
Alternate Approach of Comparison for Selection

Problem

Nikhil Shaw

nikhilshaw ra@srmuniv.edu.in

SRM University, Chennai

Abstract

This paper proposes an alternate approach to solve the selection problem and
is comparable to best-known algorithm of Quickselect. In computer science,
a selection algorithm is an algorithm for finding the Kth smallest number in
an unordered list or array. Selection is a subproblem of more complex prob-
lems like the nearest neighbor and shortest path problems. Previous known
approaches work on the same principle to optimize the sorting algorithm
and return the Kth element. This algorithm uses window method to prune
and compare numbers to find the Kth smallest element. The average time
complexity of the algorithm is linear and has the worst case of O(n square).

Keywords: Order statistics, Selection

1. Introduction1

The selection problem is defined as follows: given a set X of n elements2

in an unsorted order, find Kth smallest/largest element in X where k lies3

between 1 and n. One may generalize the selection problem to apply to4

ranges within a list, yielding the problem of range queries. In data structures,5

a range query consists of preprocessing some input data into a data structure6

to efficiently answer any number of queries on any subset of the input. The7

question of range median queries (computing the medians of multiple ranges)8

has been analyzed.9

Various approaches are used to solve the problem, selection by sorting,10

partition based selection and using data structures to select in linear time.11

The new proposed algorithm works on the principle that given an unordered12

set X of n elements, Kth smallest element has k-1 elements smaller and n-k13



elements greater than it in X. Reading set from left and by comparing each14

element with all other elements to its right, kth element is determined. The15

algorithm uses an upper and lower limit which are encountered elements just16

smaller and greater than the kth element. The limits are used to skip over17

elements for comparison which do not fall inside it. Below we discuss some18

algorithms to solve the problem.19

1.1. Heapselect20

Beneficial when the aim is to find the smallest/largest element. A min/max21

heap can be formed with an insertion operation of O(nlogn) and O(1) for re-22

turning the element. However to retrieve Kth smallest/largest element, k23

return/delete operation(s) has to be performed costing O(klogn).24

heapselect(A,k)25

{26

heap H = heapify(A)27

for (i = 1; i < k; i++)28

remove min(H)29

return min(H)30

}31

1.2. quickselect32

Linear performance can be achieved by a partition-based selection algo-33

rithm, most basically quickselect. Quickselect is a variant of quicksort in34

both one chooses a pivot and then partitions the data by it, but while quick-35

sort recurses on both sides of the partition, quickselect only recurses on one36

side, namely the side on which the desired Kth element is. As with quicksort,37

this has optimal average performance, in this case linear, but poor worst-case38

performance, in this case quadratic.39

quickselect(A,k)40

{41

pick x in A42

partition A into A1<x, A2=x, A3>x43

if (k <= length(A1))44

return quickselect(A1,k)45

else if (k > length(A1)+length(A2))46

return quickselect(A3,k−length(A1)-length(A2))47

else return x48

}49

2



1.3. Floyd-Rivest Algorithm50

sampleselect(A,n,k)51

{52

given n,k choose parameters m,j ”appropriately”53

pick a random subset A’ having m elements of A54

x = sampleselect(A’,m,j)55

partition A into A1<x, A2=x, A3>x56

if (k <= length(A1))57

return sampleselect(A1,k)58

else if (k > length(A1)+length(A2))59

return sampleselect(A3,k−length(A1)−length(A2))60

else return x61

}62

The basic idea is that the closer x is to the Kth position, the more items63

we’ll eliminate in the final recursive call. By taking a median of a sample,64

instead of just choosing randomly, we’re more likely to get something closer65

to the Kth position.66

2. Algorithm67

sampleselect(A, n, k)68

{69

Assign L and U(lower limit and upper limit) to k-1 and n-k,70

El and Eu(Encountered element just lower and just larger than A[k])71

to -inf and +inf respectively72

for(i=0; i<n; i++)73

{74

if(i equals n−1)75

{ A[i] is the Kth element)}76

if (A[i] doesn’t lie between El and Eu)77

{78

if(A[j]<E1)79

{L= L−1}80

else81

{U= U−1}82

continue the loop83

}84

Assign both Cs and Cl (counters) to 085

3



for(j=i+1; j<n; j++)86

{87

if(arr[j] < arr[i])88

{ Cs = Cs+1}89

else90

{Cl = Cl+1}91

if (Cs > L)92

{93

U = U−194

Eu= A[i]95

break96

}97

else if (Cl > U)98

{99

L = L−1100

El = A[i]101

break102

}103

}104

if(Cl equals El) and (Cu equals Eu)105

{ A[i] is the Kth element}106

}107

}108

The basic idea is that for Kth element, there can only be k-1 smaller109

and n-k larger elements. The algorithm uses a window El and Es to skip110

comparing all of the element of the array. Let L(i) be length of the window111

(El − Es), then112

L(i) <= L(i + 1) (1)

3. Analysis113

The algorithm works faster in cases when K is either close to 1 or to the114

size of the array. In worst case, it will check all of the elements of the integer115

array to reach the solution. Best case is when the Kth element is in the first116

position of an unsorted array. Time Complexity in such a case is O(n). On117

the other hand, when Kth element is present at the end of the unsorted array118

and elements are arranged in alternate order smaller and greater than the119

4



Kth element (from greatest to smallest) time complexity will be O(n square).120

Below are examples to illustrate the arrangement.121

Figure 1: Best case

Figure 2: Worst case

The algorithm performs better when K is closer to 1 or the size of the122

array. Below diagram illustrates the performance with the variation of K.123

Figure 3: Variation of completion time for different values of k processed on 4x Intel(R)
Core(TM) i5-4210U CPU @ 1.70GHz.

Below is comparison of the proposed algorithm with insertion sort and124

quick select algorithm.125

5



Figure 4: Variation of completion time for k=1 for proposed algorithm (blue), insertion
sort (green) and quick select (red) processed on 4x Intel(R) Core(TM) i5-4210U CPU @
1.70GHz.

4. Conclusion126

The algorithm works in linear time when Kth element is present in the127

starting position or when elements just smaller or greater than Kth element is128

present in the initial positions of the unsorted array. Although the proposed129

algorithm is comparable to quick select algorithm, quick select works better130

in certain cases.131

5. Reference132

[1] http://www.sgi.com/tech/stl/nth element.html133

134

[2] http://www.ics.uci.edu/ eppstein/161/960125.html135

136

[3] https://en.wikipedia.org/wiki/Selection algorithm137

6


