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Abstract— The selection of shortest path problem is one the 
classic problems in graph theory. In literature, many algorithms 
have been developed to provide a solution for shortest path 
problem in a network.  One of common algorithms in solving 
shortest path problem is Dijkstra’s algorithm. In this paper, 
Dijkstra’s algorithm has been redesigned to handle the case in 
which most of parameters of a network are uncertain and given 
in terms of neutrosophic numbers. Finally, a numerical example 
is given to explain the proposed algorithm. 

Keywords— Dijkstra’s algorithm; Single valued neutrosophic 
number; Shortest path problem; Network. 

I. INTRODUCTION  
To express indeterminate and inconsistent information which 
exist in real world, Smarandache [1] originally proposed the 
concept of a neutrosophic set from a philosophical point of 
view. The concept of the neutrosophic set (NS for short) is 
powerful mathematical tool which generalizes the concept of 
classical sets, fuzzy sets [3], intuitionistic fuzzy sets [4], 
interval-valued fuzzy sets [5] and interval-valued intuitionistic 
fuzzy sets [6]. The concept of the neutrosophic has three basic 
components  such that a truth-membership (T), indeterminacy-
membership (I) and a falsity membership (F), which are 
defined independently of one another. But a neutrosophic set 
So will be more difficult to apply it in real scientific and 
engineering areas. Thus , Wang et al. [7] proposed the concept 
of single valued neutrosophic set (for short SVNS), which is 
an instance of a neutrosophic set, whose functions of truth, 
indeterminacy and falsity lie in [0, 1] and provided the set 
theoretic operators and various properties of SVNSs.  Some of 
the recent research works on neutrosophic set theory and its 
applications in various fields can be found in [8]. In addition, 
Thamaraiselvi and Santhi [9] introduced a mathematical 
representation of a transportation problems in neutrosophic 

environment based  on single valued trapezoidal  neutrosophic 
numbers and also provided the solution method. The operations 
on neutrosophic sets and the ranking methods are presented in 
[10] 
The shortest path problem (SPP) is one of the most 
fundamental and well-known combinatorial problems that 
appear in various fields of science and engineering, e.g, road 
networks application, transportation and other applications. In 
a network, the shortest path problem aims at finding the path 
from one source node to destination node with minimum 
weight, where some weight is attached to each edge 
connecting a pair of nodes. The edge length of the network 
may represent the real life quantities such as, time, cost, etc. In 
conventional shortest path problem, it is assumed that decision 
maker is certain about the parameters (distance, time etc) 
between different nodes. But in real life situations, there 
always exist uncertainty about the parameters between 
different nodes. For this purpose, many algorithms   have been 
developed to find the shortest path under different types of 
input data, including fuzzy set, intuitionistic fuzzy sets, vague 
sets [11-15]. One of the most used methods to solve the 
shortest path problem is the Dijkstra’s algorithm [16]. 
Dijkstra’s algorithm solves the problem of finding the shortest 
path from a point in a graph (the source) to a destination.  
Recently, numerous papers have been published on 
neutrosophic graph theory [17-23]. In addition, Broumi et al. 
[24-26] proposed some algorithms to find the shortest path of 
a  network (graph) where edge weights are characterized  by a 
neutrosophic numbers including single valued neutrosophic 
numbers, bipolar neutrosophic numbers and interval valued 
neutrosophic numbers.  
The main purpose of this paper is to propose a new version of 
Dijkstra algorithm for solving shortest path problem on a 
network where the edge weights are characterized by a single 
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valued neutrosophic numbers. The proposed method is more 
efficient due to the fact that the summing operation and the 
ranking of SVNNs can be done in a easy and straight manner.  
The rest of the article is organized as follows. Section 2 
introduces some basic concepts of neutrosophic sets, single 
valued neutrosophic sets. In Section 3, a network terminology 
is presented, In section 4, we propose the new version of 
Dijkstra’algorithm for solving the shortest path with 
connected edges in neutrosophic data. Section 5 illustrates a 
practical example which is solved by the proposed algorithm. 
Conclusions and further research are given in section 6.  

 

II. PRELIMINARIES 
In this section, some basic concepts and definitions on 

neutrosophic sets and single valued neutrosophic sets are 
reviewed from the literature. 

Definition 2.1 [1]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x   X}, where the functions T, I, F: 
X→]−0,1+[define respectively the truth-membership function, 
an indeterminacy-membership function, and a falsity-
membership function of the element x   X to the set A with 
the condition: 
 

                   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.              (1)   
           

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang 
et al. [7] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 
 
Definition 2.2 [7]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X ( )AT x , ( )AI x , ( )AF x   [0, 1]. A 
SVNS A can be written as 
           A = {< x: ( )AT x , ( )AI x , ( )AF x >, x X}        (2) 

Definition 2.3 [10]. Let 1 1 1 1( , I ,F )A T and 2 2 2 2( , I ,F )A T  
be two single valued neutrosophic number. Then, the 
operations for SVNNs are defined as below; 

i. 1 2 1 2 1 2 1 2 1 2, I I ,F FA A T T T T                              (3) 
ii. 1 2 1 2 1 2 1 2 1 2 1 2, I I I I ,F F F F )A A T T                     (4)  

iii. 1 1 1 11 (1 ) ), I , )A T F                                   (5) 

iv. 1 1 1 1( ,1 (1 ) ,1 (1 ) )A T I F        where 0   (6)                                                                              

 
Definition 2.4 [10]. 0n may be defined as follow: 

                 0 { x, (0,1,1) : x X}n                                    (7) 
A convenient method for comparing of single valued 
neutrosophic number is by use of score function. 
Definition 2.5 [11]. Let 1 1 1 1( , I ,F )A T  be a single valued 

neutrosophic number. Then, the score function 1( )s A , 

accuracy function 1( )a A and certainty function 1( )c A of a 
SVNN are defined as follows: 

(i) 1 1 1
1

2
( )

3
T I Fs A   

                                                    (8)      

(ii) 1 1 1( )a A T F                                                                 (9) 

(iii) 1 1c( )A T                                                                     (10) 

Definition 2.6 [11]. Suppose that 1 1 1 1( , I ,F )A T  

and 2 2 2 2( , I , F )A T   are two single valued neutrosophic 
numbers. Then, we define a ranking method as follows:  

i. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 

1A is superior to 2A , denoted by 1 2A A   

ii. If  1 2( ) ( )s A s A  ,and  1 2( ) ( )a A a A  then 1A  is 

greater than 2A , that is, 1A is superior to 2A , denoted 

by 1 2A A   

iii. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   

then 1A  is greater than 2A , that is, 1A is superior 

to 2A , denoted by 1 2A A   

iv. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   

then 1A  is equal to 2A , that is, 1A is indifferent to 2A , 

denoted by 1 2A A   
                                    

III. NETWORK TERMINOLOGY 
 
Consider a directed network G = (V, E) consisting of a finite 
set of nodes V={1, 2,…,n} and a set of m directed edges 
E V x V.  Each edge is denoted by an ordered pair (i, j) 
where i, j   V and i j . In this network, we specify two 
nodes, denoted by  s and t, which are the source node and the 
destination node, respectively. We define a path as a sequence 

ijP ={i= 1i , 1 2( , )i i , 2i ,…, 1li  , 1( , )l li i , li =j} of alternating 

nodes and edges. The existence of at least one path siP in G 
(V, E) is assumed for every i V-{s}. 

ijd  Denotes a single valued neutrosophic number associated 
with the edge (i ,j), corresponding to the length necessary to 
traverse (i, j) from i to j. In real problems, the lengths 
correspond to the cost, the time, the distance, etc. Then 
neutrosophic distance along the path P is denoted as d(P) is 
defined as  
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               d(P)= 
(i, j P)

ijd

                        (14) 

Remark: A node i is said to be predecessor node of node j if 
(i) Node i is directly connected to node j. 
(ii) The direction of path connecting node i and j from i to j. 

IV.  SINGLE VALUED NEUTROSOPHIC DIJIKSTRA ALGORITHM 
In this subsection, we slightly modified the fuzzy Dijkstra 
algorithm adapted from [27] in order to deal on a network 
with parameters characterized by a single valued neutrosophic 
numbers. 
This algorithm finds the shortest path and the shortest distance 
between a source node and any other node in the network. The 
algorithm advances from a node i to an immediately 
successive node j using a neutrosophic labeling procedure. Let 

iu  be the shortest distance from node 1 to node i and 

s ( ) 0ijd   be the length of  (i, j) edge. Then, the neutrosophic 
label for node j is defined as:  

[ ju , i] =[ i iju d  , i].    S ( ) 0ijd  .               (15) 

Here label [ ju , i] mean we are coming from nodes i after 

covering a distance ju  from the starting node. Dijkstra’s 
algorithm divides the nodes into two subset groups: 
Temporary set (T) and Permanent set (P). A temporary 
neutrosophic label can be replaced with another temporary 
neutrosophic label, if shortest path to the same neutrosophic 
node is detected. At the point when no better path can be 
found, the status of temporary label is changed to permanent. 
The steps of the algorithm are summarized as follows: 
Step 1 Assign to source node (say node 1) the permanent label 
[ (0,1,1) ,-]. Set i=1.  
Making a node permanent means that it has been included in 
the short path. 
Step 2 Compute the temporary label [ i iju d  , i] for each node 
j that can be reached from i, provided j is not permanently 
labeled. If node j is already labeled as [ ju , k] through another 

node k, and if S( i iju d  ) < S( ju ) replace [ ju , k] with 

[ i iju d  , i]. 
Step 3 If all the nodes are permanently labeled, the algorithm 
terminates. Otherwise, choose the label [ ru , s] with shortest 
distance ( ru ) from the list of temporary labels. Set i= r and 
repeat step 2. 
Step 4 Obtain the shortest path between node 1 and the 
destination node j by tracing backward through the network 
using the label’s information. 
Remark: 
At each iteration among all temporary nodes, make those 
nodes permanent which have smallest distance. Note that at 
any iteration we can not move to permanent node, however, 
reverse is possible. After all the nodes have permanent labels 
and only one temporary node remains, make it permanent. 

After describing the proposed algorithm, in next section we 
solve a numerical example and explain the proposed method 
completely.  

V. ILLUSTRATIVE EXAMPLE 
Now we solve an hypothetical example to verify the proposed 
approach. Consider the network shown in figure1; we want to 
obtain the shortest path from node 1 to node 6 where edges 
have a single valued neutrosophic numbers. Let us now apply 
the extended Dijkstra algorithm to the network given in figure 
1.  
 
 
 
 

 
 
 
 

 
 

Fig. 1. A network with single valued neutrosophic weights 
 

In this network each edge have been assigned to single valued 
neutrosophic number as follows: 
 

Edges  Single valued Neutrosophic 
distance 

1-2 (0.4, 0.6, 0.7) 
1-3 (0.2, 0.3, 0.4) 
2-3 (0.1, 0.4, 0.6) 
2-5 (0.7, 0.6, 0.8) 
3-4 (0.5, 0.3, 0.1) 
3-5 (0.3, 0.4, 0.7) 
4-6 (0.3, 0.2, 0.6) 
5-6 (0.6, 0.5, 0.3) 

 
                          Table 1.  weights of the graphs 
 
According to Dijikstra’s algorithm we start with  
Iteration 0: Assign the permanent label [ (0,1,1) ,-]  to node 1. 
Iteration 1: Node 2 and node 3can be reached from (the last 
permanently labeled) node 1. Thus, the list of labeled nodes 
(temporary and permanent) becomes 
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] T 
3 [(0.2, 0.3, 0.4), 1] T 

 
In order to compare the (0.4, 0.6, 0.7)  and  (0.2, 0.3, 0.4) we 
use the Eq.8 

S (0.2, 0.3, 0.4) = 2
3

T I F   = 2 0.2 0.3 0.4
3

   =0.5 

(0.4,0.6, 0.7)

(0.5,0.3, 0.1) 

(0.1,0.4, 0.6) (0.3,0.4, 0.7) 

(0.7,0.6, 0.8) 

(0.6,0.5, 0.3) 

(0.3,0.2, 0.6) 

(0.2,0.3, 0.4) 

  2

1

3 
4 

2 5 

6 
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S (0.4, 0.6, 0.7) = 2
3

T I F   = 2 0.4 0.6 0.7
3

   =0.36 

Since the rank of  [(0.4, 0.6, 0.7), 1] is less than [(0.2, 0.3, 
0.4), 1]. Thus the status of node 2 is changed to permanent.  
Iteration 2: Node 3 and 5 can be reached from node 2. Thus, 
the list of labeled nodes ( temporary and permanent) becomes 
 
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] or 

[(0.46, 0.24, 0.42), 2]  
T 

5 [(0.82, 0.36, 0.56), 2]  T 

 

S (0.46, 0.24, 0.42) = 2 0.46 0.24 0.42
3

   =0.6 

S (0.82, 0.36, 0.56) = 2 0.82 0.36 0.56
3

   =0.63 

Among the temporary labels [(0.2, 0.3, 0.4), 1] or 
[(0.46, 0.24, 0.42), 2], [(0.82, 0.36, 0.56), 2] and since the rank 
of (0.2, 0.3, 0.4) is less than of (0.46, 0.24, 0.42) and (0.82, 
0.36, 0.56), So the status of node 3 is changed to permanent.  
 
Iteration 3: Node 4and 5 can be reached from node 3. Thus , 
the list of labeled nodes ( temporary and permanent) becomes 
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1]  P 
4 [(0.6, 0.09, 0.04), 3] T 
5 [(0.82, 0.36, 0.56), 2] 

or 
[(0.44, 0.12, 0.28), 3]  

T 

 

S (0.6, 0.09, 0.04) = 2 0.6 0.09 0.04
3

   =0.82 

S (0.44, 0.12, 0.28) = 2 0.44 0.12 0.28
3

   =0.68 

Among the temporary labels [(0.6, 0.09, 0.04), 3] or 
[(0.82, 0.36, 0.56), 2], [(0.44, 0.12, 0.28), 3] and since the rank 
of (0.82, 0.36, 0.56), is less than of (0.44, 0.12, 0.28) and (0.6, 
0.09, 0.04). So the status of node 5 is changed to permanent.  
 
Iteration 4: Node 6 can be reached from node 5. Thus , the 
list of labeled nodes ( temporary and permanent) becomes 
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1]  P 
4 [(0.6, 0.09, 0.04), 3] T 

5 [(0.82, 0.36, 0.56), 2]  P 
6 [(0.93, 0.18, 0.17), 5]  T 

 
 
Since, there exit  one permanent node  from where we can 
reach at node 6. So, make temporary  label  [(0.93, 0.18, 0.17), 
5] as permanent. 
Iteration 5:  the only temporary  node is 4, this node can be 
reached from node 3 and 6. Thus , the list of labeled nodes ( 
temporary and permanent) becomes 
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1]  P 
4 [(0.6, 0.09, 0.04), 3] or 

[(0.95, 0.04, 0.10),6]  
T 

5 [(0.82, 0.36, 0.56), 2]  P 
6 [(0.93, 0.18, 0.17), 5]  

 
P 

 
In order to compare the (0.6, 0.09, 0.04) and  (0.95, 0.04, 
0.10)  we use the Eq.8 
S(0.6, 0.09, 0.04) =0.82 and S(0.95, 0.04, 0.10) = 0.94   
Since the rank of  [(0.6, 0.09, 0.04), 3] is less than [(0.95, 
0.04, 0.10),6]. And the node 4 is  the only one temporary node 
remains then, the status of node 4 is changed to permanent.  
 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1]  P 
4 [(0.6, 0.09, 0.04), 3]  P 
5 [(0.82, 0.36, 0.56), 2]  P 

6 [(0.93, 0.18, 0.17), 5]  P 
 
 Based on the step 4, the following sequence determines the 
shortest path from node 1 to node 6  
(6)  [(0.93, 0.18, 0.17), 5]  (5)  [(0.82, 0.36, 0.56), 2]  
 (2)  [(0.4, 0.6, 0.7), 1]  (1) 
Thus, the required shortest path is 1 2 5 6    
 

 
 
 

 
 

 
 

 
 
 

FIG 2. Network with single valued neutrosophic shortest 
distance of each node from node 1 

VI. CONCLUSION 

  2

1

3
4 

2 5 

6

(0.5,0.3, 0.1) 

(0.6,0.5, 0.3)

(0.3,0.2, 0.6) 

(0.4,0.6, 0.7)

[(0.6,0.09, 0.04), 3] 
[(0.2,0.3, 0.4), 1] 

[(0.93,0.18, 0.17), 5] 

[(0.4,0.6, 0.7), 1] 

(0.3,0.4, 0.7) 

(0.7,0.6, 0.8) [(0.82,0.36, 0.56), 2] 

(0.2,0.3, 0.4)

(0.1,0.4, 0.6)

[(0.,1, 1), -] 
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This paper extended the fuzzy Dijkstra’s algorithm to find the 
shortest path of a network with single valued neutrosophic 
edge weights. The use of neutrosophic numbers as weights in 
the graph express more uncertainty than fuzzy numbers. The 
proposed algorithm proposes solution to one issue, this issue 
is addressed by identification of shortest path in neutrosophic 
environment. A numerical example was used to illustrate the 
efficiency of the proposed method. In future, we will research 
the application of this algorithm. 
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