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Abstract

Recent studies of alternative Probabilistic Transformation (PT) in Dempster-

Shafer (DS) theory have mainly focused on investigating various schemes for

assigning the mass of compound focal elements to each singleton in order to

obtain Bayesian belief function for decision making problems. In the process

of such transformation, how to precisely evaluate the clossness between original

Basic Belief Assignments (BBAs) and transformed BBAs is important. In this

paper, a new aggregation measure is proposed by comprehensively considering

the interval distance between BBAs and also the rank order of focal elements

depending on their positive mass inside BBAs. Relying on this new measure,

we propose a novel Multi-Objective Probabilistic Transformation (MOEPT)

thanks to global optimizing capabilities inspired from genetic algorithm (GA).

From the perspective of mathematical theory, convergence analysis of MOEPT

is given to prove the rationality of GA used here. Finally, various scenarios

in evidence reasoning are presented to evaluate the effectiveness of MOEPT in

PT. Moreover, a simple constraint-handling strategy with MOEPT is developed

to tackle target type tracking (TTT) problem. The simulation results of the

constrained MOEPT on TTT problem prove MOEPT’s extendibility.

Keywords: Probabilistic Transformation (PT), Similarity Measure,

IFully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author
Email address: xindeli@seu.edu.cn (Xinde Li)

Preprint submitted to Journal of LATEX Templates November 2, 2016

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


Convergence Analysis, Target Type Tracking (TTT), Belief Functions (BF)

1. Introduction

Since the pioneering work of Dempster and Shafer [1, 2], known as Dempster-

Shafer evidence Theory (DST), the belief functions are widely used in informa-

tion fusion for decision making [3],[4]. However, the computational complexity

of reasoning with DST is one of the major points of criticism this formalism has5

to face.

To overcome this difficulty, various approximating methods have been sug-

gested that aim at reducing the number of focal elements in the Frame of Dis-

cernment (FoD) in order to maintain the tractability of computation. One

common strategy is to simplify FoD by removing and/or aggregating focal el-10

ements for approximating original belief function [5]. Among these methods,

Probabilistic Transformations (PTs) seem particularly desirable for reducing

such computational complexity by means of assigning the mass of non-singleton

elements to some singletons of the FoD [6], [8]. The research on this probabilis-

tic measure has received a lot of attentions [7] and many efficient PTs have been15

proposed by scholars in recent years. Among them, a classical transformation,

denoted as BetP [6], was usually adopted because it offers a compromise between

the maximum of credibility (Bel) and the maximum of plausibility (Pl) for de-

cision making. Unfortunately, BetP does not provide the highest Probabilistic

Information Content (PIC) [10] and Shenoy really argued against BetP in his20

publication [11]; Sudano [12] also proposed series of alternatives and principles

of these similar to BetP, which were called PrPl, PrBel and PrHyb; CuzzP [13],

which was proposed by Cuzzolin in the framework of DST in 2009, showed its

ability of probabilistic transformation; Another novel transformation was pro-

posed by Dezert and Smarandache in the framework of Dezert-Smarandache25

Theory (DSmT), which was called Dezert-Smarandache Probability (DSmP)

[10] and comprehensive comparisons have been made in [10] to prove the ad-

vantages of DSmP with respect to other PTs.
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Simultaneously, various techniques have been proposed to evaluate PTs.

Typically, PIC or Shannon’s entropy criterion is applied to evaluate PTs which30

less uncertainty of BBAs obtained from PTs are perferred in order to make

decision easily. However, Han et.al [14] illustrated the irrationality of the over-

emphasize of Shannon entropy or PIC. Besides, Bucci in [16] also pointed out

that PIC may not be sufficient for evaluating the quality of PTs. The distance

of evidence [17] is used to characterize the difference between the transformed35

BBAs and original BBAs to quantify the degree of similarity. But it is not

good enough to capture the difference between BBAs in some cases as it has be

seen in [18],[19]. Unfortunately, either PIC or distance alone is not an efficient

technique and it is actually difficult to quantify all sorts aspects of dissimilarity

which inevitably need to be involved. To address un-comprehensive evaluation,40

several two-dimensional measures [20], [21] have been proposed in order to make

sure that results obtained by PTs be consistent in some manner with original

BBAs. Han in [22] proposed a 2-D criteria, which joint uses distance and PIC

measures, to make a balance between fidelity and clarity 1. Liu [18] used a two-

dimensional measure to effectively detect conflict among evidence. In [23], Liu45

proposed both a distance and a conflict coefficient based on probabilistic trans-

formations BetP to characterize the dissimilarity, which are complementary in

a certain sense. Recently, Ma [24] integrated fuzzy closeness and correlation

coefficient to generate a new dissimilarity measure to characterize not only the

difference between BBAs but also the divergence degree of the hypothesis that50

two BBAs support.

By analyzing the mentioned existing methods, the relationship between tech-

niques of PTs and their corresponding evaluations are almost independent ex-

cept [22]. That is to say, the methods of evaluations only assess the existing PTs

instead of facilitating the development of novel PTs themselves. In this paper,55

we present a novel PT method based on Multi-Objective algorithm (MOEPT)

using a reasonable and comprehensive two-dimensional criteria in order to cap-

1a probability with higher clarity and bigger fidelity should be preferred.
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ture the similarity in the process of PT. This new method has some connections

with the recent algorithm proposed in [22]. However, the main differences lie

in the following aspects: 1. 2-D criteria, PIC and Jousselme’s distance, has60

been pointed out its drawbacks in many reference [19], [28]. Thus, an efficient

and different aggregation measure is proposed. Its novelty lies in considering the

drawback of the past description of the distance between the evidences. In other

words, up to now, most distances were defined according to the corresponding

focal elements between two sources of evidence, and the sequence inside the as-65

signments of focal elements itself was not considered. The sequence might also

lead to dissimilarity, which is referred to as self-conflict or self-contradiction [25];

2. More specific steps of evolutionary-based algorithms are given in details; 3.

the convergence analysis of MOEPT is illustrated to prove the rationality of

using GA; 4. some bugs are detected and fixed when using MOEPT with tradi-70

tional constraints; 5. Target Type Tracking (TTT) problem has been efficiently

solved based on the proposed method with a novel simple constraint. Compared

to traditional PTs, global search replaces designing various assigning operator

in classical PTs and evaluation criteria is embedded into MOEPT to provide im-

portant guidance for searching procedure. Specifically, masses of singletons are75

randomly generated in evolutionary-based framework, which need to satisfy with

the basic constraints for probability distributions in evidence reasoning. Also, a

assessment factor is presented to assess the best individual in all populations by

a special objective function (desirable evaluation criteria). Simulation results

on 4D FoD test cases show that the proposed MOEPT, in these problems, is80

able to outperform other PTs from the perspective of 2-D criteria. Moreover, we

propose a simple constraint-handling strategy within MOEPT that suits well for

two target type tracking (2-TTT) problems, which in some extents encourages

the applications of MOEPT to more complex and real-world decision making

problems.85

The reminder of this paper is structured as follows. In Section 2 we briefly

summarize the basis of DST. The new aggregation measure is proposed in sec-

tion 3; In Section 4, a multi-objective Evolutionary Algorithm (EA) based on
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two-dimensional objective function is proposed. In Section 5, several examples

and comprehensive comparisons are carried out. A simple pattern recognition90

problem and also target type tracking problem are presented and solved in de-

tails at the end of this section. The conclusion is drawn in Section 6.

2. Basis of belief functions

In this section, we introduce the belief functions terminology of DST and

the notations used in the sequel of this paper.95

2.1. DST basis

In DST [2], the elements θi (i = 1, . . . , N) of the frame of discernment (FoD)

Θ , {θ1, . . . , θN} must be mutually exhaustive and exclusive. The power set of

the FoD is denoted 2Θ and a basic belief assignment (BBA), also called a mass

function, is defined by the mapping: 2Θ → [0, 1], which satisfies m(∅) = 0 and∑
A⊆2Θ

m(A) = 1 (1)

where m(A) is defined as the BBA of A. The element A is called a focal element

of m(.) if m(A) > 0. The belief and plausibility functions, which are in one-to-

one mapping with the BBA m(.), are defined for all A ⊆ Θ by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (2)

Pl(A) = 1−Bel(Ā) =
∑

A,B∈2Θ|A∩B 6=∅

m(B) (3)

where Ā , Θ\A is the complement of A in Θ. The belief interval [Bel(A), P l(A)]

represents the uncertainty committed to A and the bounds of this interval are

usually interpreted as lower and upper bounds of the unknown (possibly sub-

jective) probability of A.100

In order to fuse n Bodies Of Evidences (BOEs), Dempster’s rule of combi-

nation is usually used in DST framework. The combination of n distinct BOE
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is done by:

m(A) =


0, ifA = ∅∑
∩Ai=A

∏
1≤i≤nmi(Ai)∑

∩Ai 6=∅
∏

1≤i≤nmi(Ai)
, ifA 6= ∅

(4)

2.2. Classical Probabilistic Transformations

The efficiency of Probabilistic Transformation (PT) in the field of decision

making has been analyzed in deep by Smets [6]. Various PTs have been proposed

in the open literature such as BetP[6],[9], CuzzP [13], DSmP [10], PrBP1 and

PrBP2 [26] and Cobb-Shenoy’s Normalization of Plausibility [11]. And herein,105

the simple and classical transformation (BetP) is briefly recalled.

Smets in [6],[9] first proposed pignistic (also called betting) probability to

make decision which aims to transfer the mass of belief of each non-specific

element onto the singletons. The classical pignistic probability is defined as

BetP (∅) = 0, and ∀A ∈ 2Θ \ {∅}:

BetP (θi) ,
∑

A⊆2Θ,A 6=∅

|θi ∩A|
|A|

m(A)

1−m(∅)
(5)

Because in Shafer’s frameworkm(∅) = 0, the formula (5) can simply be rewritten

for any singleton θi ∈ Θ as

BetP (θi) =
∑

B∈2Θ,θi⊆B

1

|B|
m(B) = m(θi) +

∑
B∈2Θ,θi⊂B

1

|B|
m(B) (6)

3. Similarity Measure

3.1. Distances Between Two BBAs

The Jousselme’s distance, which was widely denoted as DJ in [17], was

applied in many recent references [27], [22], but unfortunately it doesn’t provide110

satistactory results for all BBAs structures. This has been clearly explained

recently in [19], [28], where another strict distance metric between two BBAs,

denoted dEBI , has been proposed which is briefly recalled here.

Assuming that two independent BBAs m1(·) and m2(·) are defined on Θ =

{θ1, θ2, · · · , θN}. For each focal element θi ∈ Θ (i = 1, 2, · · · , 2N − 1), belief115
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intervals of θi for m1(·) and m2(·) can be calculated respectively, which are de-

noted by [Bel1(θi), P l1(θi)] and [Bel2(θi), P l2(θi)]. The strict distance between

interval numbers [a, b] and [c, d] was defined by [31]

dI([a, b], [c, d]) =

√
[
a+ b

2
− c+ d

2
]2 +

1

3
[
b− a

2
− d− c

2
]2 (7)

Therefore, we can calculate the distance between BI1(θi) : [Bel1(θi), P l1(θi)]

andBI2(θi) : [Bel2(θi), P l2(θi)] according to Eq.(7). Thus, we can obtain totally120

2N − 1 belief interval distance values for all θi ∈ Θ. Besides, Euclidean-family

Belief Interval-based Distance dEBI can be rewritten as

dEBI(m1,m2) =

√√√√Nc ·
2N−1∑
i=1

[dI(BI1(θi), BI2(θi))]2 (8)

Here, Nc = 1/2N − 1 is the normalization factor. In this paper, we regard dEBI

as one criteria for evaluating the degree of similarity2 between original BBAs

and the transformed ones.125

3.2. A New Evidence Similarity Characterization

As mentioned in previous section, those distances, i.e., Jousselme’s distance

[27] and also other metric like PIC [29] or Entropy [26] were widely applied to

measure the degree of “similarity or dissimilarity” between BBAs. But only the

corresponding focal elements (or the relevant focal element set) between two130

sources of evidence are described or characterized. This one-sided view does

not consider the order of size of the assignment of each focal element in an

evidence, which might lead to “self-conflict or self-contradiction”. To consider

such “information” produced by evidence itself, here a new evidence similarity

measure is defined between two evidential sources according to the order of size135

of the assignment. Prior to this, to give this new similarity measure, first we

define the order correlation coefficient between two sets of data.

2similarity represent the degree of difference between original BBAs and the transformed

ones in [32].
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Definition 1. [30] Given two sets of data {x1, x2, . . . , xn}, {y1, y2, . . . , yn}, here,

x1, x2, . . . , xn and y1, y2, . . . , yn are in an ascending order. After sorting, two

sets of data are xp1
, xp2

, . . . , xpn and yq1 , yq2 , . . . , yqn , respectively, meet xp1
≤140

xp2
≤ · · · ≤ xpn and yq1 ≤ yq2 ≤ · · · ≤ yqn , for each pi, index its position

from q1, q2, . . . , qn, assuming it is qj, that is, qj = pi. Note that j = f(i), the

correlation coefficient is

µ =

∑n
i=1(i− j)2∑n

i=1[n− (i− 1)− i]2
(9)

It satisfies 0 ≤ µ ≤ 1. When µ = 0, the convergence of two sets of data is

the largest; When µ = 1, it is the smallest.145

3.2.1. The consistency of focal elements between two BOEs

Definition 2. For any two sources of evidence, i.e., S1, S2,m1(·),m2(·) are the

basic belief assignments over the discernment framework Θ of size N . The num-

ber of focal elements and the focal elements of m1(.) and m2(.) can be different.

We denote Xi and Yi the index of the focal elements whose mass is sorted by150

increasing order. The similarity function of evidence to characterize the order

of the size of the assignments over subsets as follows:

Simseq(m1,m2) = 1−
∑N
i=1(Xi − Yi)2∑N

i=1[N + 1− 2i]2
(10)

To be useful, a similarity function must be homogeneous to a true distance

metric which must satisfy the following properties:

• symmetry: ∀mi(·),mj(·), Sim(mi,mj) = Sim(mj ,mi);155

• consistency: ∀m(·), Sim(m,m) = 1 and

• nonnegative: ∀mi(·),mj(·), 0 ≤ Sim(mi,mj) ≤ 1.

• triangle inequality: Sim(X,Y ) + Sim(Y,Z) ≥ Sim(X,Z)

According to our previous work [30], it is easy to prove that Simseq satisfy

symmetry, consistency and nonnegativity but the last important condition is160

lost. So we prove the property of triangle inequality of Simseq here.
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Proof:

Based on Eq.(10), the triangle inequality can be rewritten as follows:

1−
∑n
i=1(Xi − Zi)2∑n
i=1[n+ 1− 2i]2

≤ 1−
∑n
i=1(Xi − Yi)2∑n
i=1[n+ 1− 2i]2

+ 1−
∑n
i=1(Yi − Zi)2∑n
i=1[n+ 1− 2i]2

⇒
∑n
i=1[n+ 1− 2i]2 ≥

∑n
i=1(Xi − Yi)2 +

∑n
i=1(Yi − Zi)2 −

∑n
i=1(Xi − Zi)2

165

Using vector notations X = [X1, . . . , XN ]T , Y = [Y1, . . . , YN ]T and Z = [Z1, . . . , ZN ]T ,

one must prove that

⇒
∑n
i=1[n+1−2i]2 ≥ (X−Y)T (X−Y)+(Y−Z)T (Y−Z)−(X−Z)T (X−Z)

According to the Squared Sum Formula (SSF)3,

n∑
i=1

[n+ 1− 2i]2 =

n∑
i=1

[(n+ 1)2 + 4i2 − 4(n+ 1)i] =

= n(n+ 1)2 + 4 ∗ 1

6
n(n+ 1)(2n+ 1)− 4(n+ 1)

n(n+ 1)

2

=
2

3
n(n+ 1)(2n+ 1)− n(n+ 1)2

= n(n+ 1) · [ 4
3
n+

2

3
− n− 1]

=
1

3
· n · (n2 − 1)

Because 1 ≤ Xi ≤ n, 1 ≤ Yi ≤ n, 1 ≤ Zi ≤ n, so we obtain:170

(X−Y)T (X−Y) + (Y−Z)T (Y−Z)− (X−Z)T (X−Z) ≤ 1 + (k− 1)2 +

(k − 3)2 + · · ·

• When n−1 = 2k ⇒ k = n−1
2 , 1+(k−1)2+(k−3)2+· · · = 1

6 ·k(k+1)(k+2),

3squared sum formula of Natural Number: 12 +22 +32 + · · ·+n2 =
n(n+1)(2n+1)

6
; squared

sum formula of odd number: 12 + 32 + 52 + · · · + (2n − 1)2 = 1
3
n(4n2 − 1); squared sum

formula of even: 22 + 42 + · · ·+ (2n)2 = 2
3
n(n+ 1)(2n+ 1).
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thus

n∑
i=1

[n+ 1− 2i]2 − [(X−Y)T (X−Y) + (Y − Z)T (Y − Z)− (X− Z)T (X− Z)]

≥ 1

3
· n · (n2 − 1)− 1

6
· k(k + 1)(k + 2)

=
1

3
· n · (n2 − 1)− 1

6
· n− 1

2
(
n− 1

2
+ 1)(

n− 1

2
+ 2)

=
1

3
· n · (n2 − 1)− 1

6
· n− 1

2
· n+ 1

2
· n+ 3

2

= (n2 − 1) · (1

4
n+

1

6
)

Because n ≥ 2,thus∑n
i=1[n+1−2i]2−[(X−Y)T (X−Y)+(Y−Z)T (Y−Z)−(X−Z)T (X−Z)] ≥

0175

⇒ Simseq satisfies the triangle inequality;

• When n−1 = 2k−1⇒ k = n
2 , 1+(k−1)2 +(k−3)2 + · · · = 1

3 ·k ·(4k
2−1),

thus

n∑
i=1

[n+ 1− 2i]2 − [(X−Y)T (X−Y) + (Y − Z)T (Y − Z)− (X− Z)T (X− Z)]

≥ 1

3
· n · (n2 − 1)− 1

3
· k · (4k2 − 1)

=
1

3
· n · (n2 − 1)− 1

3
· n

2
· (4(

n

2
)2 − 1)

=
1

3
· n · (n2 − 1)− n

6
· (n2 − 1)

=
n

6
· (n2 − 1)

Because n ≥ 2,thus∑n
i=1[n+1−2i]2−[(X−Y)T (X−Y)+(Y−Z)T (Y−Z)−(X−Z)T (X−Z)] ≥180

0

⇒ Simseq satisfies the triangle inequality;

End Proof.
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Definition 3. For any two sources of evidence, i.e., S1, S2, m1(·) and m2(·)

are the BBAs defined over the power-set of the same FoD Θ. We denote by s1185

(with 1 ≤ s1 ≤ 2N − 1) the number of focal elements of m1(·), and by s2 ((with

1 ≤ s2 ≤ 2N − 1) the number of focal elements of the BBA m2(·). Assuming

that s1 subsets’ BBAs are same in m1(·), and s2 subsets’ BBAs are same in

m2(·). Wherein, Xi, Yi are the serial number according to the order of the size

of subset’ BBAs; the subscript i indicates the ith subset. Due to the BBAs of190

some sub-propositions are same. For the evidence S1, there might be s1 kinds

of sorts. For S2, there might be s2 kinds of sorts. Therefore, there are s1 × s2

kinds of sorts for S1 and S2. The similarity measure functions is redefined in

this case as follows:

Sim′seq(m1,m2) = 1−
∑s1s2
t=1

∑n
i=1(Xt

i − Y ti )2

s1s2(
∑n
i=1(n+ 1− 2i)2)

(11)

Similarly, it is easy to prove that Sim′seq(mX ,mY ) is a true distance metric.195

Example 1 (Bayesian BBAs): Assuming two evidences: m1 = {θ1, θ2, θ3} =

{0.1, 0.2, 0.7}; m2 = {θ1, θ2, θ3} = {0.7, 0.2, 0.1}, then m1 and m2 are sorted

respectively from small to large so that X(m1) = {θ1, θ2, θ3} = [1, 2, 3] and

Y (m2) = {θ3, θ2, θ1} = [3, 2, 1]. Thus we can calculate the similarity measure

based on Eq.(10):

Simseq(m1,m2) =

1− (1− 3)2 + (2− 2)2 + (3− 1)2

(3 + 1− 2 ∗ 1)2 + (3 + 1− 2 ∗ 2)2 + (3 + 1− 2 ∗ 3)2
= 0

according to Simseq(m1,m2), we see that m1 and m2 are completely different

and dissimilar.

Remark: When two evidences: m1 and m2 have the property of ambigu-

ity (the equal same value), that is m1 = {θ1, θ2, θ3, θ4} = {0.1, 0.1, 0.2, 0.6};

m2 = {θ1, θ2, θ3, θ4} = {0.6, 0.2, 0.1, 0.1}, thus the corresponding sequences are200

obtained: X1 = {1, 1, 2, 3};Y1 = {3, 2, 1, 1}. So we can calculate the similarity

based on Eq.(10).
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3.2.2. The inconsistency of focal elements between two BOEs

How to calculate Simseq when the focal elements in BBAs are different? Let

us consider the following example and put forward the different way compared205

to [30]:

Example 2 (General BBAs): Assuming two evidences: m1 = {θ1, θ2∪θ3, θ2∪

θ4, θ1 ∪ θ3 ∪ θ4} = {0.3, 0.2, 0.2, 0.3}; m2 = {θ1, θ1 ∪ θ3, θ3, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪

θ3 ∪ θ4} = {0.4, 0.1, 0.1, 0.2, 0.2},

Borrowing ideas from Dezert dEBI in [28], for each element x of the power-set210

2Θ − {∅} of the FoD Θ, the belief intervals of x denoted [Bel1(x), P l1(x)] and

[Bel2(x), P l2(x)] can be calculated from BBAs: m1(·) and m2(·) respectively.

According to the theory of evidence, the width of such interval [Bel(x), P l(x)]

represents the degree of uncertainty for the corresponding focal element x.

Therefore, Xi and Yi in Eq.(10) are obtained which refer to the index of the215

width of the interval for each focal elements whose value is sorted by increasing

order. Steps of this mechanism are illustrated as follows:

• Step 1:

For x = θ1, [Bel1(θ1), P l1(θ1)] = [0.3, 0.6], [Bel2(θ1), P l2(θ1)] = [0.4, 0.7];

For x = θ2, [Bel1(θ2), P l1(θ2)] = [0, 0.4], [Bel2(θ2), P l2(θ2)] = [0, 0.4];220

For x = θ3, [Bel1(θ3), P l1(θ3)] = [0, 0.5], [Bel2(θ3), P l2(θ3)] = [0.1, 0.6];

For x = θ4, [Bel1(θ4), P l1(θ4)] = [0, 0.5], [Bel2(θ4), P l2(θ4)] = [0, 0.4];

• Step 2: The parameter l denotes the width of belief interval:

l1(θ1) = Pl1(θ1)− Bel1(θ1) = 0.3, l1(θ2) = 0.4, l1(θ3) = 0.5, l1(θ4) = 0.5;

l2(θ1) = 0.3, l2(θ2) = 0.4, l2(θ3) = 0.5, l2(θ4) = 0.4;225

• Step 3: X1 and Y1 is the index of focal element whose ς is sorted by

increasing order: X1 = {1, 2, 3, 3} and Y1 = {1, 2, 3, 2};

• Step 4: Simseq is calculated based on Eq.(10).

12



3.3. The hybrid similarity measure

To consider the influence of the distance of evidence, here based on the230

dEBI Eq.(8), we propose a new hybrid similarity measure which is presented as

follows:

SimH(m1,m2) = w1 · dEBI(m1,m2) + w2 · F (Simseq(m1,m2)) (12)

here, w1 = w2 = 0.5. and F (·) is the decreasing function within the interval

[0, 1] which in this paper F (·) = 1 − x2. As a convex combination of true

distance metrics, SimH is still a true distance metric that we use as a measure235

of similarity of two BBAs..

Additionally, to consider nomalization of equation (12), it can be re-written

as follows:

Sim∗H(mt,ma) = w1 · (dE∗BI(mt,ma)) + w2 · (F (Sim∗seq(mt,ma))) (13)

where t is the TARGET evidence and a is the APPROXIMATE evidence;

dE∗BI(mt,ma) =
dEBI(mt,ma)−min(vector1)
max(vector1)−min(vector1) ,240

Sim∗seq(mt,ma) =
Simseq(mt,ma)−min(vector2)
max(vector2)−min(vector2) ,

vector1 = (dEBI(mt,m1), dEBI(mt,m2), · · · , dEBI(mt,mj)),

vector2 = (Simseq(mt,m1), Simseq(mt,m2), · · · , Simj(mt,mj)) and the pa-

rameter j is defined in the Sec.4 which represents the number of approximate

BBAs.245

4. Multi-Objective Evolutionary Algorithm Based on two-dimensional

criteria

In this section, we regard PT as a general multi-objective problem consisting

of two objectives and is also involved in a number of inequality and equality

constraints. Then a corresponding optimization model is proposed for selecting250

the best Bayesian BBA in the set of candidates.
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4.1. Multiple-Objective Evolutionary-Based Probabilistic transformation

The idea to approximate any BBA into a Bayesian BBA (i.e. a subjec-

tive probability measure) using the minimization of the Shannon entropy under

compatibility constraints has been proposed recently by Han et al. in [14, 22]255

using on the shelf optimization techniques. In this paper, we present in details

a new optimization method to achieve this PT based on a random evolutionary

algorithm to acquire minimization of the new aggregation criteria. And this

new comprehensive criteria represents different aspects of information in BBAs,

for example, conflict coefficient represent the degree of similarity in conflict be-260

tween transformed BBAs and original BBAs (in other words, the more conflicts

exist between two BBAs, the less similarity they have); Also, dEBI represent the

interval distance between original BBAs and transformed ones.

Let’s assume that the FoD of the original BBA m(.) to approximate by a

Bayesian BBA is Θ , {θ1, θ2, . . . , θN}. The MOEPT method consists of the265

following steps which are derived from GA:

• Step 0 (setting parameters): tmax is the max number of iterations; nmax

is the population size in each iteration; Ps is the selection probability, Pc

is the crossover probability, and Pm is the mutation probability.

• Step 1 (population generation/encoding mechanism): A set Pt of j =

1, 2, . . . , nmax random probability values P jt = {P j(θ1), . . . , P j(θN )} is

generated 4 such that the constraints Eq.(14)-(16) for j = 1, 2, . . . , nmax

are satisfied in order to make each random set of probabilities P jt compat-

4The lower (Bel) and upper (Pl) limits of each focal element are calculated using Eq.(2)

and (3) based on the value of m(·).
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ible with the original or target BBA m(.) to approximate, that is

P j(θi) ∈ [0, 1], i = 1, 2, . . . , N (14)

N∑
i=1

P j(θi) = 1 (15)

Bel(θi) ≤ P j(θi) ≤ Pl(θi), i = 1, 2, . . . , N (16)

• Step 2 (fitness assignment): For each probability set P jt , (j = 1, 2, . . . , nmax),270

we compute its fitness value F based on Eq.(13). More precisely, one takes

F (P jt ) = SimH(m(·), P jt ).

• Step 3 (best approximation of m(.)): the best set of probability P jbest
t

with minimum value of fitness is sought, and its associated index jbest is

stored respectively in Best Individual and Index of BestIndividual .275

• Step 4 (selection, crossover and mutation): The tournament selection,

crossover and mutation operators drawn from evolutionary theory frame-

work [33] are implemented to create the associated offspring population

P′t based on the parent population Pt. If F (P jbest
t ) ≤ F (P ′jbest

t ), then the

Best Individual remains unchanged; otherwise, Best Individual = P ′jbest
t .280

– Crossover operator: The crossover operator is one of the most im-

portant operator in the genetic algorithm. The crossover operation is

conducted for the selected pairs of individuals (which are randomly

chosen by the roulette wheel method). The feasibility condition of

each individual is described as follows: the value of each subsegment285

must be between 0 and 1; the summation of the individuals should be

1. Although the initial population is made in a way that all individ-

uals are feasible and correct, using the standard crossover operators

leads to defective sub-segments which a normalization procedure is

needed for such situation. Consider the following two individuals as290

parents: X = (0.1, 0.2, 0.3, |0.4) and Y = (0.2, 0.2, 0.1, |0.5) 5. With

5Here, this vertical bar represents the intersection point in crossover operator.
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the single-point classic crossover operator, the following offspring will

be produced: X ′ = (0.1, 0.2, 0.3, 0.5) and Y ′ = (0.2, 0.2, 0.1, 0.4),

where
∑4
j=1X

′
j is equal to 1.1, which is greater than one and

∑4
j=1 Y

′
j

is equal to 0.9, which is less than one. Therefore, X ′, Y ′ have defec-295

tive values which a normalization factor is needed as follows:

X ′′ = X′∑4
j=1 X

′
j

= (0.1/1.1, 0.2/1.1, 0.3/1.1, 0.5/1.1),

Y ′′ = Y ′∑4
j=1 Y

′
j

= (0.2/0.9, 0.2/0.9, 0.1/0.9, 0.4/0.9).

– Mutation operator: The mutation operator randomly alters the value

of a sub-segment. After applying the mutation operator, the normal-300

ization of the changed individuals is required. The normalization will

be done in a similar way as the crossover operator.

• Step 5 (Stopping MOEPT) The steps 1–4 illustrate the t-th iteration of

MOEPT method. If t ≥ tmax then MOEPT method is completed, other-

wise another iteration must be done by taking t + 1 = t and going back305

to step 1.

4.2. Convergence Analysis

In order to mathematically prove the feasibility of MOEPT, convergence

analysis of our algorithm is given. Firstly, we give a simplified description of

the algorithm and also symbolic representation for simplicity.310

• Encoding Mechanism: the size of population is nmax; the length of indi-

vidual (chromosome) is N and the initial population is P1.

• Retain the best individual directly for the next generation;

• Randomly select the other non-optimal individuals in Pt to crossover so

as to form the intermediate population Yt;315

• The population Yt is mutated to form population Vt;

• The better individuals in the population Vt are selected as the new gen-

eration population Pt.
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Algorithm 1 Multi-Objective Evolutionary-Based PT (MOEPT)

1: Define Stopping Criteria, (t ≤ tmax); population Size nmax for each iteration;

crossover probability Pc, mutation probability Pm and selection probability

Ps.

2: Generate an initial random population Pt of consistent probabilities P jt with

m(.).

3: For each individual P jt in Pt do

4: Calculate Fitness F (P jt ) = SimH(m(·), P jt ) of P jt

5: Store the best individual P jbest
t

6: End

7: Repeat:

8: Crossover: exchange parts of individuals with probability Pc

9: Mutation: mutate the child individuals with probability Pm

10: Selection: Select individuals based on fitness according to Ps

11: After these three sub-steps, the updated population P′t is obtained

12: Calculate the fitness of individuals of P′t, and store the best individual

P ′jbestt

13: If F (P jbest
t ) ≤ F (P ′jbest

t )

14: Best-Individual remains unchanged

15: else

16: Best-Individual = P ′jbest
t

17: If t ≥ tmax then stops, otherwise t+ 1→ t and go back to line 7

17



Specifically, three operators (crossover operator, mutation operator and se-

lection operator) can be described by transition probability as follows:320

• crossover operator: For the single point crossover, new individual k is

produced based on their parents: individual i and j:

P tC(i× j, k) =

 |k|pc/N, k 6= i, j

(1− pc) + |k|pc/N, k = i
(17)

where |k| is the number of individual k; 0 ≤ pc ≤ 1 is the crossover

probability; a is the minimum probability for individual |k|.

a = 1− pc + pc/N. (18)

• mutation operator:

P tM (i, j) = pd(i,j)
m (1− pm)N−d(i,j) (19)

where 0 ≤ pm ≤ 1 is the mutation probability; d(i, j) is the Hamming

distance between i and j; b is the minimum probability.

b = (1− pm)N . (20)

• selection operator: MOEPT uses the strategy of retaining the elite and the

best individual is retained for the next generation which do not participate

in the competition. Assuming that m individuals are selected based on

the following equations:

P tS(Pt, P
j
t ) =

σn(F (P jt ))∑nmax

k=1 (F (P jt ))
, j ∈ Pt, n = 1, 2, · · · . (21)

where σn represents a increasing scale function. Besides, the probability

of selecting the first individual in the next generation population is

P t
∗

S (Pt, P
j
t ) =

|Pt|
|B(Pt)|

, Pt ∈ Pt. (22)

where |Pt| is the number of individual Pt in Pt and B(Pt) is the cardinality

of optimal set of Pt.
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In order to facilitate the convergence analysis, the changing process of fitness

value F (P jt ) is regarded as a Markov chain. If MOEPT obtains the best individ-

ual P jbestt in t generation, we can denote this as {F̂ (Pt)} = P jbestt . Then all the325

other populations in t+ 1 generations will also reach the best fitness value due

to the Elite strategy [34]. Therefore, markov chain {F̂ (Pt)} constitute the lower

martingale. According to the properties of the lower martingale and the con-

vergence theorem of the lower martingale [35], convergence analysis of MOEPT

is converted into the convergence of {F̂ (Pt)}. The following three theorems are330

given, in which theorem 4 is to prove that {F̂ (Pt)} satisfy the conditions of

martingale theorem; Theorem 5 proves the global convergence of MOEPT and

theorem 6 constructs three conditions of the convergence of the lower martingale

so that the optimal solution can be almost obtained everywhere.

Theorem 4. The process of describing values of fitness functions in MOEPT

is a non-bounded martingale:

E{F̂ (Pt+1)/Pt} ≥ F̂ (Pt) (23)

Proof: Because the algorithm retains the maximum fitness value of the previous

generation to the next generation, and does not participate in the genetic oper-

ation, the best individual mode is not destroyed, so the maximum fitness value

of the next generation population will not be less than the maximum fitness

value of previous generation.

E{F̂ (Pt+1)/Pt} ≥ F̂ (Pt) > 0 (24)

Theorem 5. MOEPT converges to the global optimal solution based on proba-335

bility, which is mathematically expressed by the condition [Give reference]

Proof: When population Pt is updated to t generation and the minimum or

best fitness is recorded as P
′jbest
t and the global optimal solution is noted as F ∗,

assuming that MOEPT can converge to global optimal solution at t generation,

that is

{F̂ (Pt)} = F ∗ (25)
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Based on Theorem 4:

E{F̂ (Pt+1)/Pt} = F ∗ (26)

Defined by conditional expectation:

E{F̂ (Pt+1)/Pt} =∑
i,j∈Pt

P tC(i× j, y)
∑
v

P tM (y, v)
∑
k

P tS(v, k)F̂ (k) ≥

∑
i,j∈Pt

P tC(i× j, i)
∑
v

P tM (y, v)
∑
k

P tS(v, k)F̂ (k) ≥

a
∑
v

P tM (y, v)
∑
k

P tS(v, k)F̂ (k) ≥

a
∑
v

P tM (y, y)
∑
k

P tS(v, k)F̂ (k) ≥

abm{
∑

k∈B(Pt)

[P tS(v, k)− P t∗S (v, k)]F̂ (k) +
∑

k∈B(Pt)

P t∗S (v, k)F̂ (k)}

When k /∈ B(Pt), P
t∗
S (v, k) = 0 and when k ∈ B(Pt), F̂ (k) = F ∗. So that

E{F̂ (Pt+1)/Pt} can be rewritten as

E{F̂ (Pt+1)/Pt} ≥

abm
∑

k∈B(Pt)

[P tS(v, k)F̂ (k) + F ∗] ≥ abmF ∗.

So we obtain

abmF ∗ ≤ F ∗. (27)

Because F ∗ > 0, one gets

abm ≤ 1. (28)

Based on the above formula derivation, MOEPT converges to the global

optimal solution.340

Theorem 6. ∀n ≥ 1, the following conditions are satisfied:

• E[F̂ (P1)] <∞, F ∗ <∞,
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• E[F̂ (Pt)/Pt−1] = F̂ (Pt−1) + ct−1F
∗,

• ct ∈ [0, 1], limt→∞
∑t−1
k=0 ck = 1− F̂ (P1)

F∗ ,

Then that random sequence F̂ (Pt)
a,s−−→ F ∗345

Proof: By taking the mathematical expectation on both sides of the condition

(2) one has:

E[F̂ (Pt)] = E[F̂ (Pt−1)] + ct−1F
∗ =

E[F̂ (Pt−2)] + ct−1F
∗ + ct−2f

∗ = · · · =

E[F̂ (P1)] + F ∗
t−1∑
k=0

ck.

According to condition (1) and (3),

E[F̂ (Pt)] < E[F̂ (P1)] + F ∗ <∞

SuptE[F̂ (Pt)] < suptE[F̂ (P1)] + suptF
∗ <∞

Because F̂ (Pt) is a non-bounded martingale, we have:

F̂ (Pt)
a,s−−→ F̂ (P∞) = lim

t→∞
F̂ (Pt) (29)

lim
t→∞

E[F̂ (Pt)] =

lim
t→∞

E[F̂ (P1)] + F ∗ lim
t→∞

t−1∑
k=0

ck =

E[F̂ (P1)] + F ∗(1− F̂ (P1)

F ∗
) = F ∗,

F̂ (Pt)
a,s−−→ F ∗. (30)

5. Simulation Results

According to the first step of MOEPT, we initially set the related parameters

as follows: tmax = 50, nmax = 1000, Ps = 0.3, Pc = 0.5, Pm = 0.1.350
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5.1. Simple Examples

Example 3: Let’s consider the frame Θ = {θ1, θ2, θ3, θ4} and the corresponding

BBA’s is illustrated as follows:

m(θ1) = 0.16, m(θ2) = 0.14, m(θ3) = 0.01, m(θ4) = 0.02

m(θ1 ∪ θ2) = 0.20, m(θ1 ∪ θ3) = 0.09, m(θ1 ∪ θ4) = 0.04

m(θ2 ∪ θ3) = 0.04, m(θ2 ∪ θ4) = 0.02, m(θ3 ∪ θ4) = 0.01

m(θ1 ∪ θ2 ∪ θ3) = 0.10, m(θ1 ∪ θ2 ∪ θ4) = 0.03

m(θ1 ∪ θ3 ∪ θ4) = 0.03, m(θ2 ∪ θ3 ∪ θ4) = 0.03

m(Θ) = 0.08

Based on the classical PTs respectively, the original BBA is transformed into

their corresponding probabilities as illustrated in Table 1. Their corresponding

SimH can be calculated using Eq.(13), which has been already listed in Table

1. Clearly, several interesting characteristics which are presented in Table 1355

are deserved to be mentioned: (1) MOEPTdEBI+Simseq
has the minimum value

from the perspective of SimH criteria, which considers both aspects of dEBI and

Simseq rather than concentrating on single aspect; (2) Comparing to other PTs,

especially MOEPTDJ+Simseq
6, our method performs better than mentioned

methods.360

Example 4: Let’s consider another situation in the frame Θ = {θ1, θ2, θ3, θ4}

and the corresponding BBA’s is illustrated as follows:

m(θ1) = 0.16, m(θ2) = 0.16, m(θ3) = 0.16, m(θ4) = 0.16

m(θ1 ∪ θ2) = 0.04, m(θ1 ∪ θ3) = 0.04, m(θ1 ∪ θ4) = 0.04

m(θ2 ∪ θ3) = 0.04, m(θ2 ∪ θ4) = 0.04, m(θ3 ∪ θ4) = 0.04

m(θ1 ∪ θ2 ∪ θ3) = 0.03, m(θ1 ∪ θ2 ∪ θ4) = 0.03

m(θ1 ∪ θ3 ∪ θ4) = 0.03, m(θ2 ∪ θ3 ∪ θ4) = 0.03

6Here, to show the property of dEBI , we replace dEBI byDJ in MOEPT to make comparisons.
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Table 1: Results of Different PTs in Example 3 (w1=w2=0.5).

θ1 θ2 θ3 θ4 SimH

CuzzP 0.3860 0.3382 0.1607 0.1151 0.2800

BetP 0.3983 0.3433 0.1533 0.1050 0.2799

DSmP0 0.5176 0.4051 0.0303 0.0470 0.1897

DSmP0.001 0.5162 0.4043 0.0319 0.0477 0.1896

PrBP1 0.5419 0.3998 0.0243 0.0340 0.1918

PrBP2 0.5578 0.3842 0.0226 0.0353 0.1933

MOEPTDJ+Simseq 0.3980 0.3322 0.1156 0.1541 0.1849

MOEPTdE
BI+Simseq

0.3985 0.3983 0.0623 0.1409 0.0733

Actually, the Example 4 is the extension of the case studied by Han in

[14] which assumes a special scenario where no difference exists between m(θ1),

m(θ2), m(θ3), m(θ4) and where the traditional PTs become invalid and give

unreasonable results which can be seen in Table 2. The property of original

BBA which no difference exists between m(θ1), m(θ2), m(θ3),m(θ4) is almost365

lost when classical PTs have been applied. When sequence is not considered

in MOEPT, which is denoted as MOEPTDistance, the feature of equal mass

in original BBAs is also missing as other classical PTs. Fortunately, when

information of “sequence” is added into objective function, MOEPT performs

better in keeping the original information as expected.370

Example 5: Θ = {θ1, θ2, θ3, θ4}

To investigate the robustness of MOEPT from a statistical point of view, in

this example, we randomly generate BBAs and compare MOEPT with classical

PTs (BetP[6],[9], CuzzP [13], DSmP [10], PrBP1 and PrBP2 [26]). The original

BBAs to approximate are generated according to Algorithm 2 of [36].375

In our test, we have set the cardinality of the FoD to 4 and fixed the number

of focal elements to l = Nmax = 15. We randomly generate L = 100 BBA’s.

Six PT methods are tested and SimH is used to evaluate the quality of their

corresponding results are shown in Figure 1. As we can see and as naturally
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Table 2: Results of Different PTs in Example 4.

θ1 θ2 θ3 θ4 SimH

BetP 0.3983 0.3433 0.1533 0.1050 0.3974

DSmP0 0.2500 0.2500 0.2500 0.2500 0.5458

PrBP1 0.5419 0.3998 0.0243 0.0340 0.6368

PrBP2 0.5578 0.3842 0.0226 0.0353 0.6412

MOEPTDistance 0.2500 0.1597 0.3578 0.2325 0.3415

MOEPTDJ+Simseq 0.2483 0.2485 0.2496 0.2536 0.1708

MOEPTdE
BI

+Simseq
0.2484 0.2488 0.2489 0.2539 0.0450

expected, the MOEPT outperforms significantly other methods based on min-380

imum of SimH criterion, which is absolutely normal because the method has

been developed to this aim.
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Figure 1: Comparisons Between MOEPT and state of art PTs.

5.2. Example of Pattern Classification Using MOEPT

In this example, we use the evaluation of decision making under the evidence

theory framework to indirectly evaluate MOEPT. We consider seven classes of385

aircrafts which are illustrated in Figure 2. And the classifier used in this example
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Algorithm 2 Random generation of BBA

1: Input: Frame of Discernment Θ = {θ1, θ2, θ3, θ4}

2: Nmax :Maximum number of focal element

3: Output : BBA-m

4: Generate K(Θ), which is the power set of Θ

5: Generate a random permutation of K(Θ)→ R(Θ)

6: Generate an integer between 1 and Nmax → l

7: For each First k elements of R(Θ) do

8: Generate a value within [0, 1]→ mi, i = 1, · · · , l

9: End

10: Normalize the vector m = [m1,m2, · · · ,ml]→ m′

11: m(θi) = m′i

is the Probabilistic neural networks (PNNs). For each test example, the output

of the classifier is represented by a BBA. The corresponding BBA for each test

sample is generated according to our previous work [38]:
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Figure 2: The binary image of seven kinds of airplanes.

1. Firstly, the image is preprocessed with binarization and then multiple390

features are extracted, such as Hu moments, normalized moment of inertia,

affine invariant moments, discrete outline parameters and singular values.

Secondly, five BBAs can be assigned to the evidence sources by each PNN

7. Thirdly, all these five BBAs are fused by PCR6 [8] to form a single BBA

m(·).395

2. For the two classes t1 and t2 (t1, t2 ∈ 1, 2, 3, · · · , 7, t1 6= t2), with the

top two values of m(i), i = 1, 2, 3, · · · , 7, the corresponding updated mass

7Specifically, transfer functions in five PNNs are set to Gaussian function; the weighting

function is set to the Euclidean distance; the input function is netprod and also the output

function is compet.
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assignments are generated according to [39]

m′(i) = m(i),∀i = t1, t2 (31)

The remaining mass is assigned to the total set Θ

m′(Θ) = 1−m′(t1)−m′(t2). (32)

For example, for a test sample target−1, we obtain the corresponding BBA

from PNNs: m(1) = 0.7,m(2) = 0.05,m(3) = 0.2,m(4) = 0.01,m(5) =400

0,m(6) = 0.02,m(7) = 0.02 . The dominant class is class 1 and class

3 is at the second place. The updated corresponding BBA is m′(1) =

0.7,m′(3) = 0.2,m′(2, 4, 5, 6, 7) = 0.1.

There are 100 samples for each one class with a total of 700 samples. For each

class, 50 samples are randomly selected for training PNNs and the remaining

samples are used for testing. For MOEPT, the decision result will be class tfinal

if

tfinal = argmax(MOEPT ) (33)

As we can see from Figure.3, MOEPT performs well in this task of pattern

classification.405
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Figure 3: Recognition Rate of MOEPT.
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5.3. Example of Target Type Tracking Using MOEPT

To further discuss the interest of the proposed MOEPT, Target Type Track-

ing (TTT) problem in the area of decision making has been used which is briefly

described below [40]:

5.3.1. Target Type Tracking Problem (TTT)410

1. Considering ζ = 1, 2, · · · , ζmax be the time index and let N possible tar-

get types Tarζ ∈ Θ = {θ1, θ2, · · · , θN} in the surveillance area; For in-

stance, in the normal air target surveillance systems the FoD could be

Θ = {Fighter, Cargo}. That is, Tar1 = θ1 , Fighter, Tar2 = θ2 ,

Cargo. Similarly, the FoD in a ground target surveillance systems could415

be Θground = {Tank, Truck, Car,Bus}. In this paper, we just consider

the air target surveillance systems to prove the practicability of EPT.

2. At every time ζ, the true type of the target Tar (ζ) ∈ Θ is immediately

observed by an attribute-sensor (here, we assume a possible target prob-

ability).420

3. A defined classifier is applied to process the attribute measurement of the

sensor which provides the probability Tard (ζ) on the type of the observed

target at each instant ζ.

4. The sensor is in general not totally reliable and is characterized by an

N ×N confusion matrix:

M = [Mij = P (Tard = Tarj |TrueType = Tari)] (34)

where 0 ≤ i ≤ N ; 0 ≤ j ≤ N .

Here, we briefly summarize the main steps of TTT using MOEPT.425

1. Initialization. Determine the target type frame Θ = {θ1, θ2, · · · , θN} and

set the initial BBA minitial (θ1 ∪ θ2 ∪ · · · ∪ θN ) = 1 since there is no infor-

mation about the first target type that will be observed;

2. Updating BBA. An observed BBA mobs(.) on types of unknown observed

target is defined from current target type declaration and confusion matrix430

M;
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3. Combination. We combine the current BBA mobs(·) with initial BBA

minitial(·) according to PCR6 combination rule [8]: mPCR6(·) = mobs(·)⊕

minitial(·) ;

4. Approximation. UsingMOEPT (·) to approximatemPCR6(·) into a Bayesian435

BBA;

5. Decision Making. Taking a final decision about the type of the target at

current observation time based on the obtained Bayesian BBA;

6. Updating BBA. Set minitial(·) = mPCR6(·), and increase time index ζ =

ζ + 1 and go back to step 2.440

5.3.2. Raw Dataset of TTT

We have tested our MOEPT-based TTT on a very simple scenario for a 2D

TTT, namely Θ = {Fighter, Cargo} for two types of classifiers. The matrix M1

corresponds to the confusion matrix of the good classifier, and M2 corresponds

to the confusion matrix of the poor classifier.

M1 =

0.95 0.05

0.05 0.95

 ; M2 =

0.75 0.25

0.25 0.75

 (35)

In our scenario, a true Target Type sequence over 120 scans is generated

according to Figure 4. We can observe clearly from Figure 4 that Cargo (which

is denoted as Type 2) appears at first in the sequence, and then the observation

of the Target Type switches three times onto Fighter Type (Type 1) during445

different time durations (namely, 20s, 10s, 5s).

A pathological case for TTT: Our analysis has shown that MOEPT can

nevertheless be in troubles for tracking two target types as proved in this simple

particular example (when 0 ≤ m(θ1 ∪ θ2) ≤ 0.1). Let’s consider the following

BBA

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0, 1, 0]

According to the compatibility constraints Eq.(14)–Eq.(16), the population

P′t is obtained from Pt through a selection procedure. Next, individual P ′jt in
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Figure 4: Raw Sequence of True Target Type.

P′t which is denoted as P ′jt = [m′(θ1),m′(θ2)] is subject to initial constraint

Eq.(1) and Eq.(36):

m′(θ1) ≥ (Bel(θ1) = m(θ1) = 0)

m′(θ1) ≤ (Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) = 0 + 0 = 0);

m′(θ2) ≥ (Bel(θ2) = m(θ2) = 1)

m′(θ2) ≤ (Pl(θ2) = m(θ2) +m(θ2 ∪ θ1) = 1 + 0 = 1);

(36)

From the above inequalities, one sees that only one probability measure PSt =

[m(θ1),m(θ2)] = [0, 1] (where the superscript index S means Single) satisfies this

constraint8. However because of mechanism of MOEPT Eq.(14)-(16), P jt in pop-

ulation Pt which are randomly generated in the interval [Bel(θi), P l(θi)] , i =450

1, 2, ·, N , will be unable to generate enough candidates for evolutionary com-

putation9. That is why MOEPT becomes inefficient in this case which occurs

8the constraint is m(θ1) ∈ [Bel(θ1), P l(θ1)] = [0, 0],m(θ2) ∈ [Bel(θ2), P l(θ2)] = [1, 1].
9A sufficient number of candidate sets are prerequisites for ensuring the global optimization

performance of evolutionary algorithms.
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with a probability of 1/nmax, where nmax denotes the size of population10 Pt.

Unfortunately, in TTT decision making problems, such case cannot be avoided

because it can really happens.455

To circumvent this problem and make MOEPT approach working in most

circumstances, we need modify a bit MOEPT method to generate enough in-

dividuals for making selection steps efficient when the bounds of belief interval

[Bel, P l] take their min and max values ([0.9, 0.05, 0.05], [0.05, 0.9, 0.05]). For460

achieving this, we propose to enlarge this particular interval through a param-

eter λ, and maintain the property of original interval in some degree at the

same time. More precisely, the modified belief interval, denoted [Bel′, P l′], is

heuristically computed by a simple thresholding technique as follows:

First, we assume that the original BBA we consider here for FoD Θ = {θ1, θ2}465

is [θ1, θ2, θ1 ∪ θ2] = [a, b, c], with (a+ b+ c) = 1 and with 0 ≤ c ≤ 0.1

Step 1: Let m′(θ1 ∪ θ2) = c+ λ;

Step 2: if a > b

m′(θ1) = a− λ;m′(θ2) = b;m′(θ1 ∪ θ2) = c+ λ; (37)

Step 3: if a ≤ b

m′(θ1) = a;m′(θ2) = b− λ;m′(θ1 ∪ θ2) = c+ λ; (38)

So the value of [Bel′(θ1), P l′(θ1)] and [Bel′(θ2), P l′(θ2)] can be calculated based

on Eq.(37),Eq.(38), which are presented as follows:

When a > b: Pl′(θ1) = m(θ1) +m′(θ1 ∪ θ2) = a− λ+ c+ λ = a+ c;

Bel′(θ1) = 1− Pl′(θ̄1) = 1− (b+ c+ λ) = a− λ.
(39)

10In our simulation, we did take nmax = 1000.
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Pl′(θ2) = m(θ2) +m′(θ1 ∪ θ2) = b+ c+ λ = b+ c+ λ;

Bel′(θ2) = 1− Pl′(θ̄2)

= 1− (a− λ+ c+ λ) = 1− (a+ c) = b.

(40)

When a ≤ b: 
Pl′(θ1) = m(θ1) +m′(θ1 ∪ θ2) = a+ c+ λ;

Bel′(θ1) = 1− Pl′(θ̄1)

= 1− (b− λ+ c+ λ) = 1− (b+ c) = a.

(41)

 Pl′(θ2) = m(θ2) +m′(θ1 ∪ θ2) = b− λ+ c+ λ = b+ c;

Bel′(θ2) = 1− Pl′(θ̄2) = 1− (a+ c+ λ) = b− λ.
(42)
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Figure 5: The principle of modified-constraint MOEPT (λ = 0.4).

Explanation: Through step 1, one computes the total singleton mass one

has in the entire BBA and the threshold value 0.9 allows to evaluate if the per-

centage of singleton mass is big enough or not. Here, we not only consider the470

unique extreme case mtarget(·) = [θ1, θ2, θ1 ∪ θ2] = [0, 1, 0], but also other pos-

sible cases such as mtarget(·) = [θ1, θ2, θ1 ∪ θ2] = [0.0001, 0.9998, 0.0001]. Why
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do we consider the concept of percentage? Actually, the higher percentage of

singleton mass, the smaller interval for P jt , in other words, the higher value

of m (θ1 ∪ θ2), the bigger interval for P jt which can be shown in Eq.(36); The475

step 2 and step 3 give the way of calculating the updated upper bound of belief

interval [Bel′, P l′] and Eq.(39)–Eq.(42) prove that the parameter λ determines

the range of the interval; Next, we give two examples to show how the above

method works:

480

The pathological case one for TTT (revisited with modified MOEPT)

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0.0001, 0.9998, 0.0001] .

Here, the parameter λ is arbitrarily11 set to 0.4. Then one computes in step 2

the modified plausibility bounds Bel′(θ1) = 0.0001, Pl′(θ1) = 0.0001 + 0.0001 +

λ = 0.4002 and Bel′(θ2) = 0.9998 − 0.4 = 0.5998, Pl′(θ2) = 0.9999. So we get

[Bel′(θ1), P l′(θ1)] = [0.0001, 0.4002] and [Bel′(θ2), P l′(θ2)] = [0.5998, 0.9999].

The relationship between original interval [Bel, P l] and the updated interval485

[Bel′, P l′] is illustrated in Figure 5.

Consequently, any Bayesian BBA P jt = [m′(θ1),m′(θ2)] must be generated

according the (modified) compatibility constraints

m′(θ1) ∈ [Bel′(θ1), P l′(θ1)] = [0.0001, 0.4002]

m′(θ2) ∈ [Bel′(θ2), P l′(θ2)] = [0.5998, 0.9999]

The pathological case two for TTT (revisited with modified MOEPT)

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0.45, 0.48, 0.07] .

Here, the parameter λ is set to 0.2. Then any Bayesian BBA P jt = [m′(θ1),m′(θ2)]

11The value of the parameter λ can be chosen to any value in [0, 1] by the designer for

his/her own reason to ensure the alternative interval effectively in modified MOEPT version.
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must be generated according the (modified) compatibility constraints

m′(θ1) ∈ [Bel′(θ1), P l′(θ1)] = [0.45, 0.72]

m′(θ2) ∈ [Bel′(θ2), P l′(θ2)] = [0.28, 0.55]

In order to evaluate the influence of the parameter λ, we have reexamined

all the pathological cases based on the following procedure:

1. The value of parameter λ is taken to five possible values: 0, 0.1, 0.2, 0.3,

0.4, 0.5;490

2. We randomly generate initial population Pt based on λ, which is also

subject to the constraints (14)–(16).

With this simulation, we can observe in Figure 6 and Figure 7 the impact

of λ value on the number of P jt in Pt. When we set λ = 0 12, there exists

no suitable P jt for case one which demonstrates the necessity to circumvent495

the pathological case problem. Obviously, the number of P jt increases with the

increase of λ value, which efficiently proves the advantage of using the modified

MOEPT approach to make selection step of the evolutionary algorithm more

efficient. One point we need to clarify is that the intervals i.e. [Bel′(θ1), P l′(θ1)],

[Bel′(θ2), P l′(θ2)] induced from parameter λ above aims at guaranteeing enough500

number of P jt in Pt in the implementation of MOEPT. Another point we also

need to mention is that number of P jt in Pt is not influenced by the weight 13

which in some degree guarantee the implementation of MOEPT.

5.3.3. Simulation Results of TTT Based on Modified MOEPT

Our simulation consists in 100 Monte-Carlo runs and we show in the sequel505

the averaged performances of MOEPT. The figures Figure 8 and 9 illustrate

the Bayesian BBA’s obtained by our new MOEPT method for solving TTT

using PCR6 fusion rule. One sees that regardless of the good classifier M1

12which actually the original MOEPT is applied.
13Here, Weight equals w2 in Eq.(13). And thus, w1 = 1−Weight.
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(Recognition rate: 90.83 %) and poor classifier M2 (Recognition rate: 80.83%),

MOEPT is able to track properly the quick changes of target type.510
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Figure 8: Result of MOEPT for Cargo and Fighter types Using M1.
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Figure 9: Result of MOEPT for Cargo and Fighter types Using M2.

6. Conclusion

A multi-objective evolutionary-based algorithm for probabilistic transforma-

tion (MOEPT) has been proposed in this paper. It uses genetic algorithm to

obtain Bayesian belief function to offer a comprehensive consideration concern-

ing distance closeness between orignal BBA and the Bayesian approximate one.515
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Also, a new aggregation measure is proposed in this paper so as to be com-

bined into a more accurate ”distance closeness” measure for MOEPT. More

importantly, the convergence analysis of MOEPT is given to prove the rational-

ity of our proposed method. The effectiveness of MOEPT has been compared

with respect to several probabilistic transformations proposed in the literature.520

Furthermore, the shortcomings of original MOEPT version have been clearly

identified on two targets type tracking problem, and they have been overcome

thanks to a modification of belief interval constraints. As future works, we

would like to establish adaptive scheme on the selection of weight in MOEPT

and make more comparisons between performance of this MOEPT approach525

with other recent proposed evolutionary algorithms. We would also make more

investigations on MOEPT to extend it to work with more than two targets.
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