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Fault and Event Tree Analyses for Process Systems Risk
Analysis: Uncertainty Handling Formulations

Refaul Ferdous,1 Faisal Khan,1,∗ Rehan Sadiq,2 Paul Amyotte,3 and Brian Veitch1

Quantitative risk analysis (QRA) is a systematic approach for evaluating likelihood, conse-
quences, and risk of adverse events. QRA based on event (ETA) and fault tree analyses
(FTA) employs two basic assumptions. The first assumption is related to likelihood values of
input events, and the second assumption is regarding interdependence among the events (for
ETA) or basic events (for FTA). Traditionally, FTA and ETA both use crisp probabilities;
however, to deal with uncertainties, the probability distributions of input event likelihoods
are assumed. These probability distributions are often hard to come by and even if avail-
able, they are subject to incompleteness (partial ignorance) and imprecision. Furthermore,
both FTA and ETA assume that events (or basic events) are independent. In practice, these
two assumptions are often unrealistic. This article focuses on handling uncertainty in a QRA
framework of a process system. Fuzzy set theory and evidence theory are used to describe
the uncertainties in the input event likelihoods. A method based on a dependency coeffi-
cient is used to express interdependencies of events (or basic events) in ETA and FTA. To
demonstrate the approach, two case studies are discussed.

KEY WORDS: Event tree analysis (ETA); fault tree analysis (FTA); interdependence; likelihoods;
quantitative risk analysis (QRA); uncertainty

SYMBOLS

m(pi)/m(ci) Belief mass
m1−n 1 to n numbers of experts’ knowl-

edge
n Number of events/basic events

Subscript (L) Minimum (left) value of a TFN
Subscript (m) Most likely value of a TFN
Subscript (U) Maximum (right) value of a TFN
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Cd Dependency coefficient
N Number of samples
Pi Probability of events (i = 1, 2, . . . , n)
P̃i Fuzzy probability
λi Frequency

P̃α TFN with a α-cut
POR “OR” gate operation

PAND “AND” gate operation
μ Membership function
α Membership function at a specific

level
� Frame of discernment (FOD)
� Null set
∩ Symbol for intersection
⊆ Symbol for subsets

Bel,Pl Belief, plausibility
bpa Basic probability assignment
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ABBREVIATIONS

E Events
H High
I Independent
P Perfectly dependent
L Low

BE Basic events
MH Moderately high
ML Moderately low
RH Rather high

S Strong
VH Very high
VL Very low
VS Very strong

VW Very weak
DS Dempster & Shafer
W Weak

T, F True/false probability
ETA Event tree analysis
FTA Fault tree analysis
PDF Probability density function
MCS Monte Carlo simulation
TFN Triangular fuzzy number

1. INTRODUCTION

Process systems in chemical engineering are in-
famous for fugitive emissions, toxic releases, fire and
explosions, and operation disruptions. These inci-
dents have considerable potential to cause an acci-
dent and incur environmental and property damage,
economic loss, sickness, injury, or death of work-
ers in the vicinity. Quantitative risk analysis (QRA)
is a systematic approach that integrates quantita-
tive information about an incident and provides de-
tailed analysis that helps to minimize the likelihood
of occurrence and reduces its adverse consequences.
QRA for process systems is a difficult task as the
failures of components and the consequences of an
incident are randomly varied from process to pro-
cess. Furthermore, for a process system compris-
ing thousands of components and steps, it is dif-
ficult to acquire the quantitative information for
all components.(1) Finally, the interdependencies of
various components are not known and are gener-
ally assumed to be independent for the purpose of
simplicity.

Event tree analysis (ETA) and fault tree analysis
(FTA) are two distinct methods for QRA that de-
velop a logical relationship among the events leading
to an accident and estimate the risk associated with
the accident. The term “event” is frequently used in

place of the term “accident” in the analyses of fault
trees and event trees for QRA.(2) ETA is a technique
used to describe the consequences of an event (initi-
ating event) and estimate the likelihoods (frequency)
of possible outcomes of the event. FTA represents
basic causes of occurrence of an unwanted event and
estimates the likelihood (probability) as well as the
contribution of different causes leading to the un-
wanted event. In FTA, the basic causes are termed
basic events, and the unwanted event is called the top
event.(3−6) Kumamoto and Henley(7) provide a de-
tailed description of fault tree development and anal-
ysis for a process system.

In the event tree, the unwanted event is named as
an initiating event, and the follow-up consequences
are termed as events or safety barriers.(8) The ETA
represents the dichotomous conditions (e.g., success/
failure, true/false, or yes/no) of the initiating event
until the subsequent events lead to the final out-
come events.(8−10) AIChE(8) and Lees(11) provide a
detailed procedure for constructing and analyzing
the ETA for a process system.

Event and fault trees help to conduct the QRA
for process systems based on two major assump-
tions.(2) First, the likelihood of events or basic events
is assumed to be exact and precisely known, which
is not very often true due to inherent uncertainties
in data collection and defining the relationships of
events or basic events.(10,12) Moreover, because of
variant failure modes, design faults, and poor under-
standing of failure mechanisms, as well as the vague-
ness of system phenomena, it is often difficult to pre-
dict the acquired probability of basic events/events
precisely.(13) Second, the interdependencies of events
or basic events in an event tree or fault tree are
assumed to be independent, which is often an inaccu-
rate assumption.(14) These two assumptions indeed
misrepresent the actual process system behaviors
and impart two different types of the uncertainty,
namely, data uncertainty and dependency uncertainty,
while performing the QRA using FTA and ETA.
In an attempt to circumvent the data uncertainty in
risk analysis, a number of research works(1,10,13,15−23)

have been developed to facilitate the accommoda-
tion of expert judgment/knowledge in quantification
of the likelihood of the basic events/events for QRA.
Sadiq et al.,(12) Ferson et al.,(14) and Li(24) proposed
methods to describe the dependency uncertainty
among the basic events/events.

Fuzzy-based and evidence-theory-based formu-
lations have been proposed and developed to ad-
dress data and dependency uncertainties in FTA and
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ETA. The interdependencies among the events (or
basic events) are described by incorporating a de-
pendency coefficient into the fuzzy- and evidence-
theory-based formulations for FTA/ETA. Expert
judgment/knowledge can be used to quantify the
unknown or partially known likelihood and depen-
dency coefficient of the events (or basic events).

2. FTA AND ETA IN PROCESS SYSTEMS

The traditional fault and event trees can be an-
alyzed either deterministically or probabilistically.
The deterministic approach uses the crisp probability
of events (or basic events) and determines the prob-
ability of the top event and the frequency of outcome
events in the fault and event trees, respectively. The
probabilistic approach treats the crisp probability as
a random variable and describes uncertainty using
probability density functions (PDF).(10,20,23) Tradi-
tionally, the probabilistic approach uses Monte Carlo
simulation (MCS) to address the random uncertainty
in the inputs (i.e., probability of basic events or
events) and propagate the uncertainty for the out-
puts.(25) The PDFs for the inputs can be derived
from historical information, but are often rare, espe-
cially when the process system comprises thousands
of components.(18)

With an assumption that the events (or basic
events) are independent, deterministic and proba-
bilistic approaches use the equations in Table I to
analyze the fault and event trees. Pi denotes the
probability of ith (i = 1, 2, 3, . . . , n) events (or
basic events), POR and PAND, respectively, denote
the “OR” and “AND” gate operations, and λi de-
notes the frequency for the initiating event and the
outcome events.

Two examples—an event tree for “LPG release”
(Fig. 1) and a fault tree for “runaway reaction”
(Fig. 2)—are considered to illustrate the use of deter-

Table I. Equations Used in Traditional Fault Tree Analyses and
Event Tree Analyses

QRA Method Equation

ETA λi = λ ×
n∏

i=1

Pi

FTA POR = 1 −
n∏

i=1

(1 − Pi )

PAND =
n∏

i=1

Pi

ministic and probabilistic approaches in QRA for the
process system. The event and fault trees for these
two examples were earlier studied, respectively, in
Lees(11) and Skelton.(26) The deterministic approach
provides a quick analysis if the probabilities are
known accurately.(10) Based on assigned probabili-
ties (Fig. 1 and Table II), the frequency of outcome
events for “liquefied petroleum gas (LPG) release
event tree” and the probability of top event for “run-
away reaction fault tree” are calculated as crisp val-
ues (Table III). In the probabilistic approach, trian-
gular PDFs are assumed to perform MCS (N = 5,000
iterations) and the PDFs for the outcome events’ fre-
quency and the top event probability are determined
based on this assumption. The 90% confidence inter-
vals for the outcome events of the “LPG event tree”
and top event of “runaway reaction fault tree” are
summarized in Table IV and Fig. 3, respectively.

3. UNCERTAINTY IN FTA AND ETA

FTA and ETA require probability data of events
(or basic events) as inputs to conduct a compre-
hensive QRA for a process system. Since most of
the time the crisp data as well as PDFs are rarely
available for all events and basic events, experts’
judgment/knowledge are often employed as an al-
ternative to the objective data.(13) Two types of un-
certainties, namely, aleatory and epistemic uncertain-
ties, are usually addressed while using the expert’s
knowledge in QRA.(10,27,28) Aleatory uncertainty is a
natural variation, randomness, or heterogeneity of a
physical system. It can be well described using prob-
abilistic methods if enough experimental data are
available to support the analysis.(29) Epistemic un-
certainty means ambiguity and vagueness, ignorance,
knowledge deficiency, or imprecision in system
behaviors.

In QRA, it is important to characterize, repre-
sent, and propagate the uncertainty accurately in or-
der to get a reliable analysis. However, when the
input PDFs are “reasonably known,” MCS can be
used to estimate and propagate the uncertainties,
especially two dimensional MCS, which can effec-
tively deal with both aleatory and epistemic uncertain-
ties (not discussed here).(30) If knowledge is limited
for definition of the PDFs, probabilistic approaches
might not be the best choice to handle the uncer-
tainty in QRA.(31) In addition, the independence as-
sumption of events (or basic events) might be conve-
nient to simplify the FTA or ETA; however, it is not
always true for all cases.(14) This assumption in fact is
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Fig. 1. Event tree for LPG release.
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Fig. 2. Fault tree for runaway reaction in
a reactor.

Table II. Basic Events Causing the Runaway Reaction

Probability of
Symbol Basic-Event Basic Event

BE1 Pump fails 0.2
BE2 Line block 0.01
BE3 No cooling water 0.1
BE4 Low coolant flow 0.01
BE5 High temp 0.01
BE6 Dump valve fails 0.001

adding other kind of uncertainty, that is, the depen-
dency uncertainty, during the analyses. Vesely et al.(3)

show several cases of FTA where the independent
assumptions of basic events are not valid.

Fuzzy set and evidence theories have recently
been used in many engineering applications where
expert knowledge is employed as an alternative to
crisp data or PDFs.(12,23,28,29,32) Fuzzy set theory
is used to address the subjectivity in expert judg-
ment, whereas the evidence theory is more promptly
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Table III. Deterministic Results for Fault Tree Analyses and Event Tree Analyses

LPG release event tree Frequency of outcome events (Events/Yr) A B C D E
6.1E-06 5.5E-05 2.4E-06 2.7E-07 4.1E-06

Runaway reaction fault tree Probability of top event PTop = 3.16E-04

Table IV. Frequency Determination of Outcome Events Using
Monte Carlo Simulation

90% Confidence Interval

Outcome Lower Bound Upper Bound Median
Events (5th Percentile) (95th Percentile) (50th Percentile)

A 1.958E-06 1.024E-05 6.100E-06
B 4.935E-05 6.090E-05 5.512E-05
C 7.353E-07 4.151E-06 2.443E-06
D 3.057E-10 5.467E-07 2.736E-07
E 1.300E-06 6.850E-06 4.080E-06

employed in handling the uncertainty that arises due
to ignorance, conflict, and incomplete information.
In addition, to describe the dependency uncertainty
among the basic events in FTA, Ferson et al.(14) de-
scribed the Frank copula and Frechet’s limit. For
known dependency, the Pearson correlation in the
Frank copula describes the full range of depen-
dencies; that is, from perfect dependence to oppo-
site dependence.(12) Li(24) proposed a dependency
factor-based fuzzy approach to address the depen-
dencies in performing risk analysis. Li(24) uses fuzzy
numbers to define the dependency factor among
basic events.

In this article, the probabilities of events (or basic
events) and their dependency coefficients are treated
as fuzzy numbers or basic probability assignments
(bpas), which are derived through expert knowl-
edge. Fuzzy set and evidence theories along with de-
pendency coefficients, are used to explore the data
and dependency uncertainty in ETA/FTA. The fuzzy
numbers in fuzzy set theory describe linguistic and
subjective uncertainty while bpas in evidence theory
are used to handle ignorance, incompleteness, and in-
consistency in expert knowledge. A generic frame-
work is shown in Fig. 4 illustrating the use of fuzzy
set theory and evidence theory to handle two differ-
ent kinds of uncertainties in FTA and ETA. The fol-
lowing sections describe the fuzzy set theory and the
evidence theory with respect to handling uncertain-
ties.

4. FUZZY SET THEORY

Zadeh(33) introduced fuzzy sets, which have re-
cently been applied where probability theory alone
was found insufficient to represent all types of un-
certainties. Fuzzy set theory is flexible in describing
linguistic terms as fuzzy sets, hedges, predicates, and
quantifiers.(34) Fuzzy set theory is an extension of
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Fig. 4. Framework for fault tree analyses and event tree analyses under uncertainty.

traditional set theory, which represents imprecise
values as fuzzy numbers and characterizes the un-
certainty using a continuous membership function
(μ).

4.1. Fundamentals

Fuzzy numbers are used to describe the vague-
ness and subjectivity in expert judgment through a
relationship between the uncertain quantity p (e.g.,
event or basic event probability) and a member-
ship function μ that may range between 0 and 1.
Any shape of a fuzzy number is possible, but the
selected shape should be justified by available in-
formation (but it should be normal, bounded, and

convex). Generally, triangular or trapezoidal fuzzy
numbers (TFN or ZFN) are used for representing lin-
guistic variables.(18,21,35,36) In this study, we used tri-
angular fuzzy numbers (TFN) in which the fuzzy in-
tervals are derived using α-cuts. Fig. 5 shows a TFN
in which fuzzy intervals are estimated using Equation
(1). The values pL, pm, and pR below represent the
minimum, most likely, and maximum values, respec-
tively, in an interval P̃α :

P̃α = [pL + α(pm − pL), pR − α(pR − pm)]. (1)

Fuzzy set theory uses the fuzzy arithmetic opera-
tions based on α-cut formulation to manipulate fuzzy
numbers.(24,37,38) Traditional fuzzy arithmetic oper-
ations assume that the events (or basic events) are
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independent and use equations in Table V for FTA
and ETA.(15−21,23,37)

4.2. Fuzzy-Based Approach for FTA/ETA

In the proposed fuzzy-based approach, the prob-
ability of events (or basic events) can be defined
linguistically and described using TFN. The interde-
pendence of events (or basic events) is defined lin-
early using a dependency coefficient (Cd) that can
also be described using a TFN. Fuzzy probability
and dependency coefficients are used to determine
the probability of top event and the frequency of
outcome events in fuzzy terms. The fuzzy-based ap-
proach comprises the following three steps:

(1) Definition of input probability and depen-
dency coefficient using TFN.

(2) Determination of likelihood of outcome
events (ETA) and top event (FTA) as a TFN.

(3) Defuzzification.

4.2.1. Definition of Input Probability and
Dependency Coefficient Using TFN

Experts are more comfortable using linguistic ex-
pression rather than numerical judgment when they
are asked to define an uncertain quantity like the
probability of occurrence of events (or basic events)
and dependency coefficients.(28) In order to capture
these linguistic expressions, eight linguistic grades
are defined in the proposed approach (Fig. 6). They
include: Very Highly (VH), Very Low (VL), Moder-
ately High (MH), Moderately Low (ML), Low (L),
Moderate (M), High (H), and Rather High (RH).
These grades can be used to assign the probability
of events (or basic events) for ETA (or FTA).

As mentioned earlier, the traditional methods of
FTA and ETA assume that the events in an event
tree and the basic events in a fault tree are indepen-
dent. However, in practice, the interdependencies
among the events (or basic events) could be ranged
from perfectly dependent to oppositely dependent. A
scalar quantity ∈ [+1, −1] may describe the depen-
dency between two events, where the scalar quantity
+1 refers to perfect dependence and −1 refers to op-
posite dependence.(14) More specifically, the positive
dependence belongs to an interval [0, +1], whereas
the negative dependence belongs to an interval [−1,
0]. However, various levels of dependency are pos-
sible in between the events (or basic events). This
work explores only the positive dependence of events
(or basic events) at each node in FTA (or ETA). Six
linguistic grades are used in this study to describe
the different levels of interdependencies among the
events and basic events, which include: Perfectly De-
pendent (P), Very Strong (VS), Strong (S), Weak
(W), Very Weak (VW), and Independent (I). The left
bound (CdL) and the right bound (CdR) in Table VI

Table V. Traditional α-Cut-Based Fuzzy
Arithmetic Operations

Method Operation α-Cut Formulation

ETA Frequency estimation λi = λ ×
n∏

i=1

(pα
i L, pα

i R)

P̃1 × P̃2 pα
L =

n∏
i=1

pα
i L; pα

R =
n∏

i=1

pα
i R

P̃1 + P̃2 pα
L =

n∑
i=1

pα
i L; pα

R =
n∑

i=1

pα
i R

FTA “OR” gate pα
L = 1 −

n∏
i=1

(1 − pα
i L); pα

R = 1 −
n∏

i=1

(1 − pα
i R)

“AND” gate pα
L =

n∏
i=1

pα
i L; pα

R =
n∏

i=1

pα
i R
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Fig. 6. Mapping linguistic grades for fault
tree analyses and event tree analyses.

Table VI. Scale to Categorize the
Interdependence Among the Basic

Events/Events

Maximum
Linguistic Minimum Bound
Grade Description (CdL) (CdU)

P Perfect dependence between the events 1.000 1.000
VS Very strong dependence, but not fully dependent 0.800 0.995
S Strong dependence, but not too strong 0.450 0.850
W Weak dependence, but not too weak 0.150 0.500
VW Very weak dependence, but not fully independent 0.005 0.200
I Perfect independence between the events 0.000 0.000

are representing the TFNs boundary for the depen-
dency coefficients.

4.2.2. Determination of Likelihood of Outcome
Event and Top Event as a TFN

The dependency coefficient Cd defines the de-
pendence of the events (or basic events) at each node
of a fault and event tree (Table VI). The modified
fuzzy arithmetic with the empirical relation for FTA
and ETA are described in Table VII, where Cd ≈ 1
refers to perfect dependence and Cd ≈ 0 refers to
complete independence among the event (or basic
events).

4.2.3. Defuzzification

Defuzzification transforms the fuzzy number
into a crisp value.(39) The crisp value is useful in eval-
uating the rank of outcome events’ frequency for
ETA and calculating the contribution of basic events
leading to the top event FTA. A number of defuzzi-
fication methods, including max membership prin-
ciple, centroid method, weighted average method,
mean max membership, center of sums, center of
largest area, and first (or last) of maxima, are avail-
able in the literature.(39−41) The weighted average
method is comparatively easy and computationally
efficient to implement.(34,41) The following equation
for the weighted average method is used to defuzzify

the obtained fuzzy numbers for the event tree and
fault tree outputs:(41)

Pout =
∑

μP(P̃) · P̃
∑

μP(P̃)
. (2)

5. EVIDENCE THEORY (EVIDENTIAL
REASONING)

Multisource knowledge can provide more reli-
able information about the probability of events (or
basic events) than a single source. Knowledge can
never be absolute as it is socially constructed and ne-
gotiated and often suffers incompleteness and con-
flict.(42) Evidence theory has alternatively been used
in many applications, especially when the uncertainty
is due to ignorance and incomplete knowledge.(43,44)

The main advantages of evidence theory are:
(1) Individual belief, including complete igno-

rance, can be assigned.
(2) An interval probability can be obtained for

each uncertain parameter.
(3) Multisource information can be combined

that helps to avoid bias due to some specific
source.(45)

5.1. Fundamentals

Evidence theory was first proposed by Demp-
ster and later extended by Shafer. This theory is
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Table VII. Modified α-Cut-Based Fuzzy
Arithmetic Operations

Method Operation α-Cut Formulation

ETA Frequency estimation λi = λ ×
n∏

i=1

(pα
i L, pα

i R)

P̃1 × P̃2 pα
L = [1 − (1 − Cα

dL)(1 − pα
1L)] × pα

2L

pα
R = [1 − (1 − Cα

dR)(1 − pα
1R)] × pα

2R

FTA P̃1“OR”P̃2 pα
L = {

1 − (1 − pα
1L) × [

1 − (1 − Cα
dL) × pα

2L

]}
pα

R = {
1 − (1 − pα

1R) × [
1 − (1 − Cα

dR) × pα
2R

]}
P̃1“AND”P̃2 pα

L = {[
1 − (1 − Cα

dL) × pα
1L

] × pα
2L

}
pα

R = {[
1 − (1 − Cα

dR) × pα
1R

] × pα
2R

}

also known as Dempster-Shafer Theory (DST).(24,45)

DST uses three basic parameters, that is, basic prob-
ability assignment (bpa), belief measure (Bel), and
plausibility measure (Pl) to characterize the uncer-
tainty in a belief structure.(32,36,46) The belief struc-
ture represents a continuous interval [belief , plausi-
bility] for the uncertain quantities in which the true
probability may lie. Narrow belief structures are rep-
resentative of more precise probabilities. The main
contribution of DST is a scheme for the aggregation
of multisource knowledge based on individual de-
grees of belief.

5.1.1. Frame of Discernment (FOD)

FOD � is defined as a set of mutually exclusive
elements that allows having a total of 2|�| subsets in a
power set (P), where |�| is the cardinality of an FOD.
For example, if � = {T, F}, then the power set (P)
includes four subsets, that is, {� (a null set), {T}, {F},
and {T, F}}, as the cardinality is two.

5.1.2. Basic Probability Assignment

The bpa, also known as belief mass, is denoted by
m(pi). The bpa represents the portion of total knowl-
edge assigned to the proposition of the power set (P)
such that the sum of the proposition is 1. The focal
elements, that is, pi ⊆ P with m(pi) > 0, collectively
represent the evidence. The bpa can be characterized
by the following equation:

m(pi ) → [0, 1]; m(�) → 0;
∑
pi ⊆P

m(pi ) = 1. (3)

For example, suppose an expert reports that the
occurrence probability of an event in ETA is 80%
true and 10% false. For this example, the baps of
every subset of m(pi) can be written as m(T) = 0.8,
and m(F) = 0.1. The unassigned bpa is referred to

the set m(�) = m(T, F) = 0.1. This is because, the
unassigned bpa is taken as ignorance, which is usu-
ally represented by the subset m{�}.(43)

5.1.3. Belief Measure

The belief (Bel) measure, sometimes termed as
the lower bound for a set pi, is defined as the sum
of all the bpas of the proper subsets pk of the set of
interest pi, that is, pk ⊆ pi. The relationship between
bpa and belief measure is written as:

Bel(pi ) =
∑

pk⊆pi

m(pk). (4)

The belief measures in the above example are
given by:

Bel(T) = m(T) = 0.8; Bel(F) = m(F) = 0.1

and

Bel(T, F) = m(T) + m(F) + m(T, F) = 1.0.

5.1.4. Plausibility Measure

The upper bound, that is, the plausibility (Pl)
measure, for a set pi is the summation of bpas of the
sets pk that intersect with the set of interest pi, that
is, pk ∩ pi 	= �. Therefore, the relationship can be
written as:

Pl(pi ) =
∑

pk∩pi 	=�

m(pk). (5)

The plausibility measures for the above example
are given by:

Pl(T) = m(T) + m(T, F) = 0.8 + 0.01 = 0.9;

Pl(F) = m(F) + m(T, F) = 0.1 + 0.1 = 0.2; and

Pl(T, F) = 1.0.
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5.1.5. Rule of Combination for Inference

The combination rules allow aggregating the in-
dividual beliefs of experts and provide a combined
belief structure. The Dempster & Shafer (DS) com-
bination rule is the fundamental for all combina-
tion rules. Many modifications of the DS rule of
combination have been reported. The most common
modifications include those by Yager, Smets, Ina-
gaki, Dubois and Prade, Zhang, Murphy, and more
recently by Dezert and Smarandache.(43) Detailed
discussions on these rules can be found in Dezert
and Smarandache.(47) In this study, DS and Yager
combination rules are discussed in detail and used
in developing the evidence-theory-based approach
for FTA and ETA. DS combination rule: The DS
combination rule uses a normalizing factor (1−k) to
develop an agreement among the acquired knowl-
edge from multiple sources, and ignores all conflict-
ing evidence through normalization. Assuming that
the knowledge sources are independent, this combi-
nation rule uses the AND-type operator (product)
for aggregation.(43) For example, if the m1 (pa) and
m2 (pb) are two sets of evidence for the same event
collected from two different experts, the DS combi-
nation rule uses the following relation to combine the
evidence:

m1−2(pi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for pi = �
∑

pa∩pb=pi

m1(pa) × m2(pb)

1 − k
for pi 	= �

.

(6)

In the above equation, m1−2 (pi) denotes the
combined knowledge of two experts for the event,
and k measures the degree of conflict between the two
experts, which is determined by the factor k:

k =
∑

pa∩pb=�

m1(pa) × m2(pb). (7)

Yager combination rule: Zadeh in 1984(48)

pointed out that the DS combination rule yields
counterintuitive results and exhibits numerical in-
stability if conflict is large among the sources.(45)

To resolve this issue, Yager in 1987(49) proposed an
extension, which is similar to the DS combination
rule except that it does not allow normalization of
joint evidence with the normalizing factor (1−k). The
total degree of conflict (k) is assigned to be part of
ignorance �.(43) However, in a non- (or less) conflict-
ing case, the Yager combination rule exhibits similar
results as the DS combination rule. For high conflict

Table VIII. Determination of Belief Structure of an Event Using
Different Combination Rules

{T} {F} {T, F}
m1 m2 0.60 0.30 0.10

{T} 0.80 {T} = 0.48 {�} = 0.24 {T} = 0.08
{F} 0.10 {�} = 0.06 {F} = 0.03 {F} = 0.01
{T, F} 0.10 {T} = 0.06 {F} = 0.03 {T, F} = 0.01
k 0.30∑
pa∩pb=pi

m1(pa)m2(pb) 0.62 0.07 0.01

m1−2 (DS) 0.89 0.1 0.014
m1−2 (Yager) 0.62 0.07 0.31

Belief Structure

Bel (T) Pl (T) Bel (F) Pl (F)
Rules of
Combination

DS rule 0.89 0.90 0.10 0.11
Yager rule 0.62 0.93 0.07 0.38

cases (i.e., higher k value), it provides more stable
and robust results than the DS combination rule:(10)

m1−2(pi ) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for pi = �
∑

pa∩pb=pi

m1(pa) × m2(pb) for pi 	= �

∑
pa∩pb=pi

m1(pa) × m2(pb) + k for pi = �

.

(8)

In the above example, if we assume another
expert reports new evidence for the same event:
m ({T}) = 0.6, m ({F}) = 0.3 and m ({T, F}) =
0.1. Both bodies of evidence are combined using
DS and Yager combination rules. The aggrega-
tion of the knowledge is performed using Equa-
tions (6) and (8). Equations (3) and (4) are used
to obtain the combined belief structure of the event
(Table VIII ).

5.2. Evidence Theory-Based Approach
for FTA/ETA

Expert knowledge is used to define the proba-
bility of occurrence and dependency coefficient of
events (or basic events). Each expert may have their
own belief or knowledge that may be incomplete and
that may be in conflict with the others. In an ev-
idential reasoning framework, the ignorance in an
evidence is assigned to a subset m(�). The con-
flict among the sources is dealt with using combina-
tion rules as discussed above. The following sections
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describe the steps of the evidence-theory-based ap-
proach to analyze the event tree/fault tree under un-
certainties.

5.2.1. Definition of FODs

Three different FODs for three uncertain quan-
tities in FTA and ETA, including the probability of
events, the probability of basic events, and the de-
pendency coefficient (Cd), are used to acquire the be-
lief masses from different experts. The subsets for the
FODs are generated based on the cardinality of each
FOD (�).

Traditionally, the consequences of events in
ETA are dichotomous, that is, {T} and {F}. There-
fore, the FOD for ETA is defined as � {T, F}, which
leads to four subsets in a power set (P) that includes
{�, {T}, {F}, {T, F}}.

The operational state of a system is usually de-
fined on the basis of evaluating the success (S) or fail-
ure (F) state of basic components.(3,5,6) Hence, the
occurrence probability of a basic event in FTA can
be described using the FOD � = {S, F}. As the car-
dinality is two for the FOD, the power set (P) of each
event comprises four subsets, which includes {�, {S},
{F}, {S, F}}.

Six qualitative grades of dependency are cate-
gorized in this study to describe interdependences
through dependency coefficients for FTA or ETA.
The notations of these grades are: Independent (I);
Very Weak (M); Weak (W); Strong (S); Very Strong
(VS); and Perfect dependence (P). The FOD for this
case consists of six cardinal elements, which is repre-
sented by � = {P, VS, S W, VW, I}.

5.2.2. Assignment of bpas to Basic Events/Events

The bpas or belief masses for the events (or ba-
sic events) and the dependency coefficients (Cd) are
elicited using the experts’ knowledge. Assuming that
the knowledge sources are independent, the bpas are

assigned to particular subsets of each FOD. How-
ever, for the dependency coefficient, experts’ knowl-
edge is collected only for the subsets {P}, {VS}, {S},
{W}, {VW}, {I}, and {�}. The bpas for each subset
individually represent the degree of belief of each ex-
pert, and implicitly, it represents the total evidences
that support the probability of occurrence of an event
(or a basic event) and a dependency coefficient (Cd).

5.2.3. Belief Structure and Bet Estimation

The combination rules allow merging the knowl-
edge from different sources as coherent evidence.
These rules help to account for ignorance in knowl-
edge and resolve conflicts among the sources. The
DS (Equation (6)) or Yager (Equation (8)) combi-
nation rules are used in this study to aggregate col-
lected knowledge from different sources. Equations
(4) and (5) are then used to derive the belief and
plausibility measure for the probability and depen-
dency coefficients of events (or basic events). The
belief and plausibility measure for six kinds of de-
pendencies (in each node of FTA or ETA) are nor-
malized to attain a generalized belief structure. Infor-
mation in Table VI, which represents the belief and
plausibility for each kind of dependency, is used for
normalizing the belief structure of dependency coef-
ficient for each node. Subsequently, equations shown
in Table IX are used to estimate the likelihoods of
outcome events and top event for the ETA and FTA,
respectively.

“Bet” provides a point estimate in belief struc-
ture (similar to defuzzification), which is often used
to represent the crisp value of the final events. It is
estimated based on the following equation:

Bet(P) =
∑
pi ⊆P

m(pi )
|pi | , (9)

where |pi| is the cardinality in the set pi. For example,
the “Bet” estimate for the belief structure obtained

Table IX. Equations to Analyze the
Event and Fault Trees

Method Operation Formulation

ETA Frequency
estimation

λi = λ ×
n∏

i=1

[Bel(Pi ), Pl(Pi )]

P1 × P2 Bel(Pout ) = [
1 − {

(1 − Bel(Cd)
} × {

(1 − Bel(P1)
}] × Bel(P2)

Pl(Pout ) = [
1 − {

(1 − Pl(Cd)
} × {

(1 − Pl(P1)
}] × Pl(P2)

FTA P1“OR”P2 Bel(Pout ) = 1 − {(1 − Bel(P1)} × [{
1 − (1 − Bel(Cd)

} × Bel(P2)
]

Pl(Pout ) = 1 − {(1 − Pl(P1)} × [{
1 − (1 − Pl(Cd)

} × Pl(P2)
]

P1“AND”P2 Bel(Pout ) = [
1 − {

(1 − Bel(Cd)
} × {

(1 − Bel(P1)
}] × Bel(P2)

Pl(Pout ) = [
1 − {

(1 − Pl(Cd)
} × {

(1 − Pl(P1)
}] × Pl(P2)
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using the DS combination rule is calculated as:

Bet(PT) = m(T)
1

+ m(T, F)
2

= 0.89
1

+ 0.01
2

= 0.895.

The denominators “1” and “2” represent the car-
dinality in the respective subsets.

6. APPLICATION OF DEVELOPED
APPROACHES

The same examples (“LPG release event tree”
and “runaway reaction fault tree”) discussed earlier
in Section 2 are studied in detail here using both
fuzzy-based and evidence theory-based approaches.

6.1. LPG Release—Event Tree Analysis

6.1.1. Fuzzy-Based Approach

The revised event tree with fuzzy probabilities is
illustrated in Fig. 7. In the fuzzy-based approach, the

probability of events (or basic events) and their de-
pendency coefficients (Cd) are defined using TFNs.
The frequency for the outcome events are then esti-
mated using the α-cut-based fuzzy formulations de-
veloped in Table VII. For example, the path lead-
ing to the outcome event “A” is followed by the
two events. The probability and the coefficient of de-
pendency (Cd) of these two events are linguistically
expressed, which are, respectively, assumed to be
“Moderately Low (ML),” “Moderately High (MH),”
and “Strong (S).” The assigned linguistic expressions
for these two events are converted into TFNs (based
on Fig. 6 and Table VI). The TFN for the outcome
event “A” (shown in Fig. 8) is derived using the em-
pirical equations described in Table VII. Using nu-
merous trials for event dependency at each node of
the LPG event tree, the uncertainty ranges (i.e., fuzzy
interval) for the outcome event “A” are estimated
(shown in Fig. 9). It can be observed that the uncer-
tainty ranges are varied according to the change of
event dependency at each node of the event tree.
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Ignition  
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Explosion 
(E2)

Wind to DAP 
(E3)

Delayed explosion 
at DAP (E4)
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Fig. 7. Event tree with fuzzy linguistic
grades.
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6.1.2. Evidence-Theory-Based Approach

To demonstrate the evidence-theory-based ap-
proach, experts’ knowledge from two unbiased and
independent sources is considered for determining
the probability as well as the dependency coefficients
of events for ETA. The elicited knowledge from the
sources is shown in Tables X(a) and X(b).

DS and Yager combination rules are used to ag-
gregate and determine the belief structures of proba-

bility and dependency coefficients of events for the
ETA. Table XI lists the belief structures of events
and dependency coefficients for the LPG release
event tree (Fig. 1). These belief structures and the
equations in Table IX are used to derive the belief
structures for the outcome events of LPG release.
Two different kinds of dependence, that is, indepen-
dent and dependent, are considered while estimat-
ing the belief structures for the outcome events. The

Table X. Experts’ Knowledge on (a) the Probability of Events

Expert 1 (m1) Expert 2 (m2)

Symbol Events’ Name {T} {F} {T, F} {T} {F} {T, F}

E1 Ignition 0.80 0.10 0.10 0.60 0.30 0.10
E2 Explosion 0.10 0.80 0.10 0.05 0.80 0.15
E3 Wind to DAP 0.60 0.20 0.20 0.50 0.40 0.10
E4 Ignition Explosion at DAP 0.85 0.10 0.05 0.80 0.10 0.10

(b) Interdependence of Events at Different Nodes

Number of Experts Node (N) {∗
P} {VS} {S} {W} {VW) {I} {�}

Expert 1 (m1) N-1 0.15 0.00 0.30 0.10 0.00 0.00 0.45
N-2 0.00 0.30 0.20 0.00 0.10 0.00 0.40
N-3 0.40 0.00 0.20 0.00 0.00 0.20 0.20
N-4 0.50 0.20 0.00 0.00 0.00 0.20 0.10

Expert 2 (m2) N-1 0.30 0.00 0.20 0.15 0.00 0.00 0.35
N-2 0.20 0.30 0.00 0.00 0.00 0.15 0.35
N-3 0.00 0.20 0.40 0.00 0.20 0.00 0.20
N-4 0.00 0.30 0.40 0.00 0.20 0.00 0.10
N-1 0.30 0.00 0.20 0.15 0.00 0.00 0.35
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Table XI. Belief Structures for the Probability and Interdependence of Events

DS Rule of Combination Yager Rule of Combination

Reference in the Event Tree Bel Pl Bel Pl

E1 T 0.8857 0.9000 0.6200 0.9300
F 0.1000 0.1143 0.0700 0.3800

E2 T 0.0284 0.0455 0.0250 0.1600
F 0.9545 0.9716 0.8400 0.9750

E3 T 0.6970 0.7273 0.4600 0.8200
F 0.2727 0.3030 0.1800 0.5400

E4 T 0.9641 0.9701 0.8050 0.9750
F 0.0299 0.0359 0.0250 0.1950

∗
N-1 0.2549 0.7450 0.1605 0.8395

N-2 0.2755 0.7245 0.1526 0.8474
N-3 0.3150 0.6849 0.0769 0.9230
N-4 0.4013 0.5987 0.0512 0.9488

P VS S W VW I

N-1 Bel 0.305 0.000 0.334 0.154 0.000 0.000
Pl 0.511 0.207 0.541 0.361 0.207 0.207

Bel(Cd)
(0.305 × 1 + 0 × 0.80 + 0.334 × 0.45 + 0.154 × 0.15 + 0 × 0.005 + 0 × 0)

(0.305 + 0 × 0.80 + 0.334 × 0.45 + 0.154 × 0.15 + 0 × 0.005) + (0.551 + 0.207 × 0.995 + 0.541 × 0.85 + 0.361 × 0.5 + 0.207 × 0.2)
= 0.255

Pl(Cd)
(0.511 × 1 + 0.207 × 0.995 + 0.541 × 0.85 + 0.361 × 0.5 + 0.207 × 0.2 + 0 × 0.207)

(0.305 + 0 × 0.80 + 0.334 × 0.45 + 0.154 × 0.15 + 0 × 0.005) + (0.551 + 0.207 × 0.995 + 0.541 × 0.85 + 0.361 × 0.5 + 0.207 × 0.2)
= 0.745

∗
Normalization of belief structure at N-1 for DS rule of combination.

T = true; F = false.

Table XII. Outcome Events Frequency
for Two Kinds of Interdependence

of Events

Interdependence of Events

Independent Dependent

Belief Structures
(DS Rule of

Combination)

Belief Structures
(Yager Rule of
Combination)

Outcome
Events Bel Pl Bet Bel Pl Bet

A 1.054E-06 1.012E-05 ∗5.586E-06 1.153E-06 1.076E-05 5.958E-06
B 3.541E-05 6.166E-05 4.854E-05 3.873E-05 6.559E-05 5.216E-05
C 1.763E-06 2.066E-05 1.121E-05 6.186E-06 6.556E-05 3.587E-05
D 5.474E-08 4.132E-06 2.093E-06 1.921E-07 1.311E-05 6.652E-06
E 8.568E-07 1.395E-05 7.405E-06 1.733E-06 3.497E-05 1.835E-05

∗
Belief structure of outcome event “A” is [1.054E-06, 1.012E-05]. So, m (T) = 1.054E-06,

and m(T, F) = 9.064E-06

Bet(A) = m(T)
1 + m(T,F)

2 = 1.054E-06
1 + 9.064E-06

2 = 5.586E-06

results are presented in Table XII. An order of mag-
nitude difference is observed in the “Bet” estimation
for the outcome event “E.” This difference signifies
the importance of defining the dependency relation-
ships in ETA.

The difference of using the DS and Yager com-
bination rules is shown in Fig. 10. In the figure, differ-
ent kinds of dependencies are labeled on the x-axis.
The belief and plausibility measure for each kind of
dependency is plotted on the y-axis. The minimum
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Fig. 10. Belief structure representing the
frequency for outcome event “A.”

and maximum values presented in Table VI are con-
sidered as the belief structure of dependency coeffi-
cient for each kind of dependency. The shaded areas
in Fig. 10 represent the belief and plausibility mea-
sures for the outcome event “A.” These areas show
that the Yager combination rule measures a large be-
lief structure in comparison to the DS combination
rule. Hence, an interpretation can be made that the
Yager combination rule yields more conservative re-
sults (i.e., a larger belief structure) in the context of
existing high conflicts in the sources.

6.2. Runaway Reaction—FTA

6.2.1. Fuzzy-Based Approach

To demonstrate the fuzzy-based approach for
FTA, the probability of basic events and their de-
pendencies are defined using expert linguistic expres-
sions. The linguistic expressions are converted into
TFNs. The linguistic expressions and the correspond-
ing TFNs are given in Table XIII. A total of seven
different trials and the fuzzy arithmetic operations
(described in Table VII) are used to evaluate the
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Table XIII. Expert’s Knowledge on the Probability of
Basic Events

Event Linguistic Variable TFNs

BE1 L (0.1, 0.25, 0.4)
BE2 VL (0, 0.025, 0.05)
BE3 ML (0.045, 0.0975, 0.15)
BE4 VL (0, 0.025, 0.05)
BE5 VL (0, 0.025, 0.05)
BE6 VL (0, 0.025, 0.05)

TFN for the top event. The trials are categorized
based on different assumptions of dependencies at
each node of the fault tree. The TFNs of the top
event for the different trials are shown in Fig. 11.
In trial 7, when perfect dependencies are assumed,
the top event probability bears the maximum uncer-

tainty. Contrary to trial 1, when the events are as-
sumed independent, the top event probability bears
the smallest uncertainty.

6.2.2. Evidence-Theory-Based Approach

The fault tree for the runaway reaction as shown
in Fig. 2 is studied to demonstrate the application of
evidence-theory-based approach in FTA. The proba-
bility of basic events and the dependency coefficients
for the fault tree are obtained from two indepen-
dent sources. Tables X(b) and XIV show the experts’
knowledge for defining the probability and depen-
dency coefficients of basic events for the FTA.

DS and Yager combination rules are used to
aggregate the knowledge and estimate the belief
structures for the basic events and dependency co-
efficients. The belief structure of the top event is

Dependency of basic events in 
different nodes (N) 

TFNs of top event 
probability

Trials (T) N-1 N-2 N-3 N-4 (PL,Pm,PR)

1 I I I I (0, 0.013, 0.027) 

2 VW VW VW VW (0, 0.061, 0.122) 

3 W W W W (0, 0.122, 0.244) 

4 VS S W W (0, 0.121, 0.243) 

5 S S S S (0, 0.179, 0.359) 

6 VS VS VS VS (0, 0.199, 0.399) 

7 P P P P (0, 0.200,  0.400) 
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Fig. 11. Uncertainty representation for
top event using different trials.
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Table XIV. Multisource Knowledge for the Probability of
Basic Events

Expert 1 (m1) Expert 2 (m)

Basic Event {F} {S} {SF} {F} {S} {SF}

BE1 0.150 0.750 0.100 0.250 0.650 0.100
BE2 0.020 0.800 0.180 0.015 0.900 0.085
BE3 0.200 0.700 0.100 0.100 0.800 0.100
BE4 0.015 0.950 0.035 0.025 0.950 0.025
BE5 0.015 0.900 0.085 0.010 0.980 0.010
BE6 0.002 0.950 0.048 0.001 0.940 0.059

S = success; F = failure.

then calculated by using the equations in Table IX.
Table XV shows the belief structure and the “Bet”
estimate of the top event for two combination rules.
A total of seven trials are performed using different
assumptions of interdependence between the basic
events. The belief structure for each kind of depen-
dence is defined in Table VI. Table XV indicates that
the uncertainty in calculating the belief structure and
“Bet” estimate varies accordingly with the change of
interdependence at different nodes.

7. UNCERTAINTY-BASED FORMULATIONS
FOR FTA AND ETA: A COMPARISON

The level of uncertainty associated with a system
is proportional to its complexity, which arises as
a result of vaguely known relationships among
various entities, and randomness in the mechanisms
governing the domain. Sadiq et al.(50) described com-
plex systems such as environmental, sociopolitical,
engineering, or economic systems, which involve
human interventions, and where vast arrays of
inputs and outputs could not all possibly be captured

analytically or controlled in any conventional sense.
Moreover, relationships between causes and effects
in these systems are often not well understood
but can be expressed empirically. Typical complex
systems consist of numerous interacting factors or
concepts. These systems are highly nonlinear in
behavior and the combined effects of contributing
factors are often subadditive or superadditive. The
modeling of complex dynamic systems requires
methods that combine human knowledge and expe-
rience as well as expert judgment. When significant
historical data exist, model-free methods such as ar-
tificial neural networks (ANN) can provide insights
into cause-effect relationships and uncertainties
through learning from data.(4) But, if historical data
are scarce and/or available information is ambigu-
ous and imprecise, soft computing techniques can
provide an appropriate framework to handle such
relationships and uncertainties. Such techniques
include probabilistic and evidential reasoning
(Dempster-Shafer Theory), fuzzy logic, and evo-
lutionary algorithms.(50) Table XVI provides a
qualitative comparison between five soft computing
techniques, including ANN, decision trees (DT),
fuzzy rule-based models (FRBM), Bayesian net-
works (BN), and cognitive maps/fuzzy cognitive
maps (CM/FCM). Central to this comparison is an
assessment of how each technique treats inherent
uncertainties and its ability to handle interacting
factors that encompass issues specific to engineering
systems.(50)

Qualitative and quantitative comparisons have
been performed in this section to investigate the
features and uncertainty handling abilities of dif-
ferent tools and the proposed approaches for FTA
and ETA. The qualitative comparison presented in
Table XVII illustrates that most of the tools such

Table XV. Belief Structures and “Bet” Estimations of Top Event for Different Trails

Belief Structure of Top Event’s Probability
Dependency of Basic Events

at Different Nodes DS Rule Yager Rule

Trials (T) N-1 N-2 N-3 N-4 Bel Pl Bet Bel Pl Bet

1 I I I I 3.440E-05 6.234E-04 3.289E-04 2.579E-05 3.942E-03 1.984E-03
2 VW VW VW VW 3.595E-05 3.865E-02 1.934E-02 2.721E-05 1.133E-01 5.666E-02
3 W W W W 9.650E-05 8.294E-02 4.152E-02 8.555E-05 2.441E-01 1.221E-01
4 VS S W W 1.998E-04 8.292E-02 4.156E-02 1.772E-04 2.483E-01 1.242E-01
5 S S S S 2.506E-04 1.151E-01 5.768E-02 2.440E-04 3.458E-01 1.730E-01
6 VS VS VS VS 3.167E-04 1.222E-01 6.126E-02 3.160E-04 3.718E-01 1.860E-01
7 P P P P 2.000E-04 1.224E-01 6.130E-02 2.000E-04 3.725E-01 1.864E-01

P = perfect dependence; VS = very strong; S = strong; W = weak; VW = very weak; I = independent.
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Table XVI. Comparison of Various
Techniques for Complex Systems(50)

Soft Computing Techniques

Fuzzy Cognitive
Rule- Artificial Maps/Fuzzy

Decision Based Neural Bayesian Cognitive
Attributes Tree Models Networks Networks Maps

Network capability Na Lb N Hc VHd

Ability to express causality H M N H VH
Formulation transparency H H Ne H VH
Ease in model

development
H M M M VH

Ability to model complex
systems

M H VH H VH

Ability to handle
qualitative inputs

H H N H VH

Scalability and modularity VL L VLf H VHg

Data requirements H L VH M Lh

Difficulty in modification VH H M L N
Interpretability of results VH VH VH VH H
Learning/training

capability
H Mi VHj Hk Hl

Time required for
simulation

L L H L L

Maturity of science VH H H VH M
Ability to handle dynamic

data
L H H H M

Examples of hybrid
models (ability to
combine with other
approaches)

H VHm VHm H Hn

Ratings: N = no or negligible; VL = very low; L = low; M = medium; H = high; VH =
very high.
aStructure is hierarchical.
bDimensionality is a major problem and formulation becomes complicated for network
systems.
cCan manage networks but cannot handle feedback loops; therefore referred to as directed
acyclic graphs (DAG).
dCan handle feedback loops.
eGenerally, referred to as black-box models.
fANN needs to be retrained for new set of conditions.
gVery easy to expand because algorithm is in the form of matrix algebra.
hMinimal data requirement because causal relationships are generally soft in nature.
iClustering techniques, e.g., fuzzy C-means.
jAlgorithms, e.g., Hebbian learning.
kAlgorithms, e.g., evolutionary algorithms and Markov chain Monte Carlo.
lTraining algorithms are available, which have been successful in training ANNs.
mExamples are available in the literature to develop models using hybrid techniques, e.g.,
neuro-fuzzy models.
nHas a potential to be used with other soft techniques.

as Relex V7.7,(51) RAM Commander 7.7(52), and
PROFAT(53) are unable to handle dependency un-
certainty. Except for PROFAT, the other tools can-
not handle subjective uncertainty in the fault and
event trees for a system. PROFAT(53) is a fuzzy-
based tool that can handle subjective uncertainty;
however, it fails to account for epistemic uncertainty

owing to ignorance or incompleteness of an expert’s
knowledge.

Another type of uncertainty arises due to lack
of information on dependencies among events.
Traditional FTA uses a default assumption of
“independence” among the risk events to determine
the joint probability (risk) of a parent event. This
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Table XVII. Qualitative Comparisons of
Proposed Approach with Available Fault

Tree Analyses/Event Tree Analyses
Tools

RAM PROFAT
Relax Commander (Khan and Proposed

Uncertainty V7.7(51)a 7.7(52)a Abbasi, 1999)(53) Approach

Subjective (fuzzy-based) NCb NC Cc C
Incompleteness (evidence based) NC NC NC C
Dependency NC NC NC C

aA commercial software.
bNot considered.
cConsidered.

assumption simplifies the analysis, but may not be
very realistic. The relationship between risk events
may be positively or negatively correlated (or in-
dependent). In the case of two independent events
X and Y, the joint probability of their conjunction
is simply a product of their individual probabili-
ties.(12,14) There exist many different methods to ex-
press correlation (dependence) but the Frank model
(copula) is the most common.

Simple dependency coefficient-based empirical
relations (similar to Li approach(24)) embedded
within the proposed approach can concurrently han-
dle the dependency uncertainty in FTA and ETA.
The proposed approach successfully accounts for the
subjective uncertainty using a membership function
and evaluates the uncertainty range as a fuzzy in-
terval. The evidence-theory-based approach can de-
scribe the epistemic and aleatory uncertainties in ex-

perts’ knowledge using bpa and is able to provide a
measure of uncertainty using belief structures.

Relax V7.7(51) and RAM Commander 7.7(52) are
two useful tools for reliability and safety engineer-
ing. The probability of top event for the “runaway
reaction fault tree” and the frequency of outcome
events for the “LPG release event tree” have been
analyzed using these tools for the same input (Fig. 1
and Table II). Results (Table XVIII) show that by in-
troducing 10% uncertainty into the input data, these
two tools accumulated about 19% and 9% of uncer-
tainty on the calculated top event’s probability and
outcome event’s frequency of “B.” The original in-
put data (Fig. 1 and Table II) are reduced by 10%
to introduce the uncertainty into the analysis. The
traditional (probabilistic) methods used predefined
PDFs to describe the uncertainty in the input data
(i.e., the probability of basic events or events in FTA

Table XVIII. Quantitative Comparison of Fault Tree Analyses/Event Tree Analyses Tools

Determination of Probability of Top Event for “Runaway Reaction Fault Tree”

Commercial Packages
Evidence-Theory-Based

Relex V7.7(51) RAM Commander 7.7(52) Fuzzy-Based Defuzzified Value Bet Estimation

No 10% No 10% No 10% No 10%
Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

3.16E-04 2.55E-04 3.41E-04 2.74E-04 8.71E-03 8.76E-03 3.16E-04 2.86E-04

Determination of Frequency of Outcome Events for LPG Release

Relex V7.7, RAM Commander
7.7(51,52) Fuzzy-Based Defuzzified Value

Evidence-Theory-Based Bet
Estimation

Outcome Events No Uncertainty 10% Uncertainty No Uncertainty 10% Uncertainty No Uncertainty 10% Uncertainty

A 6.12E-06 4.95E-06 5.98E-06 5.99E-06 6.12E-06 8.36E-06
B 5.51E-05 5.01E-05 5.54E-05 5.54E-05 5.51E-05 5.05E-05
C 2.45E-06 3.76E-06 1.50E-06 1.58E-06 2.45E-06 3.60E-06
D 2.72E-07 8.84E-07 1.62E-07 1.71E-07 2.72E-07 6.64E-07
E 4.08E-06 8.27E-06 4.97E-06 4.98E-06 4.08E-06 5.79E-06
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or ETA). When the crisp data or the PDFs for the
input data are not known or limited (a very common
situation in process systems), the FTA or ETA are
highly dependent on expert knowledge. In these situ-
ations, traditional tools and probabilistic approaches
are not helpful. This makes the FTA/ETA less
credible. Both fuzzy set theory and evidence the-
ory are not limited by availability of detailed data.
The results using both approaches are presented in
Table XVIII. An expert knowledge and assumption
of independence among events (or basic events) are
used in calculating the top event probability and out-
come events frequency. In fuzzy-based approach, the
uncertainty is assigned using the membership func-
tion. The TFNs corresponding to 90% membership
are considered as input data for the analysis. In
evidence-theory-based approach, the uncertainty is
allocated through the unassigned mass (as ignorance)
of the power set. For the 10% uncertainty in the ba-
sic event probabilities, the evidence-theory-based ap-
proach estimates about 9% and 8% uncertainties in
the response, that is, [2.55 × 10−4, 3.16 × 10−4] and
[4.46 × 10−5, 5.63 × 10−5], respectively. Similarly, the
fuzzy-based approach measures less than 1% uncer-
tainty results in the response (top event’s probabil-
ity as well as outcome event’s frequency “B.”) with
corresponding fuzzy intervals of [7.38 × 10−3, 1.01 ×
10−2] and [5.47 × 10−5, 5.60 × 10−5].

8. RESULTS AND DISCUSSIONS

Two types of uncertainty, namely, data uncer-
tainty and dependency uncertainty, were explored.
Expert knowledge in terms of fuzzy linguistic grades
and bpas was used instead of assigning the likelihood
and interdependencies of basic events/events as crisp
probabilities for FTA/ETA. The dependency coeffi-
cient in each node of the fault tree and event tree
addressed the dependency uncertainty and described
the relationships among the basic events/events.

Fuzzy linguistic grades were assigned to TFNs and
α-cut-based fuzzy empirical relations of the fuzzy-
based approach were used to handle the linguistic
and subjective uncertainty in expert knowledge. For
multisource knowledge, the incomplete and incon-
sistent baps were combined by using combination
rules. The dependency coefficients in evidence-
theory-based empirical relations were used to de-
scribe the dependency uncertainty and analyze the
fault tree and event tree under uncertainty due to in-
consistent, incomplete, and partial ignorance of mul-
tisource knowledge.

The developed approaches were applied to two
case studies: “LPG release event tree” and “runaway
reaction fault tree.” The interdependencies among
the events (or basic events) were varied in each node
of the fault tree or event tree. The impacts of the in-
terdependencies were observed so as to understand
the effects of the dependencies of events (or basic
events) in FTA/ETA for process systems. For two de-
pendence cases of basic events/events, independent
and perfectly dependent, the output results for the
FTA and ETA are provided in Tables XIX and XX,
respectively. It can be observed in the first three rows
of Table XIX that the results remain almost the same.
However, when dependency was considered (fourth
row in Table XIX), the results varied by an order of
magnitude. This highlights the importance of depen-
dencies in ETA.

The results in Table XX are inconsistent mainly
because of different types of uncertainties modeled
in the different approaches. The perfectly dependent
case in FTA determines the probability range for the
top event as [0, 0.400], which is a maximum in com-
parison to the independent case for representing the
uncertainty. It can also be observed in Table XX that
when the basic events are perfectly dependent, the
point estimate (defuzzified value) of the top event
exhibits a higher ordered magnitude in compari-
son to the deterministic approach and MCS-based

Table XIX. Summary of Event Tree
Analyses Results

Dependency Frequency of
Approach of Events Outcome Event “A”

Deterministic approach Independent 6.12E-06
MCS-based approach 90% confidence interval Independent (1.96E-05, 1.02E-04)

Median 6.10E-06
Fuzzy-based approach Fuzzy interval Independent (2.60E-06, 9.74E-06)

Defuzzified value 6.17E-06
Fuzzy-based approach Fuzzy interval Perfectly (5.78E-05, 6.49E-05)

Defuzzified value dependent 6.14E-05
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Table XX. Summary of Fault Tree
Analyses Results

Dependency of Top Event’s
Approach Basic Events Probability (PTop)

Deterministic approach Independent 3.16E-04
MCS-based approach 90% Confidence interval Independent (4.24E-05, 2.31E-04)

Median 1.30E-04
Fuzzy-based approach Fuzzy interval Independent (0, 2.70E-02)

Defuzzified value 1.35E-02
Fuzzy-based approach Fuzzy interval Perfectly dependent (0, 4.00E-01)

Defuzzified value 2.00E-01

approach. This confirms the significance of including
the dependencies of the basic events in FTA. Similar
observations of using the evidence-theory-based ap-
proach for FTA/ETA (Tables XII and XV) confirm
that a reliable and robust result cannot be attained
without considering the interdependencies of events
(or basic events).

9. CONCLUSIONS

FTA and ETA are two fairly established tech-
niques; however, the uncertainty in defining the
probabilities and the relationships of events (or ba-
sic events) can lead to questionable results for QRA.
The traditional approaches require the known proba-
bility and the independence assumption of events (or
basic events), which are rare and often unrealistic for
process systems. Two different approaches to handle
these types of uncertainties in FTA and ETA are de-
rived in this study by combining expert knowledge
with fuzzy set theory and evidence theory. The appli-
cation of these approaches to two different case stud-
ies shows the proposed approaches are more robust
to handle the uncertainty in QRA for the process sys-
tems in the following ways:

(1) Fuzzy-based approaches and evidence-
theory-based approaches properly address
the uncertainties in expert knowledge and an-
alyze the event trees or fault trees associated
with different kinds of uncertainties in expert
knowledge.

(2) Introduction of a dependency coefficient in
the fuzzy- and evidence-theory-based ap-
proaches describes interdependencies among
the events (or basic events) in a fault
tree/event tree.

(3) The proposed approaches can be applied to
FTA/ETA for any process systems that have
data and dependency uncertainties.

Including the negative dependencies of events
(or basic events), and combining the subjectivity (us-
ing fuzzy-based approach) and incompleteness (ev-
idence theory) into a single approach, for example,
Fuzzy-Dempster-Shafer, may offer additional future
improvement to the approaches developed here.
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