Quantifying the Mind’s Interaction with the Laws of Physics and Cosmology

by

Jeffrey S. Keen
BSc Hons ARCS MInstP CPhys

www.jeffreykeen.co.uk

Abstract

This paper was presented at the 2016 SSE European conference in Sweden, and addresses two fundamental areas of physics and cosmology that involve a “universal consciousness”. (a) It shows where Einstein was incorrect: it is not only possible to communicate information faster than the speed of light, but this can be instantaneous. (b) The main challenge in physics today is unifying quantum theory with gravity: it is demonstrated that the extended mind is involved in solving this problem.

The author has spent over 30 years researching the mind’s interaction with the laws of physics, subtle fields, and the cosmos. This has been achieved by quantifying sensed data and discovering formulae and universal constants. A technique, developed by the author, involving a singularity is explained for noetically studying subtle fields and abstract geometry. This has produced some ground-breaking and fundamental findings, demonstrating that the mind is very sensitive to geometry and both local and astronomical forces.

The most exciting aspects are the quantified results and graphs that have been obtained from a specified subtle energy beam length (L) measured over the last eight years. For example, during the course of a day a sinusoidal curve is obtained with maxima at sunset and minima at sunrise, even if measurements are made in a darkened room on a cloudy day.

Another example is that the mind can detect a lower gravitational force on Earth, when the sun and moon’s gravity are pulling in opposite directions at full moon, resulting in a peak in L. Likewise, a higher gravitational force, when the sun and moon’s gravity are pulling in the same direction at new moon, results in counter-intuitive shorter lengths of L.

The mind also detects changes in the Newtonian gravitational force, F_g, as the earth orbits the sun. Over the course of a year, a plot of L produces an equation $L=6E+105*F_g^{-5}$ which has a very high correlation coefficient $R^2 = 0.9745$. The power index is Feigenbaum’s constant within 0.013% error. This is another example of the mind’s ability to interact with gravity and produce a universal constant, suggesting that consciousness is intimately connected to the fabric of the universe and chaos theory.

Any three objects in alignment, be they 3 grains of sand, three trees, 3 coins, 3 stones, three abstract circles drawn on paper, or even three objects in the solar system all form a strong subtle energy beam that experimentally has been perceived to extend endlessly. In particular, this beam has been measured during alignments across the solar system. These have included eclipses of the sun and moon, to a transit of Neptune by the moon. The data was analysed weeks after the events. In all cases L peaked before the predicted time of the occlusion. This time was always identical to the time it takes light to reach an observer on earth from the furthest of the 3 planets in alignment, on the day of the experiment. This demonstrates that the mind can communicate not only faster than light, but instantaneously across the solar system, and the structure of the universe is such to enable this to happen. It also suggests that macro entanglement is possible.

The findings in this paper significantly impact cosmology, and in particular show that Inflation Theory just after the big bang is unnecessary to explain the current structure of the universe.
Technique and Protocol

Dowsing is usually associated with physical objects. It is well known that the subtle energies associated with objects change properties and dimensions over time. Geometrical shapes also emit subtle energy lines, even if they are abstract and drawn on paper, or visualised in 3-dimensions as floating in air. These too vary over time.

Dowsing any geometrical shape produces unique subtle energies \(^{41}\). The most practical and accurate protocol for scientific measurement is to use the simplest geometry – a dot \(^{23}\). Although scientists often avoid a singularity, I am happy to research them for the following reasons.

As depicted in Figure 1, a dot produces a horizontal subtle energy beam, with an outward flow towards the observer. This beam ends in a clockwise spiral, which in reality is a 3-dimensional conical vortex with a vertical central axis \(^{13}\). It also has a perceived colour of white. The perceived length of the beam I have defined as L. This is measured from the source dot, to the central vertical axis of the spiral. In practice, L has values between 0-10 m.

![figure1.png](image)

Figure 1. Dowsing a Dot

The authors preferred technique is to draw a dot, in pencil, on a small sheet of white paper fixed (with blue tack) vertically to a wall at floor level. A tape-measure is placed on the floor between the observer and the dot. The observer moves towards the dot using any method of dowsing until the central axis of the spiral is detected. To obtain the most accurate reading of L, attempting to use traditional pendulums or angle rods is probably not good enough. Device-less dowsing (obtained after many years of practice) is required by using a pointer no thicker than 1 mm. The dowser kneels at floor level moving the pointer along the tape-measure until the spiral’s vertical axis is detected. This procedure also has the benefit of removing any parallax errors in measurements, between the observer’s eyes and the tape-measure.

There are 3 reasons why this is a powerful technique for scientific research

1. L can be measured very accurately to within 2 mm.

2. L is very sensitive to both local and astronomical forces such as gravity, spin, magnetism, tides, light / electromagnetic fields, and, (importantly), geometric alignments.

3. L is also affected by other subtle fields under investigation, such as their flow, colour, ability to pass through solids, or any vector properties. The latter is important because some subtle fields affect measurements depending on the direction of measurement.
This is especially applies for practical fieldwork such as the study of “earth energy” lines or psi-lines.

No doubt, some readers will be sceptical about these claims and require some proof. In March 2008 I introduced 13 cynical UK Dowsing Research Group members to this technique. Without any practice, they individually dowsed the dot and measured L without any difficulty. This was repeated on 6 occasions over 2 days. A summary of the results of the personal variations and group statistics appears in Table 1, and indicates a 13% variance.

<table>
<thead>
<tr>
<th>DRG Member</th>
<th>8/3/08 12:30:00 metres</th>
<th>8/3/08 16:00:00 metres</th>
<th>8/3/08 21:00:00 metres</th>
<th>9/3/08 09:30:00 metres</th>
<th>9/3/08 13:00:00 metres</th>
<th>9/3/08 17:00:00 metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.95</td>
<td>4.37</td>
<td>3.10</td>
<td>3.95</td>
<td>3.65</td>
<td>3.56</td>
</tr>
<tr>
<td>b</td>
<td>3.75</td>
<td>2.11</td>
<td>3.80</td>
<td>3.16</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3.10</td>
<td>2.60</td>
<td>3.22</td>
<td>3.05</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3.98</td>
<td>2.35</td>
<td>3.87</td>
<td>3.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2.50</td>
<td>3.60</td>
<td>3.40</td>
<td>3.45</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>4.60</td>
<td>4.95</td>
<td>4.75</td>
<td>4.55</td>
<td>4.60</td>
<td>4.72</td>
</tr>
<tr>
<td>g</td>
<td>3.80</td>
<td>3.67</td>
<td>3.30</td>
<td>2.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>3.87</td>
<td>3.40</td>
<td>3.50</td>
<td>3.86</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>3.88</td>
<td>3.93</td>
<td>3.49</td>
<td>3.87</td>
<td>3.61</td>
<td>3.76</td>
</tr>
<tr>
<td>j</td>
<td>3.50</td>
<td>3.80</td>
<td>4.30</td>
<td>3.85</td>
<td>4.40</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>3.80</td>
<td>3.90</td>
<td>3.80</td>
<td>3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>2.60</td>
<td>2.60</td>
<td>2.50</td>
<td>2.90</td>
<td>2.65</td>
<td>2.60</td>
</tr>
<tr>
<td>m</td>
<td>4.60</td>
<td>4.10</td>
<td>3.70</td>
<td>4.40</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.61</td>
<td>3.72</td>
<td>3.24</td>
<td>3.79</td>
<td>3.58</td>
<td>3.78</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>0.46</td>
<td>0.50</td>
<td>0.63</td>
<td>0.32</td>
<td>0.36</td>
<td>0.50</td>
</tr>
<tr>
<td>%</td>
<td>12.64%</td>
<td>13.34%</td>
<td>19.50%</td>
<td>8.56%</td>
<td>10.12%</td>
<td>13.22%</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>4.60</td>
<td>4.95</td>
<td>4.75</td>
<td>4.55</td>
<td>4.60</td>
<td>4.72</td>
</tr>
<tr>
<td>Minimum Value</td>
<td>2.50</td>
<td>2.60</td>
<td>2.11</td>
<td>2.90</td>
<td>2.65</td>
<td>2.60</td>
</tr>
<tr>
<td>Max:Min Ratio</td>
<td>1.84</td>
<td>1.90</td>
<td>2.25</td>
<td>1.57</td>
<td>1.70</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Table 1. DRG initial variation in the measurement of L

Repeating the group experiment 3 months later produced an interesting improvement in performance. As shown in Table 2, the standard deviation had improved from a group variance of 13% to 7%. Practice makes perfect! It took me about 3 years to attain an accuracy to 2 mm. These results give confidence in the protocol when using this technique.

When dowsing “subtle energies”, one does not perceive a physical entity, but is creating a model in the dowser’s mind. A good analogy is with sight. Sight is a model in the brain – not just an image on the retina, but a perception in brain cells via the eyes’ retina, colour separation, rods and cones, stereo vision, and information transmissions along optic nerves to the brain. These separate components are combined in the brain and very young children learn to associate the 3-dimensional sight model in the brain with physical reality using touch.

Dowsers “perceive” the same phenomenon, but in slightly different places in the brain. The brain attempts to superimpose its dowsing model onto its sight model. The two are not
always synchronised, especially if the dowser can neither see nor touch the subtle energy being investigated. Therefore there are differences how each person’s brain superimposes its dowsing model onto its sight model. Each individual’s measurements are not absolute, but consistent. This explains the variances in Table 1 and 2.

It will be noticed from Tables 1 and 2 that L changes during the course of the day. Figure 2 is a plot of the data in Table 1 and is typical when measuring L in any environment. This sinusoidal curve motivated me into researching the causes of these changes. I have published over 50 papers on my findings, as well as a book *Consciousness Intent and the Structure of the Universe*, but I will now briefly discuss five significant measurements of L that challenge science.

![Graphical representation of Table 1](image1)

Figure 2. A graphical representation of Table 1

Daily Variations in L

![Typical daily variations in L](image2)

Figure 3. Typical daily variations in L

Figure 3 is a graph of L over an arbitrary 30-hour period. Initially it looks like a graph of the stock market! The main factors are local sunrise and sunset, indicating peaks at sunset at 8:00 pm, and a trough at sunrise at 6:18 am on the date of measurements. There is a 25% variation in L from peak to trough.

What happens at the sunset peak in more detail? The data for the graph in Figure 4 was measured during a sunset at Funchal in Madeira. The observing location had optimum
viewing conditions: on a cliff top facing southwest, with a clear sky, the sunset was over the sea, with a cloudless clear view of the setting sun on the horizon. Measurements were taken every 30 seconds.

![Graph](image)

Figure 4. Measurements of L taken during a sunset at Funchal Madeira

As is apparent, the peak starts as the sun touches the horizon. The maximum length is when half of the sun is below the horizon. The peak ends just when the sun has fully set. The effect lasted about 5 minutes.

What is the cause? It is not the obvious answer of light. The same result is obtained if measurements are made in a windowless basement on a cloudy rainy day. It seemed that L was affected by a subtle energy that could pass through solids. It has taken 7 years after the data was collected to find a partial suggestion, which is depicted in Figure 5.

![Diagram](image)

Figure 5. A cross section of the subtle energy beam L

On analysing the dot’s beam during the day, 2 components are found, each with a different subtle energy:-

1. a rod shape with a bluish colour
2. a yellow cylinder inside the rod

At night, the yellow subtle energy cylinder disappears and L shrinks. This suggests that the yellow cylinder is produced by the Sun, and this subtle energy is absorbed and accumulated during the day, and released gradually during the night.
This needs to be verified independently. Using the author’s categorisation of different types of subtle energies, the initial properties of the blue subtle energy is Type 5, whilst the yellow is Type 9.

Lunar Effects on L

Figure 6 is a plot of L over a Lunar Month. The main variations are due to the interaction of the earth’s and moon’s gravity. As depicted in Figure 7, a new moon produces a higher gravitational force to an observer on Earth, as the sun and moon’s gravity are pulling in the same direction. Counterintuitively, L forms a trough and shrinks to 0 metres near a new moon. On the other hand, a full moon produces a lower gravitational force on Earth, as the sun and moon’s gravity are pulling in opposite directions. However, L increases near full moon, and in this instance L climbs to a peak of over 7 meters.

![Figure 6. The moon's effect on L](image1)

![Figure 7. The effect of the moon's gravity](image2)

This is not the same as the cause of tides. Tides are daily. Full and new moons are every 2 weeks. The effect on L is opposite to higher gravity causing higher tides. In general, higher gravity results in shorter lines. Lower gravity results in longer lines. The reasons for this are discussed in the following sections.

Quantifying the Mind’s Interaction with Cosmology v11
Over thousands of years, there has been anecdotal evidence of new moon, and full moon affecting both plants and animal life. If the cosmos affects our dowsing and minds, what else does it affect: Possibilities include health, mood swings, menstrual cycle, turtles hatching, and even lunacy?

Gravity in General

This section explores gravity in general; ambitiously, across the Solar System. Many years ago I discovered that the dimensions of auras & subtle energies increased when climbing up low hills or up mountains. The effect is even greater when flying at 32,000 feet over the Atlantic: my experiments causing much consternation amongst the cabin crew worrying about terrorism!

These observations, together with those just discussed in relation to the moon, caused me a Gravity Paradox as they presented 3 problems:-

1. Lower gravity producing longer lines did not seem logical. (It is opposite to tides)

2. The decrease in Newtonian gravity at the top of a hill, or even at 32,000 feet is insignificant compared to the significant increase in L.

3. Why should the increased length of L, be many orders of magnitude greater, than the inverse of the change in the Newtonian force of gravity?

To solve this paradox, I measured L over an 18-month period, as the earth’s elliptical orbit provided a varying gravitational force between the sun and earth. The protocol was refined numerous times, to eliminate all non-gravitational variations. For example, measurements were made at the same time every day to overcome daily variance. In addition, dates were chosen to compensate for spin and rotation of the moon. The findings are presented graphically in Figure 8.

![Figure 8. The measurement of L over an 18 month period](image)
Measurements on the top line were made when the moon’s orbit was in the same direction as the earth orbiting the sun. The bottom line plots measurements taken when the moon’s orbit was in the opposite direction to earth’s going round sun. The middle line is an average of these two lines, in order to eliminate the effects of spin from gravity. The main features are:

- Perihelion, (when the earth is closest to the sun), produces a higher gravity: but a trough in L
- Aphelion, (when the earth is furthest from the sun), produces lower gravity: but a peak in L

It is very reassuring, that after this 18 month experiment, these findings are compatible with Figure 6 and the earlier findings detailed above. However, these results did not resolve my double paradox –

1. Why was L affected by gravity? And
2. Why did weaker gravity produce longer lines?

Using the well-established Stellarium program, the data in Figure 8 was reanalysed, about 1 year later. As the earth circled the sun, L was plotted against the actual Newtonian gravitational force between the Sun and Earth, on the date L was measured. This is shown in Figure 9 and led to my discovery of an enhanced Newtonian gravity equation, which is exponential,

\[L = 6 \times 10^5 \cdot F_g^{-\delta} \]

(i)

For the non-mathematical reader who finds equations off-putting, the essence of this formula is as follows:-

The length of the subtle energy beam emanating from the dot (which is measured to be in the range 0 to 10 m for observations on earth) is determined by a very large number divided by a similar number having 1 less nought (the Newtonian force of gravity F_g raised to the inverse power of a constant).

![Figure 9. The results of plotting the data in Figure 8 against the actual gravitational force between the Earth and the sun at the time of data measurements](image-url)
Encouragingly, just from inspecting the graph in Figure 8, and without any knowledge of mathematics or graphs this equation is compatible with all the previous findings -

L increases as gravity decreases towards the left
L decreases as gravity increase to the right

Looking at this equation in more detail, it is immediately apparent that this formula has a very high correlation coefficient $R^2 = 0.9745$ indicating that the data fits the equation to a very high accuracy. Even more important is that the power index, δ, is Feigenbaum’s first universal constant. Data that produces universal constants is the gold standard for producing recognised scientific discoveries. Moreover, the power index in the equation (i) is within a remarkably accurate 0.013% error of the accepted accurate value of Feigenbaum’s constant, as depicted in Table 3.

<table>
<thead>
<tr>
<th>Power Index from Equation</th>
<th>4.6698</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feigenbaum’s Constant</td>
<td>4.6692</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.0006</td>
</tr>
<tr>
<td>% Difference</td>
<td>-0.0129%</td>
</tr>
</tbody>
</table>

Table 3. Gravity, chaos, and the mind

Feigenbaum’s Constant is usually associated with bifurcation, fractals, turbulent flow, and chaos theory. I was obviously not only astounded by this unexpected relationship, but also with its very high accuracy. However, this still leaves 2 challenges.

1. How and why does gravity change L? A possible answer is that L is a subtle energy beam created by geometry. Using the language of general relativity, higher gravity causes a high distortion in the local geometry of space-time. I postulate that this diminishes L. On the other hand, low gravity produces little distortion in the geometry of space-time so L can expand unhindered.

2. Each side of the equation has totally different units: Length and Newtons (kg m s$^{-2}$). Normally, I would reject this result as bad data. However, as this equation has a very high accuracy, involving a universal constant (also to a very high accuracy), I feel this result should be taken seriously!

Geometric Alignment

I have experimented with many three-body alignments including 3 grains of sand, 3 coins, 3 abstract circles drawn on paper, and even 3 objects in the solar system. In each case, they always form a strong alignment subtle energy beam, having the same properties. This is depicted in Figure 10. The beams are perceived to go on endlessly. They are also perceived as having a mauve or violet colour. 28

Quantifying the Mind’s Interaction with Cosmology v11
The internal structure of the alignment beams is 7 or 9-fold fractal geometry, and is similar to mind generated psi-lines, columnar vortices generated by a range of physical objects such as Amethyst geode’s, Jupiter’s red spot, pyramids, cones, a stack of CDs interspersed with paper, sun spots, as well as the L beam created by a dot. An example is shown in Figure 11. This cross-section comprises 3 rings each with 7 subtle energy “rods” and a central core, held together by a web that keeps the beam parallel indefinitely. This fractal geometry pattern is repeated smaller and smaller for each rod and core. Alignment beams created by solar bodies probably have diameters greater than that of the earth. Because these alignment beams are fractal, the local L beam acquires the same geometry but at a much smaller size than the beam being investigated.

Figure 11. An example of the side view and cross-section of the internal structure of an alignment beam

Figure 12. The angular limits of 3-body alignment

What is the geometric tolerance of 3-body alignment in practice? As depicted in Figure 12, for an observer on the blue sphere, the maximum deviation out of perfect alignment depends on the position of the observer in relation to the third body.

- For observations from a “full moon”, or inner body situation, the deviation from a straight line through the centres of the 3 bodies must be less than or equal to arcsine $\frac{\pi}{4}$ (14.4775°)

- For observations from a “new moon”, or outer body location, the deviation must be less than or equal to arcsine $\frac{1}{5}$ (11.537°)

It is instructive to examine a lunar eclipse, which is a practical example of a 3-body alignment. This eclipse was not even visible in the UK, where the measurements were made. The 3-body alignment subtle energy beam, which passed through the earth, caused a peak in L. The data for this experiment is represented graphically in Figure 13. Note that the dot’s white subtle energy beam, L, has been affected by the alignment beam’s mauve colour. This shows that the alignment beam extends over the 2-hour duration of the peak, and is the cause of this peak.

Quantifying the Mind’s Interaction with Cosmology v11
Figure 13. An example of a 3-body alignment beam produced by an eclipse of the moon

Faster than Light

All astronomy is history, as it assumes that the light being observed has left its source sometime in the past. The published predictions for the exact times of astronomical events and alignments are based on observations made on earth. Excitingly, alignment beams can be used to measure the velocity of the mauve subtle energy beam, and hence, the speed of the mind's perception of information can also be measured\(^\text{31}\).

As in all dowsing or noetics, the mind’s intent is important. I repeated the experiment in Figure 13, but this time before starting, I mediated on 3-body interaction, with the relevant solar bodies. I have repeated minute by minute, accurate measurements of L on numerous Full Moons. Figure 14 is two of many examples showing the difference between the predicted time of full moon and the peak of L. In all cases, the detected peak was 5 - 10 minutes earlier than the published time of the full moon, which is depicted as the vertical green lines. This time difference is the same order of magnitude as the time sunlight takes to reach Earth from the sun. This suggests faster than light communication by the mind.

Figure 14. Initial examples of faster than light experiments

What happens if we increase accuracy by using longer distances, and hence times, in the solar system? The following Figures plot the experimental values of L for Jupiter, Saturn, and Neptune conjunctions. In all cases, the mauve alignment beam lasts for the duration of the peak, and changes L from white to mauve.
In all these alignments, weeks after the experiment, and days after plotting the graphs, the accurate actual distance between the Earth and the planet under investigation on the day of the experiment, was ascertained from Stellarium as well as using the very accurate US Navy astronomical tables. Similarly, accurate prediction times were obtained by running Stellarium backwards, together with information from the International Occultation Timing Association.

As shown in Figure 15, the Jupiter peak was 45 minutes before the predicted time of conjunction, which is identical to the time light took to reach Earth from Jupiter. Using the speed of light in a vacuum, the accurate time reflected sun light from Saturn, took to reach an observer on Earth (on the day of the experiment), was 1 hour 18 minutes. Again, as shown in Figure 16, this is in remarkable agreement with the 1 hour 19 minutes obtained from the dowsed data plotted weeks earlier.

![Figure 15. Instantaneous communication across the solar system to Jupiter](image1)

![Figure 16. Instantaneous communication across the solar system to Saturn](image2)

I wanted to discover if the extended mind can receive information, much faster than light, from the furthest planet. There was a good opportunity in September 2016 when there was a near perfect transit of Neptune by the Moon. As is apparent from Figure 17, the graph shows all the same features as the previous alignments. The peak’s maximum, as detected by the mind at 16:37, was 3 hours 53 minutes before the predicted time of the conjunction at 20:29.2 which, in Figure 17, is off the scale to the right. Light took a few seconds over 4 hours to reach Earth from Neptune at the time of transit. This demonstrates again instantaneous communication within a 3% experimental error.

Quantifying the Mind’s Interaction with Cosmology v11
Conclusions

The findings can be summarised in the following bullet points.

1. the Extended Mind can reach past Neptune,
2. the mind can detect gravitational changes,
3. information can be transmitted not only faster than light, but instantaneously.
4. the mind can detect universal constants.
5. *Inflation Theory* may not be necessary to explain the current universe.

These findings, which are in the macro world, are compatible with quantum entanglement of particles, in the micro world. It has been long known that observation, or in our case conscious intent, affects measurements. It would seem that the structure of the universe enables 2 or more bodies to “know” where they are in space-time. Similarly, 3-interacting bodies must also “know” when they are in alignment. They all have instantaneous communication.

The mind interacts with geometry, the laws of physics, and finds universal constants. Universal Consciousness, which started with the Big Bang, is intimately connected to the structure and fabric of the universe, and chaos theory. The solution to quantum gravity involves consciousness.

These findings also have an obvious impact on cosmology. In particular, the existence of instantaneous communication avoids the need for Inflation Theory just after the big bang.

Therefore, we should encourage a new meaning to the concepts of “mind” “intent” and consciousness”. So, more research is needed into how & why the mind interacts with the cosmos.
Author’s References

13. *The Anatomy of Conical Helices, Consciousness, and Universal Constants* - Parts 1, 2, 3, 4 February 2007, Vol. 47 No. 1 The American Dowser

45. *Consciousness, the Laws of Physics, the Big Bang, and the Structure of the Universe*; June 2013 NeuroQuantology Vol 11, No 212 September 2012; Published as an e-print in http://vixra.org/abs/1209.0033

© 2016 by Jeffrey S Keen

All rights reserved. No part of this article may be reproduced, stored in a retrieval system, or transmitted or translated in machine language in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. The moral right of Jeffrey S Keen to be identified as author of this work has been asserted in accordance with the copyright, design, and patents act 1988.