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Abstract. This paper presents two novel single-valued neutrosophic soft set (SVNSS) methods. First, we initiate a new axiomatic
definition of single-valued neutrosophic simlarity measure, which is expressed by single-valued neutrosophic number (SVNN)
that will reduce the information loss and remain more original information. Then, the objective weights of various parameters
are determined via grey system theory. Combining objective weights with subjective weights, we present the combined weights,
which can reflect both the subjective considerations of the decision maker and the objective information. Later, we present
two algorithms to solve decision making problem based on Evaluation based on Distance from Average Solution (EDAS) and
similarity measure. Finally, the effectiveness and feasibility of approaches are demonstrated by a numerical example.
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1. Introduction

Soft set theory, initiated by Molodtsov [1], is free
from the inadequacy of the parameterized tools of
those theories such as probability theory, fuzzy set the-
ory [2], rough set theory [3], and interval mathemat-
ics [4]. The study of hybrid models combing soft set-
s with other mathematical structures are an importan-
t research topic. Maji et al. [5] firstly proposed fuzzy
soft sets, a more generalized notion combining fuzzy
sets and soft sets. Alcantud [6] proposed a novel al-
gorithm for fuzzy soft set based decision making from
multiobserver input parameter data set. Later, he dis-
cussed the formal relationships among soft sets, fuzzy
sets, and their extensions in [7]. Yang et al. [8] de-
veloped the concept of interval-valued fuzzy soft set-
s. Meanwhile, Peng and Yang applied interval-valued
fuzzy soft sets in clustering analysis [9] and decision
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making [10]. Peng et al.[11] presented Pythagorean
fuzzy soft sets, and discussed their operations. Yang
et al. [12] proposed the multi-fuzzy soft sets and suc-
cessfully applied them to decision making, meanwhile
they extended the multi-fuzzy soft sets to that of bipo-
lar multi-fuzzy soft sets [13] which can describe the
parameter more accurately and precisely. Wang et al.
[14] initiated the hesitant fuzzy soft sets by integrat-
ing hesitant fuzzy set [15] with soft set model, and p-
resented an algorithm to solve decision making prob-
lems. Peng and Yang [16] further proposed interval-
valued hesitant fuzzy soft set, presented an algorithm,
and discussed its calculation complexity with others
algorithms.

Smarandache [17] initially presented the concep-
t of a neutrosophic set from a philosophical point of
view. A neutrosophic set is characterized by a truth-
membership degree, an indeterminacy-membership
degree, and a falsity-membership degree. It gener-
alizes the concept of the classic set, fuzzy set [2],
interval-valued fuzzy set [4], paraconsistent set [17],
and tautological set [17]. From scientific or engineer-
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ing point of view, the neutrosophic set and set-theoretic
operators need to be specified. Otherwise, it will be d-
ifficult to apply in the real applications. Hence, Wang
et al. [18] proposed a single valued neutrosophic set
(SVNS) and provided the set-theoretic operators and
various properties of SVNSs. At present, SVNSs have
attracted widely attention and made some achieve-
ments. Ye [19,20] proposed a multi-attribute decision
making (MADM) method using the correlation coef-
ficient under single-valued neutrosophic environmen-
t. Ye [21,22] further developed clustering method and
decision making methods by similarity measures of
SVNS. Meanwhile, Ye [23] presented cross entropy
measures of SVNS and applied them to decision mak-
ing. Biswas et al. [24] extended the Technique for
Order Preference by Similarity to an Ideal Solution
(TOPSIS) method for multi-attribute single-valued
neutrosophic decision-making problem. Sahin and Ku-
cuk [25] defined a subsethood measure for SVNS, and
applied to MADM. Yang et al. [26] introduced sin-
gle valued neutrosophic relations and discussed their
properties. Huang [27] developed a new distance mea-
sure of SVNSs, and applied them to clustering analysis
and MADM. Liu [28] proposed aggregation operators
based on Archimedean t-conorm and t-norm for SVNS
and also gave an application in MADM. Li et al. [29]
extended the Heronian mean to SVNS, and proposed
some Heronian mean operators for SVNS.

Combining the advantages of the instance of neu-
trosophic set [17] with soft set [1], Maji [30] pro-
posed the single-valued neutrosophic soft set. Şahin
and Küçük [31] presented the definition of similari-
ty and entropy in single-valued neutrosophic soft en-
vironment. Mukherjee and Sarkar [32] defined some
similarity measures of single-valued neutrosophic soft
sets, and applied them to real life problems. Deli and
Broumi [33] defined some new operators and soft ma-
trix based on single-valued neutrosophic soft sets. Alk-
hazaleh [34] introduced time-neutrosophic soft set and
studied some of its properties in detail. Al-Quran and
Hassan [35] presented the neutosophic vague soft ex-
pert set theory and discussed their properties in detail.

Evaluation based on Distance from Average Solu-
tion (EDAS), originally proposed by Ghorabaee et al.
[36], is a new MADM method for inventory ABC clas-
sification. It is a very useful when we have some con-
flicting attributes. In the compromise MADM method-
s such as VIKOR and TOPSIS [37], the best alterna-
tive is obtained by computing the distance from ideal
and nadir solutions. The desirable alternative has lower
distance from ideal solution and higher distance from

nadir solution in these MADM methods. Ghorabaee et
al. [38] extended the EDAS method to supplier selec-
tion. To the best of our knowledge, however, the study
of the MADM problem based on EDAS method have
not been reported in the existing academic literature.
Hence, it is an interesting research topic to apply the
EDAS in MADM to rank and determine the best al-
ternative under single-valued neutrosophic soft envi-
ronment. Through a comparison analysis of the given
methods, their objective evaluation is carried out, and
the method which maintains consistency of its results
is chosen.

In order to compute the similarity measure of two
SVNSs, we propose a new axiomatic definition of sim-
ilarity measure, which takes in the form of SVNN.
Comparing with the existing literature [21,22,31,32],
our similarity measure can remain more original deci-
sion information.

Considering that different sets of attribute weight-
s will influence the ranking results of alternatives,
we develop a novel method to determine the criteria
weights by combining the subjective factors with the
objective ones. This model is different from the exist-
ing methods, which can be divided into two categories:
one is the subjective weighting methods and the oth-
er is the objective weighting methods, which can be
computed by grey system theory [39]. The subjective
weighting methods pay much attention to the prefer-
ence information of the decision maker [19-21,23,27-
30], while they neglect the objective information. The
objective weighting methods do not take into accoun-
t the preference of the decision maker, in particular,
these methods fail to take into account the risk attitude
of the decision maker [22,24]. The characteristic of our
weighting model can reflect both the subjective consid-
erations of the decision maker and the objective infor-
mation. Consequently, combining subjective weights
with objective weights, we provide a combined model
to determine attribute weights.

The remainder of this paper is organized as follows:
In Section 2, we review some fundamental concep-
tions of neutrosophic sets, single-valued neutrosophic
sets, soft set and single-valued neutrosophic soft set-
s. In Section 3, a new axiomatic definition of single-
valued neutrosophic similarity measure is presented.
In Section 4, two single-valued neutrosophic soft deci-
sion making approaches based on EDAS and similarity
measure are shown. In Section 5, a numerical example
is given to illustrate the proposed methods. The paper
is concluded in Section 6.
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2. Preliminaries

2.1. Neutrosophic set

Neutrosophic set is a portion of neutrosophy, which
researches the origin, and domain of neutralities, as
well as their interactions with diverse ideational scope
[17], and is a convincing general formal framework,
which extends the presented sets [2,4] from philosoph-
ical point. Smarandache [17] introduced the definition
of neutrosophic set as follows:

Definition 1. [3] Let X be a universe of discourse, with
a class of elements in X denoted by x. A neutrosoph-
ic set B in X is summarized by a truth-membership
function TB(x), an indeterminacy-membership func-
tion IB(x), and a falsity-membership function FB(x).
The functions TB(x), IB(x), and FB(x) are real standard
or non-standard subsets of ]0−,1+[ . That is TB(x) :
X →]0−,1+[ , IB(x) : X →]0−,1+[ , and FB(x) : X →
]0−,1+[.

There is restriction on the sum of TB(x), IB(x), and
FB(x), so 0− ≤ sup TB(x)+sup IB(x)+sup FB(x)≤ 3+.

As mentioned above, it is hard to apply the neutro-
sophic set to solve some real problems. Hence, Wang
et al. [18] presented SVNS, which is a subclass of the
neutrosophic set and mentioned the definition as fol-
lows:

Definition 2. [18] Let X be a universe of discourse,
with a class of elements in X denoted by x. A single-
valued neutrosophic set N in X is summarized by a
truth-membership function TN(x), an indeterminacy-
membership function IN(x), and a falsity-membership
function FN(x). Then a SVNS N can be denoted as fol-
lows:

N = {< x,TN(x), IN(x),FN(x)>| x ∈ X}, (1)

where TN(x), IN(x),FN(x) ∈ [0,1] for ∀x ∈ X . Mean-
while, the sum of TN(x), IN(x), and FN(x) fulfills the
condition 0 ≤ TN(x)+ IN(x)+FN(x) ≤ 3. For a SVN-
S N in X , the triplet (TN(x), IN(x),FN(x)) is called
single-valued neutrosophic number (SVNN). For con-
venience, we can simply use x = (Tx, Ix,Fx) to repre-
sent a SVNN as an element in the SVNS N.

Generally speaking, two special values are taken in-
to consideration, i.e., SVNN 0 and 1; One can deem as
0 for (0,0,1) or (0, 1, 1), and as 1 for (1,0,0) or (1,1,0)
relying on the some applications. However, if we think
about 0 as the worst value and 1 as the best value, we

can set 0 as (0,0,1) and 1 as (1,0,0).

Definition 3. [18] Let x=(Tx, Ix,Fx) and y=(Ty, Iy,Fy)
be two SVNNs, then operations can be defined as fol-
lows:

(1) xc = (Fx,1− Ix,Tx);
(2) x

∪
y = (max{Tx,Ty},min{Ix, Iy},min{Fx,Fy});

(3) x
∩

y = (min{Tx,Ty},max{Ix, Iy},max{Fx,Fy});
(4) x⊕ y = (Tx +Ty −Tx ∗Ty, Ix ∗ Iy,Fx ∗Fy);
(5) x⊗y = (Tx ∗Ty, Ix+ Iy− Ix ∗ Iy,Fx+Fy−Fx ∗Fy);
(6) λx = (1− (1−Tx)

λ ,(Ix)
λ ,(Fx)

λ ),λ > 0;
(7) xλ = ((Tx)

λ ,1− (1− Ix)
λ ,1− (1−Fx)

λ ),λ > 0.

For comparing two SVNNs, Peng et al. [40] intro-
duced a similarity measure method for a SVNN.

Definition 4. [40] Let x = (Tx, Ix,Fx) be a SVNN, then
the score function s(x) is defined as follows:

s(x) =
2
3
+

Tx

3
− Ix

3
− Fx

3
. (2)

It measures the hamming similarity between x =
(Tx, Ix,Fx) and the ideal solution (1, 0, 0) for the com-
parison of SVNNs.

Definition 5. [30] A pair (F̃ ,A) is called a single-
valued neutrosophic soft set over U , where F̃ is a map-
ping given by F̃ : A → P̃(U).

In other words, the soft set is not a kind of set,
but a parameterized family of subsets of the set U .
For any parameter e ∈ A, F̃(e) may be considered
as the set of e-approximate elements of the single-
valued neutrosophic soft set (F̃ ,A). Let F̃(e)(x) de-
note the membership value that object x holds param-
eter e, then F̃(e) can be written as a single-valued
neutrosophic set that F̃(e) = {x/F̃(e)(x) | x ∈ U} =
{x/(TF̃(e)(x), IF̃(e)(x),FF̃(e)(x)) | x ∈U}.

Example 1. Let U = {x1,x2,x3} and A = {e1,e2,e3}.
Let (F̃ ,A) be a single-valued neutrosophic soft set over
U , defined as follows:

F̃(e1) = {x1/(0.3,0.4,0.7),x2/(0.3,0.5,0.6),x3/(0.4,0.4,0.6)},

F̃(e2) = {x1/(0.7,0.4,0.8),x2/(0.6,0.4,0.6),x3/(0.3,0.5,0.7)},

F̃(e3) = {x1/(0.5,0.4,0.6),x2/(0.3,0.6,0.7),x3/(0.3,0.4,0.8)}.

Then, (F̃ ,A) is described by the following Table 1.
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Table 1
The single-valued neutrosophic soft set (F̃ ,A)

e1 e2 e3

x1 (0.3,0.4,0.7) (0.7,0.4,0.8) (0.5,0.4,0.6)
x2 (0.3,0.5,0.6) (0.6,0.4,0.6) (0.3,0.6,0.7)
x3 (0.4,0.4,0.6) (0.3,0.5,0.7) (0.3,0.4,0.8)

Definition 6. [30] Let (F̃ ,A) and (G̃,B) be two single-
valued neutrosophic soft sets over the common uni-
verse U . (F̃ ,A) is said to be single-valued neutro-
sophic soft subset of (G̃,B) if A ⊂ B, TF̃(e)(x) ≤
TG̃(e)(x), IF̃(e)(x) ≤ IG̃(e)(x),FF̃(e)(x) ≥ FG̃(e)(x),
∀e ∈ A,x ∈U . We denote it by (F̃ ,A)⊆ (G̃,B).

3. A new single-valued neutrosophic similarity
measure

Definition 7. Let A1,A2 and A3 be three SVNSs on
X . A similarity measure D∆(A1,A2) is a mapping
S∆ : SVNS(X)×SVNS(X)→ SVNN, possessing the
following properties:

(1) S∆(A1,A2) is a SVNN;
(2) S∆(A1,A2) = (1,0,0), iff A1 = A2;
(3) S∆(A1,A2) = S∆(A2,A1);
(4) If A1 ⊆ A2 ⊆ A3, then S∆(A1,A2) ⊇ S∆(A1,A3)

and S∆(A2,A3)⊇ S∆(A1,A3).

Theorem 1. Let Ai and Ak be two SVNSs, then
S∆(Ai,Ak) is a similarity measure.

S∆(Ai,Ak) =(
min{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)},

min{L(Ai,Ak),W (Ai,Ak),R(Ai,Ak)},

1−max{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)}
)
,

(3)

where L(Ai,Ak) =

n
∑

j=1
w jmin{Ti j ,Tk j}

n
∑

j=1
w jmax{Ti j ,Tk j}

,

M(Ai,Ak) =

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

,

W (Ai,Ak) = 1−

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

,

R(Ai,Ak) =

n
∑

j=1
w jmin{1−Fi j ,1−Fk j}

n
∑

j=1
w jmax{1−Fi j ,1−Fk j}

and w j is the weight

of jth SVNN.

Proo f . In order for S∆(Ai,Ak) to be qualified as a
sensible similarity measure for SVNSs, it must satisfy
the (1)-(4) of axiomatic requirements.

(1) Since 0 ≤ L(Ai,Ak) =

n
∑

j=1
w jmin{Ti j ,Tk j}

n
∑

j=1
w jmax{Ti j ,Tk j}

≤ 1,

0 ≤ M(Ai,Ak) =

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

≤ 1,

0 ≤W (Ai,Ak) = 1−

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

≤ 1,

0 ≤ R(Ai,Ak) =

n
∑

j=1
w jmin{1−Fi j ,1−Fk j}

n
∑

j=1
w jmax{1−Fi j ,1−Fk j}

≤ 1,

therefore,
0 ≤ min{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)} ≤ 1,

0 ≤ min{L(Ai,Ak),W (Ai,Ak),R(Ai,Ak)} ≤ 1,
0 ≤ 1−max{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)} ≤ 1.

Furthermore,

0 ≤ min{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)}+
min{L(Ai,Ak),W (Ai,Ak),R(Ai,Ak)}+
1−max{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)} ≤ 3.

Consequently, S∆(Ai,Ak) is a SVNN.

(2)
1⃝ Necessity:
Since S∆(Ai,Ak) = (1,0,0), we have
min{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)}= 1,
min{L(Ai,Ak),W (Ai,Ak),R(Ai,Ak)}= 0,
max{L(Ai,Ak),M(Ai,Ak),R(Ai,Ak)}= 1.
It means that L(Ai,Ak) = M(Ai,Ak) = R(Ai,Ak) =

1,W (Ai,Ak) = 0.
Furthermore,

L(Ai,Ak) =

n
∑

j=1
w jmin{Ti j ,Tk j}

n
∑

j=1
w jmax{Ti j ,Tk j}

= 1,

M(Ai,Ak) =

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

= 1,
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W (Ai,Ak) = 1−

n
∑

j=1
w jmin{1−Ii j ,1−Ik j}

n
∑

j=1
w jmax{1−Ii j ,1−Ik j}

= 0,

R(Ai,Ak) =

n
∑

j=1
w jmin{1−Fi j ,1−Fk j}

n
∑

j=1
w jmax{1−Fi j ,1−Fk j}

= 1.

Based on the randomicity of w j, we can have Ti j =

Tk j, Ii j = Ik j,Fi j = Fk j, i.e., Ai = Ak.

2⃝ Sufficiency:

Since Ai = Ak, we have Ti j = Tk j, Ii j = Ik j,Fi j = Fk j.
Furthermore,

n
∑
j=1

w jmin{Ti j,Tk j}=
n
∑
j=1

w jmax{Ti j,Tk j},

n
∑
j=1

w jmin{1− Ii j,1− Ik j}=
n
∑
j=1

w jmax{1− Ii j,1− Ik j},

n
∑
j=1

w jmin{1−Fi j,1−Fk j}=
n
∑
j=1

w jmax{1−Fi j,1−Fk j}.

Consequently, S∆(Ai,Ak) = (1,0,0).

(3) It is obvious.

(4) If A1 ⊆ A2 ⊆ A3, then ∀ j,T1 j ≤ T2 j ≤ T3 j, I1 j ≥

I2 j ≥ I3 j and F1 j ≥ F2 j ≥ F3 j.

Hence,

L(A1,A3)=

n
∑

j=1
w jmin{T1 j ,T3 j}

n
∑

j=1
w jmax{T1 j ,T3 j}

=

n
∑

j=1
w jT1 j

n
∑

j=1
w jT3 j

≤

n
∑

j=1
w jT1 j

n
∑

j=1
w jT2 j

=

n
∑

j=1
w jmin{T1 j ,T2 j}

n
∑

j=1
w jmax{T1 j ,T2 j}

= L(A1,A2),

M(A1,A3) =

n
∑

j=1
w jmin{1−I1 j ,1−I3 j}

n
∑

j=1
w jmax{1−I1 j ,1−I3 j}

=

n
∑

j=1
w j(1−I1 j)

n
∑

j=1
w j(1−I3 j)

≤

n
∑

j=1
w j(1−I1 j)

n
∑

j=1
w j(1−I2 j)

=

n
∑

j=1
w jmin{1−I1 j ,1−I2 j}

n
∑

j=1
w jmax{1−I1 j ,1−I2 j}

= M(A1,A2),

W (A1,A3) = 1−

n
∑

j=1
w jmin{1−I1 j ,1−I3 j}

n
∑

j=1
w jmax{1−I1 j ,1−I3 j}

= 1−

n
∑

j=1
w j(1−I1 j)

n
∑

j=1
w j(1−I3 j)

≤ 1−

n
∑

j=1
w j(1−I1 j)

n
∑

j=1
w j(1−I2 j)

= 1−

n
∑

j=1
w jmin{1−I1 j ,1−I2 j}

n
∑

j=1
w jmax{1−I1 j ,1−I2 j}

=W (A1,A2),

R(A1,A3) =

n
∑

j=1
w jmin{1−F1 j ,1−F3 j}

n
∑

j=1
w jmax{1−F1 j ,1−F3 j}

=

n
∑

j=1
w j(1−F1 j)

n
∑

j=1
w j(1−F3 j)

≤

n
∑

j=1
w j(1−F1 j)

n
∑

j=1
w j(1−F2 j)

=

n
∑

j=1
w jmin{1−F1 j ,1−F2 j}

n
∑

j=1
w jmax{1−F1 j ,1−F2 j}

= R(A1,A2).

Furthermore,

min{L(A1,A2),M(A1,A2),R(A1,A2)} ≥
min{L(A1,A3),M(A1,A3),R(A1,A3)},

min{L(A1,A2),W (A1,A2),R(A1,A2)} ≥
min{L(A1,A3),W (A1,A3),R(A1,A3)},

1−max{L(A1,A2),M(A1,A2),R(A1,A2)} ≤
1−max{L(A1,A2),M(A1,A2),R(A1,A2)}.

Consequently, S∆(A1,A2)⊇ S∆(A1,A3).
Similarly, S∆(A2,A3) ⊇ S∆(A1,A3). This completes

the proof.

Especially, for any two SVNNs x1 and x2, the sim-
ilarity measure between x1 = (T1, I1,F1) and x2 =
(T2, I2,F2) is defined as follows:

S∆(x1,x2) =(
min

{
min{T1,T2}
max{T1,T2}

,
min{1− I1,1− I2}
max{1− I1,1− I2}

,

min{1−F1,1−F2}
max{1−F1,1−F2}

}
,

min

{
min{T1,T2}
max{T1,T2}

,1− min{1− I1,1− I2}
max{1− I1,1− I2}

,

min{1−F1,1−F2}
max{1−F1,1−F2}

}
,

1−max

{
min{T1,T2}
max{T1,T2}

,
min{1− I1,1− I2}
max{1− I1,1− I2}

,

min{1−F1,1−F2}
max{1−F1,1−F2}

} )
.

(4)

If x1 = x2, then S∆(x1,x2) = (1,0,0), i.e., the sim-
ilarity is the biggest; if x1 = (0,0,1),x2 = (1,0,0) or
x1 = (1,0,0),x2 = (0,0,1), then S∆(x1,x2) = (0,0,1),
i.e., the similarity is the smallest.
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4. Two algorithms for single-valued neutrosophic
soft decision making

4.1. Problem description

Let U = {x1, x2, · · · , xm} be a finite set of m al-
ternatives, E = {e1, e2, · · · , en} be a set of n pa-
rameters, and the weight of parameter ei is wi, wi ∈
[0,1],∑n

i=1 wi = 1. (F̃ ,E) is single-valued neutrosoph-
ic soft set can be expressed in Table 2. F̃(e j)(xi) =
(TF̃(e j)(xi), IF̃(e j)(xi),FF̃(e j)(xi)) represents the pos-
sible SVNN of the ith alternative xi satisfying the jth
parameter e j which is given by the decision maker.

Table 2
Tabular representation of (F̃ ,E)

e1 e2 · · · en

x1 F̃(e1)(x1) F̃(e2)(x1) · · · F̃(en)(x1)

x2 F̃(e1)(x2) F̃(e2)(x2) · · · F̃(en)(x2)
...

...
...

. . .
...

xm F̃(e1)(xm) F̃(e2)(xm) · · · F̃(en)(xm)

In the following, we will apply the EDAS and simi-
larity measure methods to SVNSSs.

4.2. The method of computing the combined
weights

For a decision maker problem, considering that dif-
ferent sets of weights will influence the ranking results
of alternatives, we develop a novel method to obtain
the weights by combining the subjective elements with
the objective ones. This model is different from the
existing methods, which can be divided into two tac-
tics: one is the subjective weighting determine meth-
ods and the other is the objective weighting method-
s, which can be computed by grey system theory [39].
The subjective weighting methods focus on the prefer-
ence information of the decision maker, while they ig-
nore the objective information. The objective weight-
ing methods do not take the preference of the decision
maker into account, that is to say, these methods fail
to take the risk attitude of the decision maker into ac-
count. The feature of our weighting model can show
both the subjective information and the objective infor-
mation. Hence, combining subjective weights with ob-
jective weights, we provide a combined model to de-
termine attribute weights.

4.2.1. Determining the objective weights: the grey
system method

The grey system theory [39] is an excellent tool to
deal with small sample and poor information. For a
decision maker problem, the alternatives and attributes
are generally small which accord with the condition
of grey system theory, so we take the method of grey
system into consideration.

Theoretically, if an attribute information with re-
spect to other attribute more matches in the aver-
age information of the attribute, the attribute contains
more information for decision making, the greater the
weight. Based on this idea, we propose a grey relation-
al analysis method to determine the attribute weights.

Definition 8. Suppose R=(ri j)m×n(i= 1,2, · · · ,m; j =
1,2, · · · ,n) be a single-valued neutrosophic matrix.
And S = (si j)m×n(i = 1,2, · · · ,m; j = 1,2, · · · ,n) is the

score function s (Eq.(2)) of R. Let si =
1
n

n
∑
j=1

si j, then

the attribute weight ω j is defined as follows:

ω j =

1− 1
m

(
m
∑

i=1
(oq

i j)

) 1
q

n− 1
m

n
∑
j=1

(
m
∑

i=1
(oq

i j)

) 1
q
, (5)

where oi j =
min

i
|si j−si|+ξ max

i
|si j−si|

|si j−si|+ξ max
i

|si j−si|
is grey mean rela-

tional degree, in general, we set ξ = 0.5.
In order to improve the effective resolution, this pa-

per uses Euclidean distance instead of Hamming dis-
tance, i.e., q = 2.

4.2.2. Determining the combined weights: the
non-linear weighted comprehensive method

Suppose that the vector of the subjective weight,
given by the decision makers directly, is w = {w1,w2,

· · · ,wn}, where
n
∑
j=1

w j = 1,0 ≤ w j ≤ 1. The vector of

the objective weight, computed by Eq.(11) directly, is

ω = {ω1,ω2, · · · ,ωn}, where
n
∑
j=1

ω j = 1,0 ≤ ω j ≤ 1.

Therefore, the vector of the combined weight ϖ =

{ϖ1,ϖ2, · · · ,ϖn} can be defined as follows:

ϖ j =
w j ∗ω j

n
∑
j=1

w j ∗ω j

, (6)
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where
n
∑
j=1

ϖ j = 1,0 ≤ ϖ j ≤ 1.

The objective weight and subjective weight are
aggregated by non-linear weighted comprehensive
method. According to the multiplier effect, the larger
the value of the subjective weight and objective weight
are, the larger the combined weight is, or vice versa.
At the same time, we can obtain that the Eq.(6) over-
comes the limitation of only considering either subjec-
tive or objective factor influence. The advantage of E-
q.(6) is that the attribute weights and rankings of alter-
natives can show both the subjective information and
the objective information.

4.3. The method of EDAS

In this section, an extended version of the EDAS
method is proposed to deal with decision making prob-
lems in the single-valued neutrosophic soft environ-
ment. Therefore, the concepts and arithmetic opera-
tions of the SVNN are utilized for extending the EDAS
method.

Algorithm 1: EDAS

Step 1. Identify the alternatives and parameters, and
obtain the single-valued neutrosophic soft set (F̃ ,E)
which is shown in Table 2.

Step 2. Normalize the single-valued neutrosophic soft
set (F̃ ,E) into (F̃ ′,E) by Eq. (7).

F̃ ′(e j)(xi) =


(

TF̃ (e j)(xi), IF̃ (e j)(xi),FF̃ (e j)(xi)

)
, e j ∈ B,(

FF̃ (e j)(xi),1− IF̃ (e j)(xi),TF̃ (e j)(xi)

)
, e j ∈C,

(7)

where B is benefit parameter set and C is cost param-
eter set.
Step 3. Compute the combined weights by Eq.(6).
Step 4. Determine the average solution according to
all parameters, shown as follows:

AV = (AVj)1×n, (8)

where

AVj =
1
m

m⊕
i=1

F̃(e j)(xi)

=
1
m

(
1−

m

∏
i=1

(1−TF̃ (e j)(xi)),
m

∏
i=1

IF̃ (e j)(xi),
m

∏
i=1

FF̃ (e j)(xi)

)

=

(
1− (

m

∏
i=1

(1−TF̃ (e j)(xi)))
1
m ,(

m

∏
i=1

IF̃ (e j)(xi))
1
m ,(

m

∏
i=1

FF̃ (e j)(xi))
1
m

)
.

(9)

Step 5. Calculate the positive distance from average
(PDA) with PDA = (Pi j)m×n and the negative distance
from average (NDA) with NDA = (Ni j)m×n matrixes
according to the type of parameters, shown as follows:

Pi j =


max{0,s(F̃(e j)(xi))−s(AV j)}

s(AV j)
, e j ∈ B,

max{0,s(AV j)−s(F̃(e j)(xi))}
s(AV j)

, e j ∈C,
(10)

Ni j =


max{0,s(AV j)−s(F̃(e j)(xi))}

s(AV j)
, e j ∈ B,

max{0,s(F̃(e j)(xi))−s(AV j)}
s(AV j)

, e j ∈C,
(11)

where s(AVj) and s(F̃(e j)(xi)) are score function of
AVj and F̃(e j)(xi), respectively.
Step 6. Determine the weighted sum of PDA and NDA
for all alternatives, shown as follows:

SPi =
n

∑
j=1

w jPi j, (12)

SNi =
n

∑
j=1

w jNi j. (13)

Step 7. Normalize the values of SPi and SNi for all
alternatives, shown as follows:

NSPi =
SPi

max
i
{SPi}

(14)

NSNi = 1− SNi

max
i
{SNi}

(15)

Step 8. Calculate the appraisal score ASi(i= 1,2, · · · ,m)

for all alternatives, shown as follows:

ASi =
1
2
(NSPi +NSNi), (16)

where 0 ≤ ASi ≤ 1.
Step 9. Rank the alternatives according to the decreas-
ing values of ASi. The alternative with the highest ASi

is the best choice among the candidate alternatives.
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4.4. The method of similarity measure

In this section, we introduce a method for the deci-
sion making problem by the proposed similarity mea-
sure between SVNSs. The concept of ideal point has
been applied to help determine the best alternative in
the decision process. Although the ideal alternative
does not exist in practical problems, it does offer a use-
ful theoretical construct against which to appraise al-
ternatives. Therefore, we define the ideal alternative x∗

as the SVNN x∗j = (T ∗, I∗,F∗) = (1,0,0) for ∀ j.
Hence, by applying Eq.(3), the proposed similarity

measure S∆ between an alternative xi and the ideal al-
ternative x∗ represented by the SVNSs is defined by

S∆(xi,x∗) =(
min{L(xi,x∗),M(xi,x∗),R(xi,x∗)},

min{L(xi,x∗),W (xi,x∗),R(xi,x∗)},

1−max{L(xi,x∗),M(xi,x∗),R(xi,x∗)}
)
,

(17)

where

L(xi,x∗) =

n
∑
j=1

ϖ jmin{TF̃ (e j)(xi),1}
n
∑
j=1

ϖ jmax{TF̃ (e j)(xi),1}
=

n
∑

j=1
ϖ jTF̃ (e j)(xi),

M(xi,x∗) =

n
∑
j=1

ϖ jmin{1−IF̃ (e j)(xi),1}
n
∑
j=1

ϖ jmax{1−IF̃ (e j)(xi),1}
= 1−

n
∑

j=1
ϖ jIF̃ (e j)(xi),

W (xi,x∗) = 1−

n
∑
j=1

ϖ jmin{1−IF̃ (e j)(xi),1}
n
∑
j=1

ϖ jmax{1−IF̃ (e j)(xi),1}
=

n
∑

j=1
ϖ jIF̃ (e j)(xi),

R(xi,x∗) =

n
∑
j=1

ϖ jmin{1−FF̃ (e j)(xi),1}
n
∑
j=1

ϖ jmax{1−FF̃ (e j)(xi),1}
= 1−

n
∑

j=1
ϖ jFF̃ (e j)(xi).

Algorithm 2: similarity measure

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.
Step 4. Calculate the similarity measure S(xi,x∗)(i =
1,2, · · · ,m) by Eq.(17).
Step 5. Compute the each alternative of score function
s(S(xi,x∗)) by Eq.(2).
Step 6. Rank the alternatives by s(S(xi,x∗))(i= 1,2, · · · ,m).
The most desired alternative is the one with the biggest
value of xi.

5. A numerical example

An internet company wants to select a software de-
velopment project to invest. Suppose that there are four
software development projects: e-commerce develop-
ment project, game development project, browser de-
velopment project and web development project. The
company selects three parameters to evaluate the four
software development projects.

Let U = {x1,x2,x3,x4} is the set of software devel-
opment projects under consideration, E = {e1,e2,e3}
is the set of parameters, e1 stands for economic feasi-
bility, e2 stands for technological feasibility, e3 stands
for staff feasibility. e1 and e2 are benefit parameters, e3
is cost parameter. The weight vector of the parameters
is given as w = (0.4,0.1,0.5)T . The tabular is present-
ed in Table 3.

In what follows, we utilize the algorithms proposed
above for software development projects selection
with single-valued neutrosophic soft information.

Table 3
Tabular representation of (F̃ ,E)

e1 e2 e3

x1 (0.5,0.4,0.7) (0.7,0.5,0.1) (0.6,0.6,0.3)
x2 (0.6,0.5,0.6) (0.6,0.2,0.2) (0.5,0.4,0.4)
x3 (0.7,0.3,0.5) (0.7,0.2,0.1) (0.7,0.5,0.4)
x4 (0.6,0.4,0.5) (0.7,0.4,0.2) (0.5,0.6,0.4)

Algorithm 1: EDAS

Step 1. Identify the alternatives and parameters, and
obtain the single-valued neutrosophic soft set (F̃ ,E)
which is shown in Table 3.
Step 2. Normalize the single-valued neutrosophic soft
set (F̃ ,E) into (F̃ ′,E) by Eq. (7), which is shown in
Table 4.
Step 3. Compute the combined weights by Eq.(6) as

Table 4
The normalized single-valued neutrosophic soft set (F̃ ′,E)

e1 e2 e3

x1 (0.5,0.4,0.7) (0.7,0.5,0.1) (0.3,0.4,0.6)
x2 (0.6,0.5,0.6) (0.6,0.2,0.2) (0.4,0.6,0.5)
x3 (0.7,0.3,0.5) (0.7,0.2,0.1) (0.4,0.5,0.7)
x4 (0.6,0.4,0.5) (0.7,0.4,0.2) (0.4,0.4,0.5)

follows:
ϖ1 = 0.4078,ϖ2 = 0.1017,ϖ3 = 0.4905.
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Step 4. Determine the average solution according to
all parameters by Eq.(9), shown as follows:

AV1 = (0.6064,0.3936,0.5692),
AV2 = (0.6776,0.2991,0.1414),
AV3 = (0.5838,0.5180,0.3722).

Step 5. Calculate the positive distance from average
PDA=(Pi j)4×3 and the negative distance from average
NDA = (Ni j)4×3 matrixes by Eqs.(10) and (11), shown
as follows:

PDA = (Pi j)4×3


0.0000 0.0000 0.0038
0.0000 0.0000 0.0038
0.1560 0.0728 0.0628
0.0343 0.0000 0.0000

 ,

NDA = (Ni j)4×3


0.1482 0.0613 0.0000
0.0873 0.0166 0.0000
0.0000 0.0000 0.0000
0.0000 0.0613 0.1143

 .

Step 6. Determine the weighted sum of PDA and NDA
for all alternatives by Eqs.(12) and (13), respectively,
shown as follows:

SP1 = 0.0019,SP2 = 0.0019,SP3 = 0.1019,SP4 =
0.0140,

NP1 = 0.0667,NP2 = 0.0373,NP3 = 0.0000,NP4 =
0.0623.
Step 7. Normalize the values of SPi and SNi for all
alternatives by Eqs. (14) and (15), respectively, shown
as follows:

NSP1 = 0.0183,NSP2 = 0.0183,
NSP3 = 1.0000,NSP4 = 0.1375,
NSN1 =−0.0702,NSN2 = 0.4011,
NSN3 = 1.0000,NSN4 = 0.0000.

Step 8. Calculate the appraisal score ASi(i = 1,2,3,4)
for all alternatives by Eq. (16), shown as follows:

AS1 =−0.0260,AS2 = 0.2097,AS3 = 1.0000,AS4 =
0.0687.
Step 9. Rank the alternatives according to the decreas-
ing values of ASi as follows:

AS3 ≻ AS2 ≻ AS4 ≻ AS1.
Obviously, amongst them x3 is the best alternative.

Algorithm 2: similarity measure

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.
Step 4. Calculate the similarity measure S(xi,x∗)(i =
1,2,3,4) by Eq.(17), shown as follows:

S(x1,x∗) = (0.4223,0.4102,0.4101),
S(x2,x∗) = (0.4815,0.5019,0.4897),
S(x3,x∗) = (0.5529,0.3879,0.3879),
S(x4,x∗) = (0.4695,0.4000,0.4000).

Step 5. Compute the each alternative of score function
s(S(Ai,A∗)) by Eq.(2), shown as follows:

s(S(x1,x∗)) = 0.533993,s(S(x2,x∗)) = 0.496602,
s(S(x3,x∗)) = 0.592335,s(S(x4,x∗)) = 0.556487.
Step 6. Rank the alternatives by s(S(xi,x∗))(i= 1,2,3,4)
as follows:

x3 ≻ x4 ≻ x1 ≻ x2.
Obviously, amongst them x3 is the best alternative.

By means of the Algorithms 1 and 2, we can find
that the final results are the same, i.e., x3 is the most
desirable investment alternative. Hence, the two ap-
proaches proposed above are effective and feasible.

In the following, we give some comparisons of Al-
gorithm 1 and Algorithm 2.

(1) Comparison of computational complexity
We know that Algorithm 1 will be consumed more

computational complexity than Algorithm 2, especial-
ly in Step 4. So if we take the computational complexi-
ty into consideration, the Algorithm 2 is given priority
to make decision.

(2) Comparison of discrimination
Comparing the results in Algorithm 1 with Algorith-

m 2, we can find that the results of Algorithm 2 are
quite close and vary from 0.496602 to 0.592335. These
result of decision values cannot clearly distinguish, in
other words, the results derived from Algorithm 2 are
not very convincing (or at least not applicable). On the
contrary, the Algorithm 1 has a clearly distinguish. So
if we take the discrimination into consideration, the
Algorithm 1 is given priority to make decision.

6. Conclusion and remarks

The major contributions in this paper can be sum-
marized as follows:

(1) We construct a new axiomatic definition of
single-valued neutrosophic similarity measure and
give a similarity formula. Comparing with the existing
literature [21,22,31,32], it can reduce the information
miss and remain more original information.

(2) A novel single-valued neutrosophic soft ap-
proach in multi-criteria decision making based on
EDAS is explored, which has not been reported in the
existing literature. The approach doesn’t need to cal-
culate the ideal and the nadir solution.

(3) A novel single-valued neutrosophic soft ap-
proach in multi-criteria decision making based on sim-
ilarity measure, which can reduce the information loss
and remain more original information.

(4) The subjective weighting methods pay much at-
tention to the preference information of the decision
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maker [19-21,23,27-30], while they neglect the objec-
tive information. The objective weighting methods do
not take into account the preference of the decision
maker, in particular, these methods fail to take into ac-
count the risk attitude of the decision maker [22,24].
The characteristic of our weighting model can reflect
both the subjective considerations of the decision mak-
er and the objective information.

In the future, we shall apply more advanced theories
into single-valued neutrosophic soft set and solve more
decision making problems.
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