighting regions of 
the galaxies.  

  

Fig.7. The dependence of the attractive force 
)(raF on r  in the case of  the sum of different pa-

rameters  β: β=(0.1  +0.3  +   1  +  2)(solid line); 
β=(0.1 + 0.5 + 1 + +3) (dotted line).  Dashed line –
the Newton law for the planets. 

5.  THE PLANETS OF THE SO-
LAR SYSTEM 

The obtained solutions mean that during 
the motion of the cosmic matter through 
space the regions with high density of matter 
and empty regions take place.   

In Fig. 8 the dependence of the energy-
density of the  matter W(r) on radial coordi-
nate r is present (in dimensionless coordi-
nates):
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)()()()( 222 rUrUrUrW zr ++= ϕ   

)(]14[

)}()(]{14[)(

2

2
2

2
0

2
12

2
2

β
ω

ββ
ω

rEA

rJrJArW

⋅−
Ω

−=

=+−
Ω

−=

  

 (8)
 

It is seen that in the absence of “viscosi-
ty”, the spherical part exists in the center, 
then the empty ring, then the ring of a matter 
and so on. This description is valid both for 
the galaxies and planets. Taking account of   
“viscosity” (scatter) leads to “washing out” 
of the outer rings. 

 

(a)  

 (b) 
Fig.8. The dependence of the energy-density of 
matter E(rβ) on radial coordinate r.  β=3 (solid 
line);  β=10 (dotted); β=20 (dashed line).  
(a) — the ideal medium; (b) — the medium with 
the small “viscosity”. 

The distances between the planets of the 
Solar system and Sun, evaluated according 
the maxima of the function   dependence 
E(rβ), with β=80 agree well for small planets 
and differ considerably for Jupiter and other 
gas giants (Table 1) . 

Table 1. The distances between the planets and 
the Sun. 

Planet 
Radius of the 
orbit, a.u., 
calculated  

Radius of the 
orbit, a.u.,  
measured 

Mercury 0.37 0.39 
Venus 0.69 0.72 
Earth 1 1 
Mars 1.37 1.52 
Asteroid belt 1.69 2.2-3.6 
Ceres 2.02 2.096 
Jupiter 2.37 5.2 
Saturn 2.73 9.54 
Uranus 3.05 19.22 
Neptune 3.42 30.06 
Pluto 3.73 39.5 

 

The distances for the   group of the plan-
ets-giants can be described with the maxima 
of the same dependence E(rβ), but with low-
er values of the parameter β: these planets are 
more similar to stars in their size and content.  
If for small planets the parameter β is equal 
to β ≈ 80÷90, then in the case of  large plan-
ets,  it  is equal to β ≈ 40÷50. Both solutions 
are “matched” in the region of the asteroid 
belt between Jupiter and Mars. 

Probably, in the region of the “matching”, 
neither the stationary orbit for the small, nor 
for the large planet can exist. 

It is possible that the strange motion of the 
space crafts “Pioneer” is due to the additional 
forces near the planets-giants.  
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6. CONCLUSION 

The hydrodynamic model of the motion of 
the cosmic objects (the Euler equation for the 
motion in the ideal medium and the Navier-
Stokes equation in the”viscosity” medium) 
explains the rotation curves of both the gal-
axies and planet systems. The positive part of 
the Bessel functions describes the   law of the 
motion. The Kepler-Newton law, which de-
scribes well the rotation curves of the planets 
and moons, is one of the limited cases (

1>>β ) of the general expression for the 
rotation curves. In the other limit case 1≤β , 
the obtained expression describes the rotation 
curves of the stars in the galaxies. 

The approximate accounting of the “vis-
cosity” of the medium leads to description of 
the motion with the Bessel functions with the 
complex variable and some differing parame-
ters. (In the absence of the “viscosity” we 
return to the former solutions). 

The research has shown that in the ideal 
medium, the distribution of the cosmic matter 
during its motion presents the systems of 
rings of matter and empty rings, around the 
density center. In the central part the density 
decreases at the edge of this region.   

Our analysis has shown that in the galaxy 
center, the medium can be considered as ide-
al and the rotation curve starts with zero 
meaning. In regions farther from the galaxies 
centers, the account of the “viscosity” often 
leads to better results. The measured rotation 
curves correspond to a large group of stars 
with different parameters of rotation. 

The proposed hydrodynamic model shows 
that the observed rotation curves can be ex-
plained without invoking dark matter. 

The expression for the attractive force 
which is applicable both for the stars in the 
galaxies and the planets in the stars systems, 
was derived.  It was obtained for the case of 

ideal medium and the motion of the cosmic 
object on the circular orbit around the center 
of rotation. In the case of 1>>β , which 
takes place for planets, this expression coin-
cides with the Newton law. When 1≤β , the 
attractive force differs considerably from the   
Newton law and spreads much longer than to 
the edge of the galaxy. 

The evaluation of the distances between 
the planets of the Solar system and Sun, 
shows that for the small planets there is good 
agreement with the observed ones with

9080 ÷≈β , but not for the planets-giants. 
The agreement can be achieved if for the 
small planets we take the parameter 

9080 ÷≈β  and for the large planet
5040 ÷≈β . The both solution can be 

“matched” in the region of the asteroid belt 
between the Mars and Jupiter.  Probably, in 
the region of the “matching”, the stationary 
orbits are absent. 

The strange motion of the space crafts 
“Pioneer” can be explained with the influ-
ence of the force of the planets-giants.  

Our investigation has shown that dark 
matter, dark energy and black holes don’t 
exist in the Universe; the attractive force is 
caused by the motion without any special 
gravity field. 

APPENDIX 1 

Let us solve the equation (2) in the para-
metric form. Write three components of this 
equation and the equation of the discontinui-
ty, in variables r,t (for the screw line z = V0t):   

1.     r
pU

t
U r

∂

∂
⋅−=Ω⋅−

∂

∂ '12
ρϕ  

2.     02 =Ω⋅+
∂

∂
rUt

Uϕ

  
 

3.      t
p

Vt
U z

∂

∂
⋅

⋅
−=

∂

∂ '1

0ρ  
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4.      011

0

=
∂

∂
++

∂

∂

t
U

V
U
rr

U z
r

r   

After transformations, we have the equa-
tions for all three components. 

For the radial component rU   : 

0])14(

1[1

22
0

2

2

2

2

2

2
0

=⋅−
Ω

+

+
∂

∂
⋅+

∂

∂
+

∂

∂
⋅

r

rrr

U
rV

r
U

rr
U

t
U

V

  

  (A1) 

For the component zU   we have the equa-
tion, which can be solved after the solving 
the equation (A1) : 

r
rU

r
V

t
U rz

∂

∂
⋅−=

∂

∂ )(1
0  (A2) 

The third component is determined by the 
equation: 

][
2
1

0 r
UV

t
UU zr

∂

∂
⋅−

∂

∂

Ω⋅
=ϕ  (A3) 

It can be solved, if the components rU     
and zU  are known.  

The equation (A1) can be solved with the 
division of the variables:  

)()(),( 11 rRtTrtUr ⋅=  

Taking account the finiteness of the func-
tions, we have the solution in the Bessel 
functions:  

)()exp(),( 1111 βω ⋅⋅⋅= rJtiCtrUr
 

where   14
2

2

0
1 −

Ω
=

ω
ω

β
V  

It is convenient to use the dimensionless 
values. Therefore, we introduce 

01
0

1 ; R
R
rr ⋅== ββ  

where R0 — is the approximate dimension 
of the cosmic object. Then we have: 

)()exp(),( 1 βω ⋅⋅⋅= rJtiCtrUr  

)(2)exp(),( 1 β
ω

ωϕ rJtiiCtrU ⋅
Ω

⋅=  (A4) 

)(14)exp(),( 02

2

β
ω

ω rJtiiCtrU z ⋅−
Ω

⋅⋅=
 

 The constant of the integration C  can 
be found from the boundary conditions.  

APPENDIX 2 

Let us solve the equation (5) in the para-
metric form. Due to the axial symmetry, all 
velocity components don’t depend on the 
variable ϕ  . Write three components of this 
equation and the equation of discontinuity, in 
variables tr,  :  

1.     

]['12 2r
UUD

r
pU

t
U r

rr
r −Δ⋅+

∂

∂
⋅−=Ω⋅−

∂

∂

ρϕ  

2.     ][2 20 r
U

UDU
z
U

v r
ϕ

ϕϕ
ϕ −Δ⋅=Ω⋅+

∂

∂

 
     (A5)

 

3.      zz
z UD

z
p

t
U

Δ⋅+
∂

∂
⋅−=

∂

∂ '1
ρ  

4.     0)(1
=

∂

∂
+

∂

⋅∂
⋅

z
U

r
Ur

r
zr           

Suppose that the “viscosity” is only for 
the radial direction. Then, we have the sys-
tem of equations: 

1.     

]

)(1['12

22

2

r
U

z
U

r
Ur

rr
D

r
pU

t
U

rr

r
r

r

−
∂

∂
+

+
∂

∂

∂

∂
⋅+

∂

∂
⋅−=Ω⋅−

∂

∂

ρϕ
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2.     02 =Ω⋅+
∂

∂
rUt

Uϕ
 

3.      z
p

t
U z

∂

∂
⋅−=

∂

∂ '1
ρ  

4.     0)(1
=

∂

∂
+

∂

⋅∂
⋅

z
U

r
Ur

r
zr           

Taking into account the fact that in the 
case of ideal medium all components of the 
velocity are proportional to )exp(~ tiω  , sup-
pose  the same time dependence in this case 
as well. Then we have the system of equa-
tions:  

1.     

]

)(1['12

22

2

r
U

z
U

r
Ur

rr
D

r
pUUi

rr

r
rr

−
∂

∂
+

+
∂

∂

∂

∂
⋅+

∂

∂
⋅−=Ω⋅−

ρ
ω ϕ

 (A6)
 

2.     02 =Ω⋅+ rUUi ϕω  (A7) 

3.      z
pUi z ∂

∂
⋅−=
'1

ρ
ω  (A8) 

4.     0)(1
=

∂

∂
+

∂

⋅∂
⋅

z
U

r
Ur

r
zr  (A9) 

From the equation (A9) we have: 

r
Ur

ri
V

U r
z ∂

⋅∂
⋅−=

)(10
ω

 (A10)
 

From the equation (A7) we have: 

rUi
U

ωϕ

Ω
−=
2

 (A11)
 

The substitution of (A10) and (A11) into 
the equation (A6) gives the equation for the 
radial component Ur:    

])(1[

]
)(1[4

22
0

2

2
0

2

r
UU

Vr
Ur

rr
D

r
Ur

rri
V

U
i

Ui

r
r

r
r

r
rr

−−
∂

∂

∂

∂
⋅+

+
⋅∂

⋅
∂

∂
⋅−=⋅

Ω
+

ω
ωω

ω

 

After transformation: 

 ;0]1[1
2

2
2

2

=⋅−+
∂

∂
⋅+

∂

∂
r

rr U
r

b
r
U

rr
U

 

where  
r

r

DiV
V

Di
Rb

ω

ω
ωω

−

+−Ω

⋅= 2
0

2
0

2
22

0

4

 .   

The solution of this equation is the Bessel 
function of the first order on the complex 
variable. The parameter b is complex now.  

)()exp(),( 1 brJtiCtrUr ⋅⋅⋅= ω  

)()exp(2
1 brJti

i
CU ⋅⋅⋅

Ω
−= ω

ωϕ  (A12) 

)()exp(),( 0
0 rbJbti
i
V

iCtrU z ⋅⋅⋅= ω
ω  

All components are quantized here as 
well.  

REFERENCES 
 
Begeman K. G. et al. 1991; MNRAS, 249, 

523. 
 

Bosma A. et al., 1992; ApJ, 400, L21. 

Brownstein J. R., and Moffat J. W. . 2006;   
ApJ, 636,721.  

Cooperstock F. I., Tieu S.. 2005, 
arXiv:astro-ph/0507619. 

 

Doroshkevich A.G., et al., 2012  , Phys. 
Usp., 182, 3 ( Дорошкевич А.Г. , Лукаш 
В.Н., Михеева Е.В. 2012  УФН, 182, 3-
18). 



2	
	

Faber S.M., Gallagher J.S. 1979 ARA&A, 
17, 35. 

Landau L.D., Lifshitz E.M.. 1986  The Hy-
drodynamics. (Л.Д.Ландау, 
Е.М.Лифшиц. Гидродинамика. М., 
Наука,. 733 с.) 

Lukash V.N., et al., 2011 Phys. Usp.54, 
(10). 

Milgrom, M. (1983). ApJ 270, 365;  270,  
371.  

S.M. Moran ,   N. Miller, T. Treu, 
R.S. Ellis, Graham P. Smith    
2007 ApJ,  659,1138Y1152. 

 
Noordermeer E.,  van der Hulst J.M.,  Sanci-

si R.,  Swaters R.S., 
van Albada T. S. 2007 MNRAS ,376, 1513.   
Roscoe D.F. 1997 A&A,  18, 407. 

Rubin V., Ford K. 1970 ApJ, 159, 379. 

Sagnac M.G., 1913 C.R.Acad.Sci., 
v.157,708, 1410; 1914 J.Phys.Ser.5 (Par-
is)., v.4,177. 

Simard L., Pritchet C. J.. 1998, ApJ,  505, 
96. 

Sofue O., Rubin V. 2001 ARA&A, 39, 137. 

Stabile A. and  Capozziello S. 2013 Phys. 
Rev. D 87, 064002. 

 
Volders L. 1959 Bulletin of the Astronomi-

cal Institutes of the Netherlands  14 
(492): 323. 

 

Wechakama M., Ascasibar Y. 2011 
MNRAS, 413, 1991. 

Zasov A.V., Hoperskov A.V. 2003   Letters 
to the  Astronomical Journal, 29, 497 
(Засов   A.B., Хоперсков A.B. 2003 
Письма в Астрономический журнал, , 
29, 497). 

 


