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Abstract

A directed hypergraph is powerful tool to solve the problems that arises in different fields, in-
cluding computer networks, social networks and collaboration networks. In this research paper, we
apply the concept of single-valued neutrosophic sets to directed hypergraphs. We introduce cer-
tain new concepts, including single-valued neutrosophic directed hypergraphs, single-valued neutro-
sophic line directed graphs and dual single-valued neutrosophic directed hypergraphs. We describe
applications of single-valued neutrosophic directed hypergraphs in manufacturing and production
networks, collaboration networks and social networks. We develop and implement algorithm for
our certain networks models based on single-valued neutrosophic directed hypergraphs

Key-Words : Single-valued neutrosophic directed hypergraphs, Dual single-valued neutrosophic
directed hypergraphs, Single-valued neutrosophic line directed graphs, Applications.

1 Introduction

Fuzzy set theory generalizes the concept of the classical set theory. In classical set theory, we may only
conclude either the statement is true or false. However, many statements have variable answers which
can be handled more accurately using fuzzy set theory. Zadeh gave the concept of fuzzy sets in 1965 to
solve problems with uncertainties [32]. Fuzzy sets and fuzzy logic are playing a vital role in controlling
and modeling uncertain systems in various fields, including society and nature, clustering, linguistics
and decision-making. In 1986, Atanassov [6] illustrated the extended form of fuzzy set by adding a
new component, called, intuitionistic fuzzy set(IFS). The notion of intuitionistic fuzzy set(IFS) is more
meaningful as well as inventive due to the presence of degree of membership, degree of non-membership
and the hesitation margin. In 1998, Smarandache [26] submitted the idea of neutrosophic set(NS). A
NS has three constituents: truth-membership, indeterminacy-membership and falsity-membership, in
which each membership value is a real standard or non-standard subset of the unit interval ]0−, 1+[.
In real-life problems, NSs can be applied more appropriately by using the single-valued neutrosophic
sets(SVNSs), defined by Wang et al [28]. A SVNS generalizes the concept of IFS. In SVNS, three
components are not dependent and their values are contained in the unit interval [0, 1]. Majumdar
and Samanta [19] studied similarity and entropy of SVNSs. Ye [29] proposed correlation coefficients of
SVNSs to solve single-valued neutrosophic decision-making problems. To simplify neutrosophic sets,
he also [31] proposed a method of multicriteria decision-making using aggregation operators.
Graph theory has become a powerful conceptual framework for modeling and solution of combinato-
rial problems that arise in various areas, including Mathematics, Computer Science and Engineering.
Hypergraphs [9], a generalization of graphs, have many properties which are the basis of different
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techniques that are used in modern Mathematics. The applicability of graph theory has widened by
the generalization of undirected graphs, called undirected hypergraphs, which have been proved to
be more useful as mathematical modeling tools. In real World applications, hypergraph techniques
appear very useful in many places, including declustering problems which are important to increase
the performance of parallel databases. Hypergraphs can be demonstrated as a useful engine(or tool)
to model concepts and systems in different fields of discrete mathematics. There are many complex
phenomena and concepts in many areas, including rewriting systems, problem solving, databases and
logic programming which can be represented using hypergraphs. Directed hypergraphs are used to
solve and model certain problems arising in deductive databases and in model checking.
Fuzzy graphs were narrated by Rosenfeld [25] in 1975. After that in 1987, some remarks on fuzzy
graphs were represented by Bhattacharya [10]. He showed that all the concepts of crisp graph theory
do not have similarities in fuzzy graph theory. Several concepts on fuzzy graphs and fuzzy hyper-
graphs were discussed by Mordeson and Nair [20]. Parvathi at el. described some operations on
intuitionistic fuzzy graphs in [21]. Kaufmann [14] gave the idea of fuzzy hypergraphs and Chen [12]
defined the interval-valued fuzzy hypergraphs. Generalization and redefinition of fuzzy hypergraphs
were discussed by Lee-Kwang and Keon-Myung [17]. Parvathi et al. [22] established the notion of
IF hypergraph. Later, Akram and Dudek extended this idea and studied its various properties in [5].
They also represented various applications of intuitionistic fuzzy hypergraphs such as radio coverage
network and clustering problem. Parvathi et al. [23] established the notion of IF directed hypergraphs.
The minimum spanning of SVN tree and its clustering method were studied by Ye [30]. Broumi et
al. [8] portrayed single-valued neutrosophic graphs. Akram and Shahzadi [2] introduced the notion
of neutrosophic soft graphs with applications. Akram et al. [1] also introduced the single-valued
neutrosophic hypergraphs.
This paper is classified as follows: In section 2, concepts of SVN directed hypergraphs are described.
The concepts of simple, elementary, support simple and sectionally elementary SVN directed hyper-
graphs are introduced. Section 3 deals with concepts of SVN line directed graphs, 2−section of a SVN
directed hypergraphs and dual SVN directed hypergraphs. We describe the construction of dual SVN
directed hypergraphs. In section 4, we discuss how the concept of SVN directed hypergraphs and
SVN line directed graphs can be helpful to understand and analyse the production and manufacturing
networks, social networks and collaboration networks. In the last section, we conclude our results.
Throughout the paper, following notations and terminologies are used:

Notations Description

D = (V,H) Single-valued neutrosophic directed hypergraph with vertices V and SVN
directed hyperedges H.

FS(D) Fundamental sequence of SVNDHG D.
χ Strength of a SVN directed hyperpath.
D∗ = (V ∗,H∗) Dual SVN directed hypergraph of D.
L(D) = (VL,HL) SVN line directed graph of D.
[D]2 = (V,E) 2−section graph of D.
(0, 0, 0) 0

2 Single-Valued Neutrosophic Directed Hypergraphs

Definition 2.1. [26] LetX be a set of points with a general element inX denoted by x. A neutrosophic
set(NS) N in X is an object having the form N = {(x, αN (x), βN (x), γN (x))|x ∈ X}, which is
characterized by a truth-membership function αN , an indeterminacy-membership function βN and
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falsity-membership function γN , where the functions αN : X →]0−, 1+[, βN : X →]0−, 1+[ and
γN : X →]0−, 1+[ are real standard or non-standard subsets of ]0−, 1+[. There is no restriction on the
sum of αN (x), βN (x) and γN (x), therefore 0− ≤ αN (x)+βN (x)+γN (x) ≤ 3+.

In real life applications, it is complicated to use neutrosophic set in scientific and engineering prob-
lems having the values from real standard or non-standard subset of ]0−, 1+[. To apply neutrosophic
sets in real life problems more conveniently, we use single-valued neutrosophic sets.

Definition 2.2. [28] LetX be a set of points with a general element inX denoted by x. A single-valued
neutrosophic set(SVNS) S in X is an object having the form S = {(x, αS(x), βS(x), γS(x))|x ∈ X},
which is characterized by a truth-membership function αS , an indeterminacy-membership function
βS and falsity-membership function γS , where the functions αS : X → [0, 1], βS : X → [0, 1] and
γS : X → [0, 1] are subsets of [0, 1]. There is a restriction on the sum of αS(x), βS(x) and γS(x), such
that 0 ≤ αS(x)+βS(x)+γS(x) ≤ 3.

Definition 2.3. [1] The support of a SVNS S = {(x, αS(x), βS(x), γS(x)) : x ∈ X} is defined as
supp(S)={x ∈ X|αS(x) 6= 0, βS(x) 6= 0, γS(x) 6= 0}. supp(S) is a crisp set.

We now define a single-valued neutrosophic directed hypergraph.

Definition 2.4. A single-valued neutrosophic directed hypergraph on a non-empty set X is defined as
an ordered pair D = (V,H), where V = {A1, A2, A3, . . . , Ak} is a family of non-trivial single-valued
neutrosophic subsets on X and H is a single-valued neutrosophic relation on SVNSs Ai such that

1. αH(Ei) = αH({v1, v2, v3, · · · , vr}) ≤ min{αAi
(v1), αAi

(v2), αAi
(v3), · · · , αAi

(vr)},
βH(Ei) = βH({v1, v2, v3, · · · , vr}) ≤ min{βAi

(v1), βAi
(v2), βAi

(v3), · · · , βAi
(vr)},

γH(Ei) = γH({v1, v2, v3, · · · , vr}) ≤ max{γAi
(v1), γAi

(v2), γAi
(v3), · · · , γAi

(vr)},
for all v1, v2, v3, · · · , vr ∈ X.

2. X =
⋃

k

supp(Ak), for all Ak ∈ V .

Here {E1, E2, E3, · · · , Er} is the family of directed hyperedges.

Definition 2.5. A SVN directed hyperedge(or hyperarc) is defined as an ordered pair A = (u, v), where
u and v are disjoint subsets of nodes. u is taken as the tail of A and v is called its head. t(A) and
h(A) are used to denote the tail and head of SVN directed hyperarc, respectively.
In SVNDHG D = (V,H), any two vertices s and t are adjacent vertices if they both belong to the
same directed hyperedge. A source vertex s is defined as a vertex in D if h(x) 6= s, for each x ∈ H. A
destination vertex d is defined as a vertex if t(x) 6= d, for every x ∈ H.

Definition 2.6. A SVNDHG D = (V,H) can be represented by an incidence matrix. The incidence
matrix of a SVNDHG is defined by an n×m matrix [bij ] as:

bij =

{

(αAj
(ai), βAj

(ai), γAj
(ai)), if ai ∈ Aj ,

0, otherwise.

We illustrate the concept of a single-valued neutrosophic directed hypergraph with an example.

Example 2.1. Consider a SVNDHG D = (V,H), such that V = {v1, v2, v3, v4, v5, v6, v7} and H =
{H1,H2,H3,H4}, where

H1 = {(v1, 0.2, 0.3, 0.4), (v3 , 0.2, 0.4, 0.2), (v5 , 0.5, 0.5, 0.3)},
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H2 = {(v1, 0.2, 0.3, 0.4), (v2 , 0.1, 0.3, 0.5), (v3 , 0.2, 0.4, 0.2), (v4 , 0.1, 0.2, 0.3)},

H3 = {(v3, 0.2, 0.4, 0.2), (v4 , 0.1, 0.2, 0.3), (v7 , 0.1, 0.2, 0.3)},

H4 = {(v5, 0.5, 0.5, 0.3), (v6 , 0.4, 0.5, 0.6), (v7 , 0.1, 0.2, 0.3)}.

The incidence matrix of D = (V,H) is given in Table 1.

Table 1: Incidence matrix of SVNDHG
.

ID H1 H2 H3 H4

v1 (0.2, 0.3, 0.4) (0.2, 0.3, 0.4) 0 0

v2 0 (0.1, 0.3, 0.5) 0 0

v3 (0.2, 0.4, 0.2) (0.2, 0.4, 0.2) (0.2, 0.4, 0.2) 0

v4 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3) 0

v5 (0.5, 0.5, 0.3) 0 0 (0.5, 0.5, 0.3)
v6 0 0 0 (0.4, 0.5, 0.6)
v7 0 0 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)

The SVNDHG is shown in Figure 1.
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bc bc

bc
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Figure 1: SVNDHG

Definition 2.7. The height of a SVNDHGD = (V,H) is defined as h(D) = {max(Hk),max(Hl),min(Hm)
| Hk,Hl,Hm ∈ H}, where Hk = max(αHj

(vi)), Hl = max(βHj
(vi)) and Hm = min(γHj

(vi)). Here,
αHj

(vi), βHj
(vi) and γHj

(vi) denote the truth-membership, indeterminacy and falsity-membership
values of vertex vi to directed hyperedge Hj, respectively.

Definition 2.8. A SVNS S = {(x, αS(x), βS(x), γS(x)) : x ∈ X} is called an elementary single-valued
neutrosophic set if αS , βS and γS are single valued on the support of S.
A SVNDHG D = (V,H) is an elementary SVNDHG if its all directed hyperedges are elementary.

Definition 2.9. The strength of a single-valued neutrosophic directed hyperedge is defined as η(Hi) =
{min

vj
∈ Hi(αHi

(vj) : αHi
(vj) > 0),min

vj
∈ Hi(βHi

(vj) : βHi
(vj) > 0),max

vj
∈ Hi(γHi

(vj) : γHi
(vj) > 0)}.

4



The strength of directed hyperedge describes that the objects having the participation degree at least
η(Hi) are grouped in the hyperedge Hi.

Definition 2.10. A SVNDHG D = (V,H) is simple if Aj, Ak ∈ H and Aj ≤ Ak implies Aj = Ak.
A SVNDHG D = (V,H) is called support simple if Aj , Ak ∈ H, supp(Aj) = supp(Ak) and Aj ≤ Ak,
then Aj = Ak.
A SVNDHG D = (V,H) is called strongly support simple if Aj , Ak ∈ H and supp(Aj) = supp(Ak)
imply that Aj = Ak.

Theorem 2.1. A SVNDHG D = (V,H) is single-valued neutrosophic directed graph(possibly with
loops) if and only if D is support simple, elementary and all the hyperedges have two(or one) element
support.

Theorem 2.2. Let D = (V,H) be an elementary SVNDHG. Then D is support simple if and only if
D is strongly support simple.
Proof. Suppose that D = (V,H) is elementary, support simple and supp(Aj) = supp(Ak) for Aj , Ak ∈
H. We assume that h(Aj) ≤ h(Ak). Since D is elementary we have Aj ≤ Ak, and since D is support
simple we have Aj = Ak. Hence D is strongly support simple.
The converse part of the theorem can be proved trivially by using the definitions.

Theorem 2.3. Let D = (V,H) be a strongly support simple SVNDHG of order n. Then |H| ≤ 2n−1.
The equality holds if and only if {supp(Aj)|Aj ∈ H}=P(V ) \ ∅.
Proof. Since every non trivial subset of V can be the support set of at most one Aj ∈ H so |H| ≤ 2n−1.
The second part is trivial.

Theorem 2.4. Let D = (V,H) be a simple, elementary SVNDHG of order n. Then |H| ≤ 2n − 1.
The equality holds if and only if {supp(Aj)|Aj ∈ H}=P(V ) \ ∅.
Proof. Since D is simple and elementary, each non trivial subset of V can be the support set of at
most one Aj ∈ H. Hence |H| ≤ 2n − 1. We now prove that there exists an elementary, simple D

having |H| = 2n − 1. Let A = {(αB(v), βB(v), γB(v))|B ⊆ V } be the set of mappings such that

αB(v) =

{

1
|B| , ifv ∈ B,

0, otherwise.

βB(v) =

{

1
|B| , ifv ∈ B,

0, otherwise.

γB(v) =

{

1
|B| , ifv ∈ B,

0, otherwise.

Then every set containing single element has height (1, 1, 1), height of every set containing two elements
is (0.5, 0.5, 0.5) and so on. Hence D is elementary, simple and |H| = 2n − 1.

Definition 2.11. Let D = (V,H) be a SVNDHG. Consider λ ∈ [0, 1], µ ∈ [0, 1] and ν ∈ [0, 1] such
that 0 ≤ λ + µ + ν ≤ 3. Then the (λ, µ, ν)−level directed hypergraph of D is defined as an ordered

pair D(λ,µ,ν) = (V (λ,µ,ν),H(λ,µ,ν)), where H(λ,µ,ν) = {H
(λ,µ,ν)
i |Hi ∈ H}, V (λ,µ,ν) =

⋃

Hi∈H

H
(λ,µ,ν)
i and

H
(λ,µ,ν)
i = {vj ∈ V |αHi

(vj) ≥ λ, βHi
(vj) ≥ µ, γHi

(vj) ≤ ν}.
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Definition 2.12. Let D=(V,H) be a SVNDHG such that h(D)=(u, v, w).
Let D(ui,vi,wi) = (V (ui,vi,wi),H(ui,vi,wi)) be the (ui, vi, wi)-level hypergraphs of D. The sequence of real
numbers (u1, v1, w1), (u2, v2, w2), ..., (un, vn, wn),
0 < un < un+1 <, ..., < u1 = u, 0 < vn < vn+1 <, ..., < v1 = v, and wn > wn+1 >, ..., > w1 = w > 0,
which satisfies the properties:

1. if ui+1 < u′ < ui, vi+1 < v′ < vi, wi+1 > w′ > wi(wi < w′ < wi+1), then H(u′,v′,w′) = H(ui,vi,wi),

2. H(ui,vi,wi) ⊑ H(ui+1,vi+1,wi+1),

is fundamental sequence of SVNDHG D, denoted by FS(D). The set of (ui, vi, wi)-level hypergraphs
{D(u1,v1,w1)

,D(u2,v2,w2), ...,D(un,vn,wn)} is known as core hypergraphs of SVNDHG D and is denoted by c(D).
The corresponding sequence of (ui, vi, wi)−level directed hypergraphs {D(u1,v1,w1) ⊆ D(u2,v2,w2) ⊆ ... ⊆
D(un,vn,wn)} is called the D induced fundamental sequence.

Example 2.2. e Consider a SVNDHGD=(V,H), where V = {v1, v2, v3, v4, v5} andH = {H1,H2,H3,H4}.
Incidence matrix of D is given in Table 2.

Table 2: Incidence matrix of D
.

H1 H2 H3 H4

v1 (0.8, 0.7, 0.1) (0.9, 0.8, 0.1) 0 (0.5, 0.4, 0.3)
v2 (0.8, 0.7, 0.1) (0.9, 0.8, 0.1) (0.5, 0.4, 0.3) (0.5, 0.4, 0.3)
v3 0 0 (0.3, 0.3, 0.4) 0

v4 (0.5, 0.4, 0.3) 0 (0.5, 0.4, 0.3) 0

v5 0 0 0 (0.5, 0.4, 0.3)

The corresponding graph is shown in Figure 2.
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bc

bc

bc

bc

v1

v3

v2

v4

v5

H
2 (0.8, 0.7, 0.3)

H1(0.8, 0.7, 0.3)

H3
(0
.5,

0.4
, 0
.3)

H4(0.5, 0.4, 0.1)

Figure 2: SVNDHG

By routine calculations, we have h(D) = (0.9, 0.8, 0.1), H(0.9,0.8,0.1) = {{v1, v2}}, H
(0.8,0.7,0.1) =

{{v1, v2}} and H(0.5,0.4,0.3) = {{v1, v2}, {v1, v2, v5}, {v1, v2, v4}, {v2, v4}}. Therefore, the FS(D) is
{(0.9, 0.8, 0.1), (0.5, 0.4, 0.3)}. The set of core hypergraphs is c(D) = {D (0.9,0.8,0.1) = (V1,H1),D

(0.5,0.4,0.3) =
(V2,H2)}. Note that H(0.9,0.8,0.1) ⊆ H(0.5,0.4,0.3) and H(0.9,0.8,0.1) 6= H(0.5,0.4,0.3), Hi * Hj for all
Hi,Hj ∈ H, hence D is simple. Further, it can be seen that supp(Hi) = supp(Hj) for all Hi,Hj ∈ H
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implies Hi = Hj. Thus, D is strongly support simple and support simple. The induced fundamental
sequence of D is given in Figure 3.

b

b

b

b

b
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v3 v5

v4
b

b

b

b
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v2

v3 v5

v4

b

b

b

b

b

v1

v2

v3 v5

v4

H1 H1

H
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H
2 H

3

D(0.9,0.8,0.1)
−level SVNDHG. D(0.8,0.7,0.1)

−level SVNDHG.

D(0.5,0.4,0.3)
−level SVNDHG.

Figure 3: Induced fundamental sequence of D.

Definition 2.13. LetD=(V,H) be a SVNDHG and FS(D) = {(u1, v1, w1), (u2, v2, w2), ..., (un, vn, wn)}
be the fundamental sequence ofD. If for eachHi ∈ H and each (l,m, n) ∈ ((ui+1, vi+1, wi+1), (ui, vi, wi)],

we have H
(l,m,n)
i = H

(ui,vi,wi)
i for all (ui, vi, wi) ∈ FS(D), then D is called sectionally elementary.

It can be noted that D is sectionally elementary if and only if αHi
(x), βHi

(x), γHi
(x) ∈ FS(D) for all

Hi ∈ H and for every x ∈ V .

Definition 2.14. Let D=(V,H) be a SVNDHG. The partial single-valued neutrosophic directed hyper-
graph of D is defined as an ordered pair D′=(V ′,H ′), where H ′ ⊆ H and V ′ =

⋃

i

{supp(H ′
i)|H

′
i ∈ H}.

Then D′ is called partial SVNDHG generated by H ′.

Definition 2.15. A SVNDHG D=(V,H) is said to be ordered if c(D) is ordered. That is, if c(D) =
{D(u1,v1,w1),D(u2,v2,w2), · · · ,D(un,vn,wn)}, then D(u1,v1,w1) ⊆ D(u2,v2,w2) ⊆ · · · ⊆ D(un,vn,wn).
The sequence is called simply ordered if it is ordered and if whenever H∗ ∈ H∗

j+1 \H
∗
j , then H∗ * Vj.

Thus the SVNDHG is also simply ordered.

Proposition 2.5. Let D=(V,H) be a SVNDHG. If D is elementary, then it is ordered. Further, if
D is an ordered SVNDHG with simple support, then D is elementary.

Example 2.3. Consider a SVNDHG D=(V,H), where V = {v1, v2, v3, v4} and H = {H1,H2,H3},
which is represented by the incidence matrix given in Table 3.
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Table 3: Incidence matrix of D.

H1 H2 H3

v1 (0.7, 0.5, 0.1) 0 (0.5, 0.3, 0.1)
v2 (0.7, 0.5, 0.1) (0.5, 0.3, 0.1) 0

v3 0 (0.5, 0.3, 0.1) (0.5, 0.3, 0.1)
v4 0 0 (0.5, 0.3, 0.1)

Here, FS(D) = {(0.7, 0.5, 0.1), (0.5, 0.3, 0.1)}. The SVNDHG D is sectionally elementary. As for

each Hi ∈ H and for all (l,m, n) ∈ ((0.5, 0.3, 0.1), (0.7, 0.5, 0.1)], we have H
(l,m,n)
i = H

(0.7,0.5,0.1)
i . It

can be seen that H
(0.6,0.35,0.1)
1 = {v1, v2} = H

(0.7,0.5,0.1)
1 and so on.

The corresponding SVNDHG is shown in Figure 4.

bc

bc
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bc

v1

v2

v3

v4

H
1 (0

.7
, 0
.5
, 0
.1)

H
3 (0.5, 0.3, 0.1)

H2(0.5, 0.3, 0.1)

Figure 4: Sectionally elementary SVNDHG.

3 Single-valued neutrosophic line directed hypergraphs

Definition 3.1. A SVN directed hyperpath of length k in a SVNDHG D = (V,H) is defined as an
alternating sequence v1,H1, v2,H2, · · · , vk,Hk, vk+1 of distinct points and directed hyperedges such
that

(i) αH(Hi) > 0, βH(Hi) > 0 and γH(Hi) > 0,

(ii) vi, vi+1 ∈ Hi, i = 1, 2, 3, · · · , k.

A SVN directed hyperpath is called a SVN directed hypercycle if v1 = vk+1.

Definition 3.2. A SVNDHG D = (V,H) is connected if a SVN directed hyperpath exists between
each pair of distinct nodes.

Definition 3.3. Let any two vertices, say s and t, be connected through a SVN directed hyperpath
of length k in a SVNDHG. Then the strength of the SVN directed hyperpath is defined as,

χk(s, t)={αH (H1) ∧ αH(H2) ∧ · · · ∧ αH(Hk), βH (H1) ∧ βH(H2) ∧ · · · ∧ βH(Hk), γH(H1) ∨ γH(H2) ∨
· · · ∨ γH(Hk)},
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s ∈ H1, t ∈ Hk. H1,H2, · · · ,Hk are directed hyperedges.
The strength of connectedness between s and t is defined as,
χ∞(s, t)={sup

k

α(χk(s, t)), sup
k

β(χk(s, t)), inf
k
γ(χk(s, t))}.

Theorem 3.1. A SVNDHG D = (V,H) is connected if and only if χ∞(s, t) > 0, for all s, t ∈ V .
Proof. Suppose that D = (V,H) is connected SVNDHG. Then between each pair of distinct vertices
there exists a SVN directed hyperpath such that
χk(s, t) > 0
⇒ {sup

k

α(χk(s, t)), sup
k

{β(χk(s, t)), inf
k
{γ(χk(s, t))|k = 1, 2, · · · } > 0

⇒ χ∞(s, t) > 0, for all s, t ∈ V .
Conversely, suppose that χ∞(s, t) > 0
⇒ {sup

k

α(χk(s, t)), sup
k

{β(χk(s, t)), inf
k
{γ(χk(s, t))|k = 1, 2, · · · } > 0. This shows that there exists at

least one directed hyperpath between each pair of vertices. Hence D is connected.

Definition 3.4. A SVNDHG D = (V,H) is called linear if for every SVN directed hyperedge Hi,Hj ∈
H

(i) supp(Hi) ⊆ supp(Hj) implies i = j,

(ii) |supp(Hi)
⋂

supp(Hj)| ≤ 1.

We now define the dual SVN directed hypergraphs.

Definition 3.5. Let D = (V,H) be a SVNDHG on a universal set V . The dual single-valued neutro-
sophic directed hypergraph of D is defined as an ordered pair D∗ = (V ∗,H∗), where

1 V ∗ = H is single-valued neutrosophic set of vertices of D∗.

2 If |V | = n, then H∗ is the SVNS on the set of directed hyperedges {V1, V2, V3, · · · , Vn} such that
Vi = {Hj|vi ∈ Hj,Hj is the directed hyperedge in D}. This means that Vi is the set of those
directed hyperedges which contain the vertex vi as a common vertex.

The truth-membership, indeterminacy and falsity-membership values of Vi are defined as,

α∗
H(Vi)=inf{αH(Hj) : vi ∈ Hj}, β

∗
H(Vi)=inf{βH(Hj) : vi ∈ Hj}, γ

∗
H(Vi)=sup{γH(Hj) : vi ∈ Hj}.

We describe the method of construction of dual single-valued neutrosophic directed hypergraph D∗

of a SVNDHG D as a simple procedure given below. We also describe an example.

Construction 1.

Let D = (V,H) be a single-valued neutrosophic directed hypergraph. The procedure of constructing
the dual single-valued neutrosophic directed hypergraph contains the following steps.

1. Make the single-valued neutrosophic set of vertices of D∗ as V ∗=H.

2. Define a one to one function f : V → H from the set of vertices to the set of directed hyperedges
of D in the way that if the directed hyperedges Hs,Hs+1,Hs+2, · · · ,Hj contain the vertex vi,
then vi is mapped onto Hs,Hs+1,Hs+2, · · · ,Hj as shown in Figure 5.

3. Draw the directed hyperedges {V1, V2, · · · , Vn} of D∗ such that Vi = {Hj|f(vi) = Hj}.
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4. Make the directed hyperedges as the vertex Hj of D∗ belongs to h(Vi) if and only if vi ∈ t(Hj)
in D

and similarly Hj is in t(Vi) if and only if vi ∈ h(Hj).

5. Calculate the truth-membership, indeterminacy and falsity-membership values of directed hyper-
edges inD∗ as αH∗(Vi)=inf{αH(Hj) : vi ∈ Hj}, βH∗(Vi)=inf{βH(Hj) : vi ∈ Hj}, γH∗(Vi)=sup{γH(Hj) :
vi ∈ Hj}.

Example 3.1. Consider a SVNDHGD = (V,H), where V = {v1, v2, v3, v4, v5, v6} andH = {H1,H2,H3}
as shown in Figure 5. The dual SVNDHG D∗ = (V ∗,H∗) is shown with dashed lines such that
V ∗ = {h1, h2, h3}, H

∗ = {V1, V2, V3, V4, V5, V6}. The incidence matrix of D∗ is given in Table 4.

Table 4: Incidence matrix of dual single-valued neutrosophic directed hypergraph.

ID∗ V1 V2 V3 V4 V5 V6

h1 (0.2, 0.1, 0.1) (0.2, 0.1, 0.1) 0 0 (0.2, 0.1, 0.1) 0

h2 0 (0.2, 0.1, 0.1) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3) 0 0

h3 0 (0.2, 0.1, 0.1) 0 (0.4, 0.3, 0.3) 0 (0.4, 0.3, 0.3)
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Figure 5: SVNDHG and its dual directed hypergraph D∗.

Theorem 3.2. Let D be a single-valued neutrosophic directed hypergraph. Then D∗∗ = D.

Theorem 3.3. The dual SVNDHG of a linear SVN hypergraph is also linear, that is, if D is linear
then D∗ is also linear.
Proof. Let D = (V,H) be a linear single -valued neutrosophic directed hypergraph andD∗ = (V ∗,H∗).
Suppose on contrary that D∗ is not linear then there exists Vi and Vj such that |supp(Vi)

⋂

supp(Vj)| =
2. Let |supp(Vi)

⋂

supp(Vj)| = {Hl,Hm}. Then the duality of D∗ implies that vi, vj ∈ Hl and
vi, vj ∈ Hm, which is a contradiction to the statement that D is linear. Hence D∗ is linear.
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Definition 3.6. Let D = (V,H) be a SVNDHG. The single-valued line directed graph of D is the
directed graph L(D) = (VL,HL), such that

1. VL = H,

2. {Ai, Aj} ∈ HL if and only if |supp(Ai)
⋂

supp(Aj)| 6= ∅ for i 6= j.

The truth-membership, indeterminacy and falsity-membership values of vertices and hyperedges of
L(D) are defined as,

(i) VL(Ai) = H(Ai),

(ii) αHL
{Ai, Aj} = min{αH(Ai), αH(Aj)|Ai, Aj ∈ H}, βHL

{Ai, Aj} = min{βH(Ai), βH (Aj)|Ai, Aj ∈
H} and γHL

{Ai, Aj} = max{γH(Ai), γH (Aj)|Ai, Aj ∈ H},

respectively.

Example 3.2. Consider a SVNDHG D = (V,H) as given in Figure 6. The SVN line directed
hypergraph L(D) = (VL,HL) of D is shown with dashed hyperedges.
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Figure 6: SVNDHG and its line directed graph L(D).

Theorem 3.4. Let G = (U,W ) be a simple SVN digraph. Then G is the SVN line graph of a linear
SVN directed hypergraph.
Proof. Let G = (U,W ) be a simple SVN digraph on a set of universe Z. With no loss of generality,
suppose that G is connected. A SVNDHG D = (V,H) can be formed from G as,

1. Take the set of edges of G as the vertices of D. Let W = {w1, w2, w3, · · · , wn} be the directed
edges of G and ZD be the set of vertices of D, then ZD = W . Let V = {ρ1, ρ2, ρ3, · · · , ρr} be
the collection of non-trivial SVNSs on Z , such that ρk(wi) = 1, i = 1, 2, 3, · · · , n.

2. Let Z = {z1, z2, z3, · · · , zm}, then the set of directed hyperedges ofD isHD = {H1,H2,H3, · · · ,Hn},
where Hj are those edges of G in which zi is the incidence vertex, that is, Hi = {wj |zi ∈ wj , j =
1, 2, 3, · · · , n.}. Further, H(Hi) = U(zi), i = 1, 2, 3, · · · , n.
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We claim that D is a linear SVNDHG. Consider the directed hyperedge Hj = {w1, w2, w3, · · · , wk}.
From the definition of SVNDG, we have
αH(Hi) = inf{∧jαρj (w1),∧jαρj (w2), · · · ,∧jαρj (wk)}=αU (zi) ≤ 1,
βH(Hi) = inf{∧jβρj (w1),∧jβρj (w2), · · · ,∧jβρj (wk)}
=βU (zi) ≤ 1 and γH(Hi) = sup{∨jγρj (w1),∨jγρj (w2), · · · ,∨jγρj (wk)}=γU (zi) ≤ 1, 1 ≤ i ≤ n, and
⋃

r
(ρr) = ZD, for all ρr ∈ V .

Thus D is SVNDHG. We now prove that D is linear.

1. Since the truth-membership, indeterminacy and falsity-membership values of all the vertices of
D are same. Therefore, supp(ρi) ⊆ supp(ρj) implies i = j, for each 1 ≤ i, j ≤ r.

2. On contrary, suppose that supp(ρi)
⋂

supp(ρj) = {wl, wm}, that is, the both edges wl, wm have
two incident vertices in G, which is a contradiction to the statement that G is simple. Hence
|supp(ρi)

⋂

supp(ρj)| ≤ 1, 1 ≤ i, j ≤ r.

Theorem 3.5. A SVNDHG D = (V,H) is connected if and only if its line directed graph L(D) is
connected.
Proof. Suppose that D = (V,H) is connected SVNDHG. Let L(D) = (A,B) be the SVN line directed
graph of D and Hi,Hj be any two distinct vertices of L(D). Consider vi ∈ Hi and vj ∈ Hj. Since D

is connected, there exists a SVN directed hyperpath vi,Hi, vi+1,Hi+1, · · · , vj ,Hj between vi and vj.
By definition of strength of connectedness, we have

χ∞(Hi,Hj) = sup
k

{α(χk(Hi,Hj))}, sup
k

{β(χk(Hi,Hj))}, inf
k
{γ(χk(Hi,Hj))}, k = 1, 2, · · ·

= sup
k

{αB(Hi,Hi+1) ∧ αB(Hi+1,Hi+2) ∧ · · · ∧ αB(Hj−1,Hj)}, sup
k

{βB(Hi,Hi+1)

∧ βB(Hi+1,Hi+2) ∧ · · · ∧ βB(Hj−1,Hj)}, inf
k
{γB(Hi,Hi+1) ∨ γB(Hi+1,Hi+2) ∨ · · · ∨ βB(Hj−1,Hj)}

= sup{αH(Hi) ∧ αH(Hi+1) ∧ · · · ∧ αH(Hj−1) ∧ αH(Hj)}, sup{βH(Hi) ∧ βH(Hi+1) ∧ · · ·

∧ αH(Hj−1) ∧ βH(Hj)}, inf{γH(Hi) ∨ γH(Hi+1) ∨ · · · ∨ γH(Hj−1) ∨ γH(Hj)}, k = 1, 2, · · ·

= sup{α(χk(vi, vj))}, sup{β(χ
k(vi, vj))}, inf{γ(χ

k(vi, vj))}, k = 1, 2, · · ·

= χ∞(vi, vj) > 0.

Since Hi and Hj were chosen arbitrarily. Hence L(D) is connected. The converse part of the theorem
can be proved on the same lines.

Definition 3.7. The 2-section [D]2 of a single-valued neutrosophic directed hypergraph D = (V,H)
is the SVN graph (V,E), where

(i) V = V , i.e., [D]2 has the same set of vertices as D.

(ii) E = {h = vivj |vi 6= vj , vivj ∈ Hk, k = 1, 2, 3, · · · }, i.e., two vertices vi and vj are adjacent in [D]2
if they belong to the same directed hyperedgeHk inD and αE(vivj)=inf{∧kαHk

(vi),∧kαHk
(vj)},

βE(vivj)=inf{∧kβHk
(vi),∧kβHk

(vj)}, γE(vivj)=sup{∨kγHk
(vi),∨kγHk

(vj)}.

Example 3.3. A SVNDHG D = (V,H) and its 2-section [D]2 is shown in Figure 7.
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Figure 7: A SVNDHG and its 2−section.

4 Applications

Graphs and hypergraphs can be used to describe the complex network systems. The complex network
systems, including social networks, World Wide Web, neural networks are investigated by means of
simple graphs and digraphs. The graphs take the nodes as a set of objects or people and the edges de-
fine the relations between them. In many cases, it is not possible to give full description of real World
systems using the simple graphs or digraphs. For example, if a collaboration network is represented
through a simple graph. We only know that whether the two researchers are working together or not.
We can not know if three or more researchers, which are connected in the network, are coauthors of
the same article or not. Further, in various situations, the given data contains the information of ex-
istence, indeterminacy and non-existance. To overcome such type of difficulties in complex networks,
we use single-valued neutrosophic directed hypergraphs to describe the relationships between three or
more elements and the networks are then called the hyper-networks .

1. Production and manufacturing networks: In a production system, there is a set of goods
which can be produced using different technologies or devices. A SVNDHG can be utilized more pre-
cisely to illustrate a production and manufacturing system. Consider a production system as given in
Figure 4, where the set of square vertices represents the products which are taken as input to produce
the other products as given in elliptical vertices.
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Figure 8: production system using a SVNDHG.

The set of directed hyperedges {d1, d2, d3, d4, d5, d6} contains the devices or technologies which are
used in our production system to design new products. Here we use the devices {Silicon photovoltaic
system, Electric hob, Ultrasonic shower, Electric heater shower, Harvesting system, Washing machine},
which are represented by directed hyperedges. A directed hyperarc (t(d), h(d)) represents that the
goods in set t(d) are required to manufacture the products in the set h(d). The product nodes are
taken as storage. The truth-membership and falsity-membership values of each product node interpret
that how much of the product is available to supply and unavailable to fulfill the demand, respectively.
The indeterminacy value contains the imprecise or inexact information about the product. The truth-
membership degree of each directed hyperedge(or device) describes that how much this technology
is appropriate to manufacture the product. For example, the directed hyperedge d2=({Electricity,
Food}, {Nutrition}) interprets that the electric hob uses electricity and food to produce nutrition.
It is noted that more than one technologies can be adopted to manufacture the same product using
different or same inputs. The truth-membership degrees of each hyperedge evaluates the suitability
of that device. For example, electric heater shower having membership degrees (0.6, 0.1, 0.2) is more
useful device than an electric shower (0.6, 0.1, 0.4) to a body cleaner, as its falsity-membership value
is less than an electric shower.

2.Collaboration network using a SVNDHG: We use a SVNDHG as a directed hyper-network
to discuss the teamwork or joint efforts of researchers from different fields. Consider a SVNDHG
D = (V,H) as a collaboration network. The vertices or nodes of the hypergraph are taken as the
researchers. The set of vertices V is {M1,M2,M3, P1, P2, P3, C1, C2, C3, C4, B1, B2, B3, B4}, where
the subset of vertices {M1,M2,M3} represents the group of researchers in field of Mathematics,
{P1, P2, P3} represents the group of researchers in field of Physics, {C1, C2, C3, C4} represents the
group of researchers in field of Chemistry and {B1, B2, B3, B4} represents the group of researchers
in field of Biology. The directed hyperedges of SVNDHG interpret the group of members which are
working together at the same project. The corresponding SVNDHG is given in Figure 9.

14



M1(0.7, 0.6, 0.5) M2(0.8, 0.4, 0.7)

M3(0.5, 0.3, 0.4)

P1(0.7, 0.5, 0.3)

P2(0.5, 0.1, 0.3)

P3(0.7, 0.5, 0.3)

C1(0.5, 0.3, 0.3)

C2(0.6, 0.5, 0.3)

C3(0.4, 0.6, 0.3) C4(0.4, 0.5, 0.2)

B1(0.6, 0.3, 0.1)

B2(0.4, 0.3, 0.2)

B3(0.5, 0.2, 0.3)

B4(0.7, 0.5, 0.6)

H1(0.
5, 0.3

, 0.7)

H
2 (0

.5
, 0
.1
, 0
.7)

H3(0.5, 0.3, 0.6)

H
4 (0.4, 0.2, 0.6)

H5
(0
.4,

0.3
, 0
.3)

H
6(0.4, 0.2, 0.3)

H7(
0.4

, 0.
3, 0

.3)

H
8
(0
.5
,
0
.3
,
0
.3
)

H9(0.5, 0.1, 0.3)

H
10(0.5, 0.1, 0.3)

Figure 9: SVNDHG representing the collaboration network.

The truth-membership value of each researcher represents their published articles, indeterminacy
shows their submitted articles that may be accepted or rejected and the falsity-membership value
describes the rejected articles. For example, (0.7, 0.6, 0.5) shows that the researcher M1 has 70% pub-
lications, 60% submitted papers and 50% of his research work is rejected. The value of a SVN directed
hyperedge depicts the joint work of the researchers which are connected through the hyperedge. For
example, truth-membership, indeterminacy and falsity-membership values (0.5, 0.1, 0.3) of H2 describe
that the researchers M2,M3,P2 from the field of Mathematics and Physics have 50% publications, 10%
submitted papers and 30% rejected papers, respectively, while working together. By calculating the
strength of each SVN directed hyperedge, we can conclude that which group of researchers has better
work done as compared to others. By routine calculations, we have
η(H1) = (0.5, 0.3, 0.7), η(H2) = (0.5, 0.1, 0.7),
η(H3) = (0.5, 0.3, 0.6), η(H4) = (0.4, 0.2, 0.6),
η(H5) = (0.4, 0.3, 0.3), η(H6) = (0.4, 0.2, 0.3),
η(H7) = (0.4, 0.3, 0.3), η(H8) = (0.5, 0.3, 0.3),
η(H9) = (0.5, 0.1, 0.3), η(H10) = (0.5, 0.1, 0.3).
Thus, we have H8 is the strongest edge among the all. So we conclude that the researchers P1, P3

from the field of Physics and C1 from the field of Chemistry have done more joint work as compared
to others, i.e., they have 50% publications, 30% of their research work is submitted and 30% papers
are rejected. The method adopted in our example can be explained by a simple algorithm given in
Table 5.
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Table 5: Algorithm for collaboration network
Algorithm 1

1. Input the degree of membership of all nodes(researchers) v1, v2, . . . , vn.
2. Input the number of directed hyperedges r.
3. Calculate the strength of SVN directed hyperedge Hi = {vk, vk+1, . . . , vl}, 1 ≤ k ≤ n− 1, 2 ≤ l ≤ n as,

Si = {min
vj∈Hi

αHi
(vj)|αHi

(vj) > 0, min
vj∈Hi

βHi
(vj)|βHi

(vj) > 0,max
vj∈Hi

γHi
(vj)|γHi

(vj) > 0}, 1 ≤ i ≤ r.

4. Find the strongest directed hyperedge using steps 5− 14.
5. do p from 1 → r

6. J = (0, 0, 1)
7. do q from 1 → r

8. if(p 6= q) then
8. J = (max{α(J), α(Sq)},max{β(J), β(Sq)},min{γ(J), γ(Sq)})
9. end if

10. end do

11. if(α(J) = α(Sp), β(J) = β(Sp) and γ(J) = γ(Sp)) then
12. print*, Hp is a strongest SVN directed hyperedge.
13. end if

14. end do

3. Social networking: A SVNDHG can also be used to study and understand the social networks,
using people as nodes (or vertices ) and relationships between two or more than two people as single-
valued neutrosophic directed hyperedges. Consider the representation of social clubs and its members
as a SVNDHG D = (V,C), where V = {Alen, Alex, Andy, Ben, Ava, Anna, Amy, Alice, Chris, Clay,
Dave, Pal} interpret the members of different social clubs and the set of SVN directed hyperedges
C={C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} represents the social clubs. Each directed hyperedge(or
social club) connects the people having some common characteristics to each other. The social hyper-
network is shown in Figure 10.
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Figure 10: Representation of a social network using SVNDHG.

All the members of a social club connected through a SVN directed hyperedge share some com-
mon characteristics, including emotional intelligence, good behavior, communication skills and social
sensitivity. For example, if the hyperedge C1 describes the relation of social sensitivity(the capa-
bility to realize the emotions and thoughts of others) among the members of this club. Then the
truth-membership, indeterminacy and falsity-membership values of each member indicate their sen-
sitivity, unpredictable behavior and insensitivity towards the other members of the club. The truth-
membership, indeterminacy and falsity-membership values (0.6, 0.1, 0.3) of a SVN directed hyperedge
C6 interpret that 60% members have same chracteristics, 30% have different and 10% members of this
club have unpredictable behavior. We use the concept of line directed graph to find out the common
chracteristics of different members of distinct clubs. By routine calculations, we have

|supp(C1)
⋂

supp(C2)| = {Alex,Andy}, |supp(C3)
⋂

supp(C4)| = {∅},
|supp(C1)

⋂

supp(C3)| = {Andy}, |supp(C3)
⋂

supp(C5)| = {∅},
|supp(C1)

⋂

supp(C4)| = {Alex}, |supp(C3)
⋂

supp(C6)| = {Anna},
|supp(C1)

⋂

supp(C5)| = {Alen}, |supp(C3)
⋂

supp(C7)| = {Pal},
|supp(C1)

⋂

supp(C6)| = {∅}, |supp(C4)
⋂

supp(C5)| = {Ben},
|supp(C1)

⋂

supp(C7)| = {Dave}, |supp(C4)
⋂

supp(C6)| = {Alice, Clay},
|supp(C2)

⋂

supp(C3)| = {Andy}, |supp(C4)
⋂

supp(C7)| = {∅},
|supp(C2)

⋂

supp(C4)| = {Alex,Alice}, |supp(C5)
⋂

supp(C6)| = {∅},
|supp(C2)

⋂

supp(C5)| = {∅}, |supp(C5)
⋂

supp(C7)| = {∅},
|supp(C2)

⋂

supp(C6)| = {Alice,Anna}, |supp(C6)
⋂

supp(C7)| = {∅}.
|supp(C2)

⋂

supp(C7)| = {∅},

The line directed graph of social network SVNDHG is given in Figure 10 with dashed lines. Each
common edge between two social clubs describes the common characteristics of members of different
clubs. For example, the edge C1C2 shows that the members of C1 and C2 have 50% common char-
acteristics, 40% different to each other and 20% they have unpredictable behavior. The procedure
followed in our example can be explained by means of simple algorithm given as follows.

17



Algorithm 2

1. Input the number of directed hyperedges m of SVNDHG D = (V,H).

2. Input the degree of membership of all directed hyperedges C1, C2, . . . , Cm.

3. Construct the SVN line directed graph L(D) = (VL,HL) by taking {C1, C2, C3, . . . , Cm}
as set of vertices such that VL(Ci) = D(Ci), 1 ≤ i ≤ m.

4. Draw an edge between Ci and Cj if |Ci ∩Cj | 6= ∅ and

HL(CiCj) = (min{αH(Ci), αH(Cj)},min{βH(Ci), βH (Cj)},max{γH(Ci), γH(Cj)}).

5. The edge CiCj describes the common characteristics of members of various clubs.

5 Conclusions

A single-valued neutrosophic set is an extension of fuzzy set as well as intuitionistic fuzzy set. The
models based on single-valued neutrosophic sets are more precise, compatible and flexible in compar-
ison to other traditional models. In this research paper, we have applied the notion of SVNS to the
theory of directed hypergraphs. We have described the novel concepts, including single-valued neu-
trosophic directed hypergraphs, line directed graphs, dual directed hypergraphs and 2-section graphs.
We have described some applications of single-valued neutrosophic directed hypergraphs in production
system, social networking and collaboration networking to explain the flexibility of the model when
the given data contains the part of indeterminacy. We plan to widen our research to (1) Bipolar
fuzzy soft neutrosophic hypergraphs, (2) Interval valued neutrosophic hypergraphs, (3) Fuzzy rough
neutrosophic hypergraphs and (4) Bipolar fuzzy rough directed hypergraphs.

Conflict of interest: The authors declare that they have no conflict of interest.
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