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The generalized Dice measures for multiple
attribute decision making under simplified
neutrosophic environments

Jun Ye∗
Department of Electrical and Information Engineering, Shaoxing University, Shaoxing,
Zhejiang Province, P.R. China

Abstract. A simplified neutrosophic set (SNS) is a subclass of neutrosophic set and contains a single-valued neutrosophic
set (SVNS) and an interval neutrosophic set (INS). It was proposed as a generalization of an intuitionistic fuzzy set (IFS)
and an interval-valued intuitionistic fuzzy set (IVIFS) in order to deal with indeterminate and inconsistent information. The
paper proposes another form of the Dice measures of SNSs and the generalized Dice measures of SNSs and indicates that
the Dice measures and asymmetric measures (projection measures) are the special cases of the generalized Dice measures in
some parameter values. Then, we develop the generalized Dice measures-based multiple attribute decision-making methods
with simplified neutrosophic information. By the weighted generalized Dice measures between each alternative and the ideal
solution (ideal alternative) corresponding to some parameter value required by decision makers’ preference, all the alternatives
can be ranked and the best one can be obtained as well. Finally, a real example on the selection of manufacturing schemes
demonstrates the applications of the proposed decision-making methods under simplified neutrosophic environment. The
effectiveness and flexibility of the proposed decision-making methods are shown by choosing different parameter values.

Keywords: Generalized Dice measure, Dice measure, decision making, simplified neutrosophic set, asymmetric measure,
projection measure

1. Introduction

Multiple attribute decision making is a main branch
of decision theory, where neutrosophic theory intro-
duced by Smarandache [1] has been successfully
applied in recent years. As a generalization of an
intuitionistic fuzzy set (IFS) [16] and an interval-
valued intuitionistic fuzzy (IVIFS) [17], a simplified
neutrosophic set (SNS) introduced by Ye [10] is
a subclass of a neutrosophic sets [1], including a
single-valued neutrosophic set (SVNSs) [4] and an
interval neutrosophic set (INSs) [3]. Hence, SNSs
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are very suitable for handling decision making
problems with indeterminate and inconsistent infor-
mation, which IFSs and IVIFSs cannot describe and
deal with. Recently, many researchers have applied
SNSs and the subclasses of SNSs (SVNSs and INSs)
to the decision-making problems. Various methods
have been developed to solve the multiple attribute
decision-making problems with simplified neutro-
sophic information. For example, Ye [9] proposed
the correlation coefficient of SVNSs and applied it
to multiple attribute decision making. Chi and Liu
[18] and Biswas et al. [21] extended TOPSIS method
to single-valued and interval neutrosophic multiple
attribute decision-making problems. Ye [11–13] pre-
sented some similarity measures of SVNSs, INSs
and SNSs and applied them to decision making.
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Ye [14] put forward a cross-entropy measure of
SVNSs for multiple attribute decision making prob-
lems. Ye [10], Zhang et al. [5], Liu et al. [19], Liu and
Wang [20], and Peng et al. [8] developed some simpli-
fied, interval and single-valued neutrosophic number
aggregation operators and applied them to multiple
attribute decision-making problems. Peng et al. [7]
and Zhang et al. [6] proposed outranking approaches
for multicriteria decision-making problems with sim-
plified and interval neutrosophic information. Sahin
and Kucuk [22] presented a subsethood measure for
SVNSs and applied it to multiple attribute decision
making. Şahin and Liu [23] introduced a maxi-
mizing deviation method for neutrosophic multiple
attribute decision making with incomplete weight
information. Ye [15] presented a multiple attribute
decision-making method based on the possibility
degree ranking method and ordered weighted aggre-
gation operators of interval neutrosophic numbers.

Since the Dice measure is one of vector similarity
measures, it is a useful mathematical tool for han-
dling decision-making problems. However, the Dice
measure of SNSs [13] used for decision making lacks
flexibility in decision-making process. Therefore, it
is necessary to improve the Dice measure of SNSs
to handle multiple attribute decision-making prob-
lems to satisfy the requirements of decision makers’
preference and flexible decision making. In order
to do so, the main purposes of this paper are: (1)
to propose another form of the Dice measures of
SNSs, (2) to present the generalized Dice measures
of SNSs, and (3) to develop the generalized Dice
measures-based multiple attribute decision-making
methods with simplified neutrosophic information.
In the decision making process, the main advan-
tage of the proposed methods is more general and
more flexible than existing decision-making methods
with simplified neutrosophic information to satisfy
the decision makers’ preference and/or practical
requirements.

The rest of the paper is organized as follows.
Section 2 reviews the Dice measures of SNSs. Sec-
tion 3 proposes another form of the Dice measures
of SNSs. In Section 4, we propose the general-
ized Dice measures of SNSs and indicate the Dice
measures and asymmetric measures (projection mea-
sures) as the special cases of the generalized Dice
measures in some parameter values. In Section 5, the
generalized Dice measures-based multiple attribute
decision-making methods are developed under sim-
plified neutrosophic environment. In Section 6, a real
example on the selection of manufacturing schemes

is given to show the application of the proposed meth-
ods, and then the effectiveness and flexibility of the
proposed methods are indicated by choosing different
parameter values. Finally, Section 7 contains conclu-
sions and future work.

2. The Dice measures of SNSs

As a subset of a neutrosophic set [1], Ye [10] intro-
duced a SNS and gave its definition.

Definition 1. [10] A SNS S in the universe of
discourse X is defined as S = {〈x, tS(x), uS(x), vS(x)〉
|x ∈ X}, where tS(x): X → [0, 1], us(x) : X →
[0, 1], and vs(x) : X → [0, 1] are a truth-membership
function and an indeterminacy-membership func-
tion, a falsity- membership function, respectively,
of the element x to the set S with the condition
0 ≤ ts(x) + us(x) + vs(x) ≤ 3 for x ∈ X.

In fact, SNSs contain the concepts of SVNSs
and INSs, which are the subclasses of SNSs. For
convenience, a component element < x, ts(x),
us(x), vs(x) > in a SNS S is denoted by sx =<

tx, ux, vx > for short, which is called the simpli-
fied neutrosophic number (SNN), where tx, ux, vx ∈
[0, 1] and 0 ≤ tx, +ux + vx ≤ 3 for a single-
valued neutrosophic number (SVNN), and then
tx = [tLx , tUx ] ⊆ [0, 1], ux = [uL

x , uU
x ] ⊆ [0, 1], vx =

[vL
x , vU

x ] ⊆ [0, 1] and 0 ≤ tUx + uU
x + vU

x ≤ 3 for an
interval neutrosophic number (INN).

Ye [13] presented the Dice measures of SNSs,
which was defined below.

Definition 2. [13] Let S1 = {s11, s12, . . . , s1n} and
S2 = {s21, s22, . . . , s2n} be two SNSs. If s1j =<

t1j, u1j, v1j, > and s2j =< t2j, u2j, v2j, > (j =
1, 2, . . . , n) are the j-th SVNNs in S1 and S2 respec-
tively, then the Dice measure between S1 and S2 is
defined as:

DSVNN1(S1, S2) = 1

n

n∑
j=1

2s1j · s2j∣∣s1j

∣∣2 + ∣∣s2j

∣∣2 .

= 1

n

n∑
j=1

2(t1jt2j + u1ju2j + v1jv2j)

(t2
1j + u2

1j + v2
1j) + (t2

2j + u2
2j + v2

2j)

(1)
If s1j =< t1j, u1j, v1j > and s2j =< t2j, u2j,

v2j > (j = 1, 2, . . . , n) are the j-th INNs in S1 and
S2 respectively, then the Dice measure between S1
and S2 is defined as:
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DINN1(S1, S2) = 1

n

n∑
j=1

2s1j · s2j∣∣s1j

∣∣2 +
∣∣s2j

∣∣2 .

= 1

n

n∑
j=1

2

(
tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

)
⎛
⎜⎜⎜⎜⎜⎝

(tL1j)2 + (uL
1j)2 + (vL

1j)2

+(tU1j)2 + (uU
1j)2 + (vU

1j)2

+(tL2j)2 + (uL
2j)2 + (vL

2j)2

+(tU2j)2 + (uU
2j)2 + (vU

2j)2

⎞
⎟⎟⎟⎟⎟⎠

(2)

Then, the two Dice measures DSVNN1(S1, S2) and
DINN1(S1, S2) satisfy the following properties [13]:

(P1) DSVNN1(S1, S2) = DSVNN1(S2, S1) and
DINN1(S1, S2) = DINN1(S2, S1);

(P2) 0 ≤ DSVNN1(S1, S2) ≤ 1 and 0 ≤ DINN1
(S1, S2) ≤ 1;

(P3) DSVNN1(S1, S2) = 1 and DINN1(S1, S2) =
1, if S1 = S2.

Especially when tij = tLij = tUij , uij = uL
ij = uU

ij ,

and vij = vL
ij = vU

ij for i = 1, 2 and j = 1, 2, . . . , n

are hold, Equation (2) is degenerated to Equation (1).
In real applications, one usually takes the

important differences of each element sij (i =
1, 2; j = 1, 2, . . . , n) into account. Let W =
(w1, w2, . . . , wn)T be the weight vector for sij (i =
1, 2; j = 1, 2, . . . , n), wj ≥ 0 and

∑n
j=1 wj = 1.

Then, based on Equations (1) and (2), Ye [13] fur-
ther introduced the weighted Dice measures of SNSs,
respectively, as follows:

DWSVNN1(S1, S2) =
n∑

j=1

wj

2s1j · s2j∣∣s1j

∣∣2 + ∣∣s2j

∣∣2 ,

=
n∑

j=1

wj

2(t1jt2j + u1ju2j + v1jv2j)

(t2
1j + u2

1j + v2
1j) + (t2

2j + u2
2j + v2

2j)

(3)

DWINN1(S1, S2) =
n∑

j=1

wj

2s1j · s2j∣∣s1j

∣∣2 +
∣∣s2j

∣∣2

=
n∑

j=1

wj

2

(
tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

)
⎛
⎜⎜⎜⎜⎜⎝

(tL1j)2 + (uL
1j)2 + (vL

1j)2

+(tU1j)2 + (uU
1j)2 + (vU

1j)2

+(tL2j)2 + (uL
2j)2 + (vL

2j)2

+(tU2j)2 + (uU
2j)2 + (vU

2j)2

⎞
⎟⎟⎟⎟⎟⎠

. (4)

3. Another form of the Dice measures of SNSs

This section proposes another form of the Dice
measures of SNSs, which is defined as follows.

Definition 3. Let S1 = {s11, s12, . . . , s1n} and
S2 = {s21, s22, . . . , s2n} be two SNSs. If s1j =<

t1j, u1j, v1j > and s2j =< t2j, u2j, v2j > (j =
1, 2, . . . , n) are the j-th SVNNs in S1 and S2 respec-
tively, then the Dice measure between S1 and S2 is
defined as:

DSVNN2(S1, S2) = 2(S1 · S2)

|S1|2 + |S2|2

= 2
∑n

j=1 (t1jt2j + u1ju2j + v1jv2j)∑n

j=1 (t2
1j + u2

1j + v2
1j) +∑n

j=1 (t2
2j + u2

2j + v2
2j)

.

(5)

If s1j =< t1j, u1j, v1j > and s2j =< t2j, u2j,

v2j > (j = 1, 2, . . . , n) are the j-th INNs in S1 and
S2 respectively, then the Dice measure between S1
and S2 is defined as:

DINN2(S1, S2) = 2(S1 · S2)

|S1|2 + |S2|2

=
2
∑n

j=1

⎛
⎝ tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑n

j=1

⎡
⎣ (tL1j)2 + (tU1j)2 + (uL

1j)2

+(uU
1j)2 + (vL

1j)2 + (vU
1j)2

⎤
⎦+

∑n

j=1

⎡
⎣ (tL2j)2 + (tU2j)2 + (uL

2j)2

+(uU
2j)2 + (vL

2j)2 + (vU
2j)2

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)
Obviously, the two Dice measures DSVNN2

(S1, S2) and DINN2(S1, S2) also satisfy the follow-
ing properties:

(P1) DSVNN2(S1, S2) = DSVNN2(S2, S1) and
DINN2(S1, S2) = DINN2(S2, S1);

(P2) 0 ≤ DSVNN2(S1, S2) ≤ 1 and 0 ≤ DINN2
(S1, S2) ≤ 1;

(P3) DSVNN2(S1, S2) = 1 and DINN2(S1, S2) =
1, if S1 = S2.

Proof:
(P1) It is obvious that the property is true.
(P2) It is obvious that the property is true accord-

ing to the inequality a2 + b2 ≥ 2ab for Equations (5)
and (6).
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(P3) If S1 = S2, there are s1j = s2j (j = 1, 2, . . . ,

n) and |S1| = |S2|. So there are DSVNN2(S1, S2) = 1
and DINN2(S1, S2) = 1. �

In practical applications, the elements for sij
(i = 1, 2; j = 1, 2, . . . , n) have different weights.
Let W = (w1, w2, . . . , wn)T be the weight vec-
tor for sij (i = 1, 2; j = 1, 2, . . . , n), wj ≥ 0 and∑n

j=1 wj = 1. Then, based on Equations (5) and (6)
we further introduce the weighted Dice measures of
SNSs, respectively, as follows:

DWSVNN2(S1, S2) = 2(S1 · S2)w
|S1|2w + |S2|2w

=
2
∑n

j=1 w2
j (t1jt2j + u1ju2j + v1jv2j)∑n

j=1 w2
j (t2

1j + u2
1j + v2

1j) +∑n

j=1 w2
j (t2

2j + u2
2j + v2

2j)
,

(7)

DWINN2(S1, S2) = 2(S1 · S2)w
|S1|2w + |S2|2w

=
2
∑n

j=1 w2
j

⎛
⎝ tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑n

j=1
w2

j

⎡
⎣ (tL1j)2 + (tU1j)2 + (uL

1j)2

+(uU
1j)2 + (vL

1j)2 + (vU
1j)2

⎤
⎦+

∑n

j=1
w2

j

⎡
⎣ (tL2j)2 + (tU2j)2 + (uL

2j)2

+(uU
2j)2 + (vL

2j)2 + (vU
2j)2

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

4. The generalized Dice measures of SNSs

In this section, we propose the generalized Dice
measures of SNSs to extend the Dice measures of
SNSs.

As the generalization of the Dice measures of
SNSs, the generalized Dice measures between SNSs
are defined below.

Definition 4. Let S1 = {s11, s12, . . . , s1n} and
S2 = {s21, s22, . . . , s2n} be two SNSs, where
s1j = (t1j, u1j, v1j) and s2j = (t2j, u2j, v2j) (j =
1, 2, . . . , n) are considered as the j-th SVNNs in
the SNSs S1 and S2. Then the generalized Dice mea-
sures between S1 and S2 are defined, respectively, as
follows:

GSVNN1(S1, S2) = 1

n

n∑
j=1

s1j · s2j

λ
∣∣s1j

∣∣2 + (1 − λ)
∣∣s2j

∣∣2

= 1

n

n∑
j=1

(t1jt2j + u1ju2j + v1jv2j)

λ(t2
1j + u2

1j + v2
1j) + (1 − λ)(t2

2j + u2
2j + v2

2j)
,

(9)

GSVNN2(S1, S2) = S1 · S2

λ |S1|2 + (1 − λ) |S2|2

=
∑n

j=1
(t1j t2j + u1ju2j + v1jv2j)

λ
∑n

j=1
(t2

1j + u2
1j + v2

1j) + (1 − λ)
∑n

j=1
(t2

2j + u2
2j + v2

2j)
,

(10)

where λ is a positive parameter for 0 ≤ λ ≤ 1.
Then, the generalized Dice measures imply some

special cases by choosing some values of the param-
eter λ. If λ = 0.5, the two generalized Dice measures
(9) and (10) are degenerated to the Dice measures (1)
and (5); if λ = 0, 1, the two generalized Dice mea-
sures are degenerated to the following asymmetric
measures respectively:

GSVNN1(S1, S2) = 1

n

n∑
j=1

s1j · s2j∣∣s2j

∣∣2
= 1

n

n∑
j=1

t1jt2j + u1ju2j + v1jv2j

t2
2j + u2

2j + v2
2j

for λ = 0, (11)

GSVNN1(S1, S2) = 1

n

n∑
j=1

s1j · s2j∣∣s1j

∣∣2
= 1

n

n∑
j=1

t1jt2j + u1ju2j + v1jv2j

t2
1j + u2

1j + v2
1j

for λ = 1, (12)

GSVNN2(S1, S2) = S1 · S2

|S2|2

=
∑n

j=1 (t1jt2j+u1ju2j + v1jv2j)∑n
j=1 (t2

2j + u2
2j + v2

2j)
for λ = 0, (13)

GSVNN2(S1, S2) = S1 · S2

|S1|2

=
∑n

j=1 (t1jt2j+u1ju2j + v1jv2j)∑n
j=1 (t2

1j + u2
1j + v2

1j)
for λ = 1. (14)

Obviously, the four asymmetric measures are the
extension of the relative projection measure (the
improved projection measure) of interval numbers
[2], hence the four asymmetric measures can be con-
sidered as the projection measures of SNSs.

For practical applications, the elements of sij
(i = 1, 2; j = 1, 2, . . . , n) imply different weights.
Assume that W = (w1, w2 . . . , wn)T is the weight
vector for sij (i = 1, 2; j = 1, 2, . . . , n), wj ≥ 0
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and
∑n

j=1 wj = 1. Thus, based on Equations (9) and
(10) we further introduce the following weighted
generalized Dice measures of SNSs, respectively, as
follows:

GWSVNN1(S1, S2) =
n∑

j=1

wj

s1j · s2j

λ
∣∣s1j

∣∣2 + (1 − λ)
∣∣s2j

∣∣2
=

n∑
j=1

wj

t1jt2j + u1ju2j + v1jv2j

λ(t2
1j + u2

1j + v2
1j) + (1 − λ)(t2

2j + u2
2j + v2

2j)
,

(15)

GWSVNN2(S1, S2) = (S1 · S2)w
λ |S1|2w + (1 − λ) |S2|2w

=
∑n

j=1 w2
j (t1jt2j + u1ju2j + v1jv2j)⎛

⎜⎝ λ
∑n

j=1
w2

j (t2
1j + u2

1j + v2
1j)+

(1 − λ)
∑n

j=1
w2

j (t2
2j + u2

2j + v2
2j)

⎞
⎟⎠

. (16)

Definition 5. Let S1 = {s11, s12, . . . , s1n} and
S2 = {s21, s22, . . . , s2n} be two SNSs, where
s1j = (t1j, u1j, v1j) and s2j = (t2j, u2j, v2j) (j =
1, 2, . . . , n) are considered as the j-th INNs in the
SNSs S1 and S2. Then the generalized Dice mea-
sures between S1 and S2 are defined, respectively,
as follows:

GINN3(S1, S2) = 1

n

n∑
j=1

s1j · s2j

λ
∣∣s1j

∣∣2 + (1 − λ)
∣∣s2j

∣∣2 = 1

n

n∑
j=1

tL1jt
L
2j + tU1jt

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j⎛

⎜⎜⎜⎜⎜⎝
λ

[
(tL1j)2 + (uL

1j)2 + (vL
1j)2

+(tU1j)2 + (uU
1j)2 + (vU

1j)2

]

+(1 − λ)

[
(tL2j)2 + (uL

2j)2 + (vL
2j)2

+(tU2j)2 + (uU
2j)2 + (vU

2j)2

]
⎞
⎟⎟⎟⎟⎟⎠

,

(17)

GINN4(S1, S2) = S1 · S2

λ |S1|2 + (1 − λ) |S2|2

=
∑n

j=1 (tL1j t
L
2j + tU1j t

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j)⎛

⎜⎜⎜⎜⎜⎝
λ
∑n

j=1

[
(tL1j)2 + (tU1j)2 + (uL

1j)2

+(uU
1j)2 + (vL

1j)2 + (vU
1j)2

]
+

(1 − λ)
∑n

j=1

[
(tL2j)2 + (tU2j)2 + (uL

2j)2

+(uU
2j)2 + (vL

2j)2 + (vU
2j)2

]
⎞
⎟⎟⎟⎟⎟⎠

,

(18)

where λ is a positive parameter for 0 ≤ λ ≤ 1. Espe-
cially, when tij = tLij = tUij , uij = uL

ij = uU
ij , and vij =

vL
ij = vU

ij for i = 1, 2 and j = 1, 2, . . . , n are hold,
Equations (17) and (18) are degenerated to Equations
(9) and (10).

Similarly, if λ = 0.5, the two generalized Dice
measures (17) and (18) are degenerated to the Dice
measures (2) and (6); if λ = 0, 1, then the two gener-
alized Dice measures are degenerated to the following
asymmetric measures respectively:

GINN3(S1, S2) = 1

n

n∑
j=1

s1j · s2j∣∣s2j

∣∣2 = 1

n

n∑
j=1

tL1jt
L
2j + tU1jt

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j

(tL2j)2 + (uL
2j)2 + (vL

2j)2 + (tU2j)2 + (uU
2j)2 + (vU

2j)2

for λ = 0, (19)

GINN3(S1, S2) = 1

n

n∑
j=1

s1j · s2j∣∣s1j

∣∣2 = 1

n

n∑
j=1

tL1jt
L
2j + tU1jt

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j

(tL1j)2 + (uL
1j)2 + (vL

1j)2 + (tU1j)2 + (uU
1j)2 + (vU

1j)2

for λ = 1, (20)

GINN4(S1, S2) = S1 · S2

|S2|2

=
∑n

j=1 (tL1jt
L
2j + tU1jt

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j)∑n

j=1 [(tL2j)2 + (tU2j)2 + (uL
2j)2 + (uU

2j)2 + (vL
2j)2 + (vU

2j)2]

for λ = 0, (21)

GINN4(S1, S2) = S1 · S2

|S1|2

=
∑n

j=1 (tL1jt
L
2j + tU1jt

U
2j + uL

1ju
L
2j + uU

1ju
U
2j + vL

1jvL
2j + vU

1jvU
2j)∑n

j=1 [(tL1j)2 + (tU1j)2 + (uL
1j)2 + (uU

1j)2 + (vL
1j)2 + (vU

1j)2]

for λ = 1. (22)

Then, the four asymmetric measures are also con-
sidered as the extension of the relative projection
measure (the improved projection measure) of inter-
val numbers [2], which are also called the projection
measures of SNSs.

For practical applications, the elements of sij (i =
1, 2; j = 1, 2, . . . , n) imply different weights.
Assume that W = (w1, w2, . . . , wn)T is the weight
vector for sij (i = 1, 2; j = 1, 2, . . . , n), wj ≥ 0
and

∑n
j=1 wj = 1. Similarly, based on Equations

(17) and (18) we also further introduce the weighted
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generalized Dice measures of SNSs, respectively, as
follows:

GWINN3(S1, S2) =
n∑

j=1

wj

s1j · s2j

λ
∣∣s1j

∣∣2 + (1 − λ)
∣∣s2j

∣∣2

=
n∑

j=1

wj

[
tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

]
⎛
⎜⎜⎜⎜⎜⎝

λ

[
(tL1j)2 + (uL

1j)2 + (vL
1j)2

+(tU1j)2 + (uU
1j)2 + (vU

1j)2

]

+(1 − λ)

[
(tL2j)2 + (uL

2j)2 + (vL
2j)2

+(tU2j)2 + (uU
2j)2 + (vU

2j)2

]
⎞
⎟⎟⎟⎟⎟⎠

,

(23)

GWINN4(S1, S2) = (S1 · S2)w
λ |S1|2w + (1 − λ) |S2|2w

=

∑n

j=1 w2
j

(
tL1jt

L
2j + tU1jt

U
2j + uL

1ju
L
2j

+uU
1ju

U
2j + vL

1jvL
2j + vU

1jvU
2j

)
⎛
⎜⎜⎜⎜⎜⎝

λ
∑n

j=1
w2

j

[
(tL1j)2 + (tU1j)2 + (uL

1j)2

+(uU
1j)2 + (vL

1j)2 + (vU
1j)2

]
+

(1 − λ)
∑n

j=1
w2

j

[
(tL2j)2 + (tU2j)2 + (uL

2j)2

+(uU
2j)2 + (vL

2j)2 + (vU
2j)2

]
⎞
⎟⎟⎟⎟⎟⎠

.

(24)

5. Decision making-methods based
on the generalized Dice measures

In this section, we propose multiple attribute
decision-making methods by using the generalized
Dice measures of SNSs under simplified neutro-
sophic environment.

For multiple attribute decision-making problems,
let S = {S1, S2, . . . , Sm} be a set of alternatives and
R = {R1, R2, . . . , Rn} be a set of attributes. Then,
the weight of the attribute Rj (j = 1, 2, . . . , n) is
wj , wj ∈ [0, 1] and

∑n
j=1 wj = 1. Thus, the fit judg-

ment (satisfaction evaluation) of an attribute Rj (j =
1, 2, . . . , n) for an alternative Si (i = 1, 2, . . . , m)
is represented by a SNS Si = {si1, si2, . . . , sin},
where sij =< tij, uij, vij > is a SVNN for 0 ≤ tij +
uij + vij ≤ 3 or an INN for 0 ≤ tUij + uU

ij + vU
ij ≤

3 (j = 1, 2, . . . , n and i = 1, 2, . . . , m). Therefore,
we can establish a simplified neutrosophic decision
matrix D = (sij)m×n.

In the multiple attribute decision-making problem,
the concept of an ideal solution (ideal alternative) can

be used to help identify the best alternative in the
decision set [13]. Hence, by an ideal SVNN

s∗j =< t∗j , u∗
j , v∗

j >=< max
i

(tij), min
i

(uij), min
i

(vij) >

or an ideal INN

s∗j =< t∗j , u∗
j , v∗

j >=< [max
i

(tLij ), max
i

(tUij )],

[min
i

(uL
ij), min

i
(uU

ij )], [min
i

(vL
ij), min

i
(vU

ij )] >

for j = 1, 2, . . . , n and i = 1, 2, . . . , m, we can
determine a simplified neutrosophic ideal solu-
tion (ideal alternative) S∗ = {s∗1, s∗2, . . . , s∗n}, where
s∗j =< t∗j , u∗

j , v∗
j > is the j-th ideal SNN.

In the decision-making process, decision makers
take some value of the parameter λ ∈ [0, 1] accord-
ing to their preference and/or real requirements, the
weighted generalized Dice measure between Si (i =
1, 2, . . . , m) andS∗ is obtained by using one of Equa-
tions (15), (16), (23) and (24) to rank the alternatives.

Thus, the greater the value of the weighted gener-
alized Dice measure between Si (i = 1, 2, . . . , m)
and S∗ is, the better the alternative Si is.

6. Decision-making example
of manufacturing schemes

A real example about the decision-making prob-
lem of manufacturing schemes with simplified
neutrosophic information is given to demonstrate
the applications and effectiveness of the proposed
decision-making methods in realistic scenarios.

To select the best manufacturing scheme (alter-
native) for the flexible manufacturing system in a
manufacturing company, the technique department of
the company provides four manufacturing schemes
(alternatives) with respect to some product as a set
of the alternatives S = {S1, S2, S3, S4} for the flex-
ible manufacturing system. A decision must be made
according to the four attributes: (1) R1 is the improve-
ment of quality; (2) R2 is the market response; (3)
R3 is the manufacturing cost; (4) R4 is the manu-
facturing complexity. The weight vector of the four
attributes W = (0.3, 0.25, 0.25, 0.2)T is given by
decision makers.

In the decision-making problem, the decision mak-
ers are required to make the fit judgment (satisfaction
evaluation) of an attribute Rj (j = 1, 2, 3, 4) for an
alternative Si (i = 1, 2, 3, 4) and to give simplified
neutrosophic evaluation information, which is shown
in the following decision matrix with SVNNs:
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D =⎡
⎢⎢⎣

(0.75, 0.2, 0.3) (0.7, 0.2, 0.3) (0.65, 0.2, 0.25)

(0.8, 0.1, 0.2) (0.75, 0.2, 0.1) (0.75, 0.2, 0.1)

(0.7, 0.2, 0.2) (0.78, 0.2, 0.1) (0.85, 0.15, 0.1)

(0.8, 0.2, 0.1) (0.85, 0.2, 0.2) (0.7, 0.2, 0.2)

(0.75, 0.2, 0.1)

(0.85, 0.1, 0.2)

(0.76, 0.2, 0.2)

(0.86, 0.1, 0.2)

⎤
⎥⎥⎦.

Then, the developed decision-making methods can
be used for the decision making problem.

According to

s∗j =< t∗j , u∗
j , v∗

j >=< max
i

(tij), min
i

(uij), min
i

(vij) >

for j = 1, 2, 3, 4 and i = 1, 2, 3, 4, we can obtain
an ideal solution (ideal alternative) as follows:

S∗ = {s∗1, s∗2, s∗3, s∗4}

=
{

< 0.8, 0.1, 0.1 >, < 0.85, 0.2, 0.1 >,

< 0.85, 0.15, 0.1 >, < 0.86, 0.1, 0.1 >

}
.

By using Equation (15) or (16) and different values
of the parameter λ, the weighted generalized Dice
measure values between Si (i = 1, 2, 3, 4) and S∗
can be obtained, which are shown in Tables 1 and 2
respectively.

From Tables 1 and 2, we can see that different rank-
ing orders are indicated by taking different values of
the parameter λ and different generalized Dice mea-
sures. Then we can obtain that the best alternative is
S2 or S3 or S4.

Furthermore, for the special cases of the two gener-
alized Dice measures we obtain the following results:

(1) When λ = 0, the two weighted generalized
Dice measures are reduced to the weighted
projection measures of Si on S∗. Thus, the
alternative S2 is the best choice among all the
alternatives.

(2) When λ = 0.5, the two weighted generalized
Dice measures are reduced to the weighted
Dice similarity measures of Si and S∗. Thus,

Table 1
The measure values of Equation (15) and ranking orders

λ GWSVNN1 GWSVNN1 GWSVNN1 GWSVNN1 Ranking order
(S1, S∗) (S2, S∗) (S3, S∗) (S4, S∗)

0 0.8895 0.9517 0.9361 0.9287 S2 
 S3 
 S4 
 S1
0.2 0.9157 0.9667 0.9558 0.9472 S2 
 S3 
 S4 
 S1
0.5 0.9612 0.9924 0.9876 0.9816 S2 
 S3 
 S4 
 S1
0.7 0.9966 1.0119 1.0104 1.0100 S2 
 S3 
 S4 
 S1
1 1.0594 1.0455 1.0475 1.0641 S4 
 S1 
 S3 
 S2

Table 2
The measure values of Equation (16) and ranking orders

λ GWSVNN2 GWSVNN2 GWSVNN2 GWSVNN2 Ranking order
(S1, S∗) (S2, S∗) (S3, S∗) (S4, S∗)

0 0.8908 0.9503 0.9387 0.9372 S2 
 S3 
 S4 
 S1
0.2 0.9175 0.9667 0.9587 0.9557 S2 
 S3 
 S4 
 S1
0.5 0.9605 0.9924 0.9903 0.9849 S2 
 S3 
 S4 
 S1
0.7 0.9915 1.0102 1.0126 1.0054 S3 
 S2 
 S4 
 S1
1 1.0419 1.0383 1.0479 1.0378 S3 
 S1 
 S2 
 S4

the alternative S2 is the best choice among all
the alternatives.

(3) When λ = 1, the two weighted generalized
Dice measures are reduced to the weighted
projection measures of S∗ on Si. Thus, the
alternative S3 or S4 is the best choice among
all the alternatives.

Obviously, according to different values of the
parameter λ and different measures, ranking orders
may be different. Thus the proposed decision-making
methods can be assigned some value of λ and some
measure to satisfy the decision makers’ preference
and/or real requirements.

If the fit judgment (satisfaction evaluation) of an
attribute Rj (j = 1, 2, 3, 4) for an alternative Si

(i = 1, 2, 3, 4) is given in the decision making
problem by the following decision matrix with INNs:

D =⎡
⎢⎢⎢⎢⎣

< [0.7, 0.8], [0.1, 0.2], [0.2, 0.3] >

< [0.7, 0.9], [0.1, 0.2], [0.2, 0.3] >

< [0.7, 0.8], [0.1, 0.3], [0.2, 0.3] >

< [0.8, 0.9], [0.2, 0.3], [0.1, 0.2] >

< [0.7, 0.8], [0.1, 0.2], [0.2, 0.3] >

< [0.7, 0.8], [0.1, 0.3], [0.1, 0.2] >

< [0.8, 0.9], [0.1, 0.2], [0.1, 0.2] >

< [0.8, 0.9], [0.2, 0.3], [0.2, 0.3] >

< [0.6, 0.7], [0.1, 0.2], [0.2, 0.4] >

< [0.7, 0.8], [0.2, 0.3], [0.1, 0.2] >

< [0.8, 0.9], [0.1, 0.2], [0.1, 0.1] >

< [0.7, 0.8], [0.1, 0.2], [0.1, 0.3] >

< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >

< [0.8, 0.9], [0.0, 0.1], [0.2, 0.3] >

< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >

< [0.7, 0.9], [0.0, 0.1], [0.1, 0.3] >

⎤
⎥⎥⎥⎥⎦.
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Then, according to

s∗j =< t∗j , u∗
j , v∗

j >=< [max
i

(tLij ), max
i

(tUij )],

[min
i

(uL
ij), min

i
(uU

ij )], [min
i

(vL
ij), min

i
(vU

ij )] >

for j = 1, 2, 3, 4 and j = 1, 2, 3, 4, we can
obtain the ideal solution (ideal alternative) as follows:

S∗ = {s∗1, s∗2, . . . , s∗n}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< [0.8, 0.9], [0.1, 0.2], [0.1, 0.2] >,

< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,

< [0.8, 0.9], [0.1, 0.2], [0.1, 0.1] >,

< [0.8, 0.9], [0.0, 0.1], [0.1, 0.2] >

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

According to Equations (23) or (24) and different
values of the parameter λ, the weighted generalized
Dice measure values between Si (i = 1, 2, 3, 4) and
S∗ can be obtained, which are shown in Tables 3 and
4 respectively.

From Tables 3 and 4, different ranking orders are
shown by taking different values of λ and different
measures. Then we can obtain that the best alternative
is S1 or S2 or S4.

Furthermore, for the special cases of the two gener-
alized Dice measures we obtain the following results:

(1) When λ = 0, the two weighted generalized
Dice measures are reduced to the weighted
projection measures of Si on S∗. Thus, the
alternative S4 is the best choice among all the
alternatives.

(2) When λ = 0.5, the two weighted generalized
Dice measures are reduced to the weighted
Dice similarity measures of Si and S∗. Thus,
the alternative S2 is the best choice among all
the alternatives.

(3) When λ = 1, the two weighted generalized
Dice measures are reduced to the weighted
projection measures of S∗ on Si. Thus, the
alternative S1 is the best choice among all the
alternatives.

Therefore, according to different values of the
parameter λ and different measures, ranking orders
may be also different. Thus the proposed decision-
making methods can be assigned some value of λ

and some measure to satisfy the decision makers’
preference and/or real requirements.

Obviously, the decision-making methods based
the Dice measures and the projection measures are
the special cases of the proposed decision-making

Table 3
The measure values of Equation (23) and ranking orders

λ GWINN3 GWINN3 GWINN3 GWINN3 Ranking order
(S1, S∗) (S2, S∗) (S3, S∗) (S4, S∗)

0 0.9085 0.9770 0.9861 1.0159 S4 
 S3 
 S2 
 S1
0.2 0.9325 0.9819 0.9860 1.0015 S4 
 S3 
 S2 
 S1
0.5 0.9737 0.9903 0.9901 0.9863 S2 
 S3 
 S4 
 S1
0.7 1.0053 0.9966 0.9955 0.9797 S1 
 S2 
 S3 
 S4
1 1.0601 1.0072 1.0075 0.9746 S1 
 S3 
 S2 
 S4

Table 4
The measure values of Equation (24) and ranking orders

λ GWINN4 GWINN4 GWINN4 GWINN4 Ranking order
(S1, S∗) (S2, S∗) (S3, S∗) (S4, S∗)

0 0.9035 0.9726 0.9790 1.0109 S4 
 S3 
 S2 
 S1
0.2 0.9306 0.9795 0.9833 1.0011 S4 
 S3 
 S2 
 S1
0.5 0.9743 0.9901 0.9900 0.9867 S2 
 S3 
 S4 
 S1
0.7 1.0059 0.9972 0.9945 0.9774 S1 
 S2 
 S3 
 S4
1 1.0572 1.0082 1.0013 0.9637 S1 
 S2 
 S3 
 S4

methods based on generalized Dice measures.
Therefore, in the decision-making process, the
decision-making methods developed in this paper
are more general and more flexible than existing
decision-making methods under simplified neutro-
sophic environment.

7. Conclusion

This paper proposed another form of the Dice
measures between SNSs and the generalized Dice
measures of SNSs and indicated the Dice measures
of SNSs and the projection measures (asymmetric
measures) of SNSs are the special cases of the gen-
eralized Dice measures of SNSs corresponding to
some parameter values. Then, we developed multi-
ple attribute decision-making methods based on the
generalized Dice measures of SNSs under simplified
neutrosophic environment. According to different
parameter values and some measure preferred by
decision makers, by the weighted generalized Dice
measure between each alternative and the ideal
solution (ideal alternative), all alternatives can be
ranked and the best alternative can be selected as
well. Finally, a real example about the selection
of manufacturing schemes (alternatives) demon-
strated the applications of the developed methods
under simplified neutrosophic environment, and then
the effectiveness and flexibility of the developed
decision-making methods were shown corresponding
to different parameter values. In the decision-making
process under simplified neutrosophic environment,
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the main advantage is more general and more flexible
than existing decision-making methods to satisfy the
decision makers’ preference and/or practical require-
ments.

In the future work, we shall extend the generalized
Dice measures of SNSs to other areas such as pattern
recognition, fault diagnosis, and image processing.
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