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A New Definition of Entropy of Belief Functions in the

Dempster-Shafer Theory

Abstract

We propose a new definition of entropy for basic probability assignments (BPA) in the
Dempster-Shafer (D-S) theory of belief functions, which is interpreted as a measure of total un-
certainty in the BPA. Our definition is different from the definitions proposed by Höhle, Smets,
Yager, Nguyen, Dubois-Prade, Lamata-Moral, Klir-Ramer, Klir-Parviz, Pal et al., Maeda-
Ichihashi, Harmanec-Klir, Jousselme et al., and Pouly et al. We state a list of five desired
properties of entropy for D-S belief functions theory that are motivated by Shannon’s definition
of entropy for probability functions together with the requirement that any definition should be
consistent with the semantics of D-S belief functions theory. Three of our five desired properties
are different from the five properties described by Klir and Wierman. We demonstrate that
our definition satisfies all five properties in our list, and is consistent with the semantics of D-S
theory, whereas none of the existing definitions do. Our new definition has two components.
The first component is Shannon’s entropy of an equivalent probability mass function obtained
using plausibility transformation, which constitutes the conflict measure of entropy. The second
component is Dubois-Prade’s definition of entropy for basic probability assignments in the D-S
theory, which constitutes the non-specificity measure of entropy. Our new definition is the sum
of these two components. Our definition does not satisfy the subadditivity property. Whether
there exists a definition that satisfies our five properties plus subadditivity, and that is consistent
with the semantics for the D-S theory, remains an open question.

1 Introduction

The main goal of this paper is to generalize Shannon’s definition of entropy of probability functions
[45] to belief functions in the Dempster-Shafer’s (D-S) theory [9, 40]. Shannon’s definition of entropy
of a probability function can be interpreted as the amount of uncertainty in the probability function.
Yager [55] and Klir [20] argue that there are several characteristics of uncertainty such as conflict
(or confusion or discord or strife or dissonance), and non-specificity (or vagueness or ambiguity or
imprecision). In this paper, we are concerned only with entropy of belief functions as a measure of
total uncertainty, as commonly understood. For example, suppose X is a discrete random variable
with state space ΩX , and probability mass function (PMF) PX . Shannon’s definition of entropy of
PX , denoted in this paper by Hs(PX), has the property that Hs(PX) ≥ 0, with equality if and only
if there exists x ∈ ΩX such that PX(x) = 1. Such a PMF has no uncertainty. For another example,
Hs(PX) achieves its maximum for the equiprobable PMF, which has maximum uncertainty among
all PMFs for X. In this case Hs(PX) = log(|ΩX |). Nevertheless, the equiprobable PMF is still the
bearer of some information. If we know that an urn contains the same number of black and white
balls, then we know more than in the case where we know that there are only white and black
balls in the urn. The latter situation cannot be described in probability theory as well as it can
be done in D-S theory, where it is described by the vacuous basic probability assignment (BPA),
and therefore, naturally, we expect that the measure of uncertainty for the vacuous BPA should be
higher than that for the equiprobable PMF.

We state five basic properties for entropy for the D-S belief functions theory based on our
intuitive understanding of Shannon’s entropy as a measure of uncertainty. First, if m is a basic
probability assignment (BPA) for X with state space ΩX , then H(m) ≥ 0, with equality if and only
if there exists x ∈ ΩX such that m({x}) = 1. We call this the non-negativity property. Second,
based on our understanding that the vacuous BPA has the most uncertainty, if ιX denotes the
vacuous BPA for X, we require that H(m) ≤ H(ιX), with equality if and only if m = ιX . We call
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this the maximum entropy property. Third, H(ιX) should be monotonically increasing function of
|ΩX |. We call this the monotonicity property. The D-S theory can be considered as a generalization
of Bayesian probability theory. A BPA for X in the D-S theory is called Bayesian if all its focal
elements are singleton subsets of ΩX . The positive values of such a BPA m can be considered as
values of a PMF PX of X such that PX(x) = m({x}). The fourth property states that if m is
Bayesian, then H(m) = Hs(PX), where PX(x) = m({x}). We call this the probability consistency
property. The fifth property is based on Dempster’s rule of combination. If mX is a BPA for X,
and mY is a BPA for Y , and these are distinct, then H(mX ⊕ mY ) = H(mX) + H(mY ). We
call this the additivity property. Finally, if m is a BPA for {X,Y } with marginal BPAs m↓X for
X, and m↓Y for Y , then H(m) ≤ H(m↓X) + H(m↓Y ). We call this the subadditivity property.
This property is satisfied by Shannon’s entropy for PMFs. It is difficult to satisfy this property
for D-S belief functions. Therefore, we do not require this sixth property. We implicitly require
that H(m) exists (existence), and that H(m) be a continuous function of m (continuity). Also, we
are concerned with the D-S theory of belief function with Dempster’s rule as the combination rule.
Thus, any definition of H(m) should be based on semantics of m that are consistent with the basic
tenets of this theory (consistency with D-S theory semantics).

One of the earliest definitions of entropy for basic probability assignments (BPAs) in the D-S
theory is due to Höhle [18]. Höhle’s definition captures only the conflict measure of entropy. Höhle’s
definition of entropy for vacuous BPA is 0. Thus, it does not satisfy the non-negativity, maximum
entropy, and monotonicity properties. It satisfies probability consistency and additivity, but not
subadditivity.

Another definition of entropy for BPAs is due to Yager [55]. Like Höhle’s definition, Yager’s
definition only captures the conflict measure of entropy. Like Höhle’s, Yager’s definition of entropy
of the vacuous BPA is 0. Thus, it does not satisfy the non-negativity, maximum entropy, and
monotonicity properties. It satisfies the probability consistency and additivity properties, but not
the subadditivity property.

Another definition of entropy of BPAs is due to Nguyen [34]. Similar to Höhle’s and Yager’s
definitions, Nguyen’s entropy for vacuous BPA is 0, which again violates the non-negativity, max-
imum entropy, and monotonicity properties. It satisfies the probability consistency and additivity
properties, but not the subadditivity property.

Another definition of entropy for belief functions is due to Dubois and Prade [12]. Dubois-
Prade’s definition captures only the non-specificity measure of uncertainty. It can be considered as
a generalization of Hartley’s entropy [17] for belief functions. Dubois-Prade’s definition of entropy
for a Bayesian BPA is 0, which does not satisfy the non-negativity and the probability consistency
properties. Dubois-Prade’s definition, however, does satisfy the maximum entropy, monotonicity,
additivity and subadditivity properties.

Lamata and Moral [27] suggest a definition of entropy of BPA m where they combine Yager’s
conflict measure of uncertainty with Dubois-Prade’s non-specificity measure of uncertainty. Lamata-
Moral’s definition assigns the same entropy value for the vacuous BPA and the Bayesian BPA with
uniform probabilities. Thus, it does not satisfy the maximum entropy property. It does satisfy
non-negativity, monotonicity, probability consistency, and additivity, but not subadditivity.

Klir and Ramer [23] propose a definition similar to Lamata-Moral’s, but with an improved
measure of conflict uncertainty. Klir and Parviz [22] tweak the Klir-Ramer definition a bit to
improve the conflict component of entropy. Both of these definitions assign the same entropy for
the vacuous BPA and the Bayesian uniform BPA and therefore do not satisfy the maximum entropy
property. They do satisfy the non-negativity, monotonicity, probability consistency, and additivity
properties, but not the subadditivity property.

Pal et al. [36] propose a modification of Nguyen’s definition, and it satisfies the non-negativity,
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monotonicity, probability consistency, and additivity properties. It does not satisfy maximum
entropy and subadditivity properties.

A BPA m for X can be regarded as an encoding of a set of probability distributions for X such
that the probability of every event is bounded at the bottom by the value of the belief function
corresponding to m for the event, and bounded at the top by the value of the plausibility function
corresponding to m for the event. However, such a view of BPA m is incompatible with Dempster’s
rule of combination (see, e.g., [41, 43, 44, 14]).

Maeda and Ichihashi [30] propose a definition of entropy of m which consists of two components.
The first component consists of the maximum entropy of the set of probability distributions that are
encoded by m. The second component is the generalized Hartley entropy defined by Dubois-Prade
[12]. It satisfies all properties including the subadditivity property. However, the interpretation of
a BPA m as a set of probability distributions is incompatible with Dempster’s combination rule,
the main rule underlying the D-S theory of belief functions. This definition may be appropriate
for a theory of belief functions with the Fagin-Halpern combination rule [13], but not for the D-S
theory.

Harmanec-Klir [15] (independent of [30]) define entropy of m consisting of only the first compo-
nent of Maeda-Ichihashi’s definition. This definition assigns the same entropy value to the vacuous
BPA as the Bayesian uniform BPA. Thus, it does not satisfy the maximum entropy property. It does
satisfy all other properties, including the subadditivity property. Like Maeda-ichihashi’s definition,
it is based on semantics of belief functions that are incompatible with Dempster’s combination rule.

Jousselme et al. [19] propose a definition of entropy of a BPA as the Shannon’s entropy of the
pignistic PMF transformation of the BPA. Like Maeda-Ichihashi’s, this definition assigns the same
entropy value to the vacuous BPA and the Bayesian uniform BPA, and therefore does not satisfy
the maximum entropy property. It does not satisfy the subadditivity property either [21]. It does
satisfy the remaining four properties. However, Cobb and Shenoy [7] have argued that the pignistic
transformation of a BPA is incompatible with Dempster’s rule of combination, and therefore its
Shannon’s entropy is not appropriate for the D-S theory of belief functions.

Finally, Pouly et al. [37] describe a definition of entropy for hints, which is a formalization
of the multivalued semantics for BPA functions. If we adapt this definition to define entropy for
BPAs, we would get the same definition as that by Jousselme et al. [19], with the same properties.

Our proposal for definition of entropy for D-S theory has two parts. First, given a BPA, we find
an equivalent PMF using the plausibility transformation proposed by Cobb and Shenoy [7]. The
plausibility transformation has the property that if we combine two BPAs by Dempster’s rule and
then find the equivalent PMF using the plausibility transformation, we get the same PMF if we
find the plausibility transformation for each of the BPAs and then combine the two PMFs using
Bayes combination rule (pointwise multiplication followed by normalization) [53]. The first part
of our new definition of entropy of a BPA is Shannon’s entropy of the equivalent PMF using the
plausibility transformation. The second part is Dubois-Prade’s definition of entropy of a BPA. Our
definition consists of the sum of the two parts. Our definition satisfies all five properties we propose,
but it does not satisfy the subadditivity property. It is, however, consistent with semantics for the
D-S theory of belief functions. Whether there exists a definition of entropy for BPAs that satisfies
the five properties we list, the subadditivity property, and that is consistent with semantics for the
D-S theory remains an open question.

An outline of the remainder of the paper is as follows. In Section 2, we briefly review Shannon’s
definition of entropy for PMFs of discrete random variables, and its properties. In Section 3, we re-
view the basic definitions in the D-S belief functions theory. In Section 4, we propose five properties
that an entropy function for BPA should satisfy more formally. We compare our properties with
those proposed by Klir and Wierman [24], and also with a monotonicity-like property proposed by
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Abellán and Masegosa [3]. Then, we discuss the various definitions that have been proposed in the
literature, and how they compare vis-a-vis our list of properties. In Section 5, we propose a new
definition of entropy for D-S theory, and show that it satisfies all the properties proposed in Section
4. In Section 6, we discuss some additional properties of our definition. Finally, in Section 7, we
summarize our findings, and conclude with some open questions.

2 Shannon’s Entropy for PMFs of Discrete Random Variables

In this section we briefly review Shannon’s definition of entropy for PMFs of discrete random
variables, and its properties. Most of the material in this section is taken from [45, 29].

Information Content Suppose X is a discrete random variable with state space ΩX and PMF
PX . Consider a state x ∈ ΩX such that PX(x) > 0. What is the information content of this state?
Shannon [45] defines the information content of state x ∈ ΩX as follows:

I(x) = log2

(
1

PX(x)

)
. (1)

Information content has units of bits. Intuitively, the information content of a state is inversely
proportional to its probability. If we have a state with probability one, then observing such a state
has no information content (0 bits). Conversely, if we observe a rare state, e.g., x ∈ ΩX such that
PX(x) = 1

1,024 , then observing such a state is very informative (10 bits). Notice that I(x) ≥ 0, and
I(x) = 0 if and only if PX(x) = 1.

Although we have used logarithm to the base 2, we could use any base (e.g., e, or 10), but this
will change the units as

log2(a) =
loge(a)

loge(2)
= 1.44 loge(a).

Henceforth, we will simply write log for log2.

Shannon’s Entropy Suppose X is a random variable with PMF PX . The entropy of PX is the
expected information content of the possible states of X:

Hs(PX) =
∑
x∈ΩX

PX(x)I(x) =
∑
x∈ΩX

PX(x) log

(
1

PX(x)

)
(2)

Like information content, entropy is measured in units of bits. One can interpret entropy
Hs(PX) as a measure of uncertainty in the PMF PX(x). If PX(x) = 0, we will follow the convention
that PX(x) log(1/pX(x)) = 0 as limθ→0+ θ log(1/θ) = 0.

Suppose Y is another random variable, and suppose that the joint PMF of X and Y is PX,Y
with PX and PY as the marginal PMFs of X and Y , respectively. If we observe Y = a such that
PY (a) > 0, then the posterior PMF of X is PX|a (where PX|a(x) · PY (a) = PX,Y (x, a)), and the
respective posterior entropy is Hs(PX|a).

From our viewpoint, the following properties of Shannon’s entropy function for PMFs are the
most important:

1. Hs(PX) ≥ 0, with equality if and only if there exists x ∈ ΩX such that PX(x) = 1.
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2. Hs(PX) ≤ log(|ΩX |), with equality if and only if PX(x) = 1
|ΩX | for all x ∈ ΩX . |ΩX | denotes

the cardinality (i.e., number of elements) of set ΩX .

3. The entropy of PX does not depend on the labels attached to the states of X, only on their
probabilities. This is in contrast with, e.g., variance of X, which is defined only for real-valued
random variables. Thus, for a real-valued discrete random variable X, and Y = 10X, it is
obvious that Hs(PY ) = Hs(PX), whereas V (PY ) = 100V (PX).

4. Shannon [45] derives the expression for entropy of X axiomatically using four axioms as
follows.

(a) Axiom 0 (Existence): H(X) exists.

(b) Axiom 1 (Continuity): H(X) should be a continuous function of PX(x) for x ∈ ΩX .

(c) Axiom 2 (Monotonicity): If we have an equally likely PMF, then H(X) should be a
monotonically increasing function of |ΩX |.

(d) Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its entropy
should be the sum of entropies of its factors, e.g., PX,Y (x, y) = PX(x)PY |x(y), then
H(PX,Y ) = H(PX) +

∑
x∈ΩX

PX(x)H(PY |x).

Shannon [45] proves that the only function Hs that satisfies Axioms 0–3 is of the form
Hs(PX) =

K
∑

x∈ΩX
PX(x) log

(
1

PX(x)

)
, where K is a constant depending on the choice of units of

measurement.

Suppose X and Y are discrete random variables with joint PMF PX,Y . In analogy to the
one-dimensional case, the joint entropy of PX,Y is:

Hs(PX,Y ) =
∑
x∈ΩX

∑
y∈ΩY

PX,Y (x, y) log

(
1

PX,Y (x, y)

)
(3)

Let PY |X : Ω{X,Y } → [0, 1] be a function such that PY |X(x, y) = PY |x(y) for all (x, y) ∈ Ω{X,Y }.
PY |X is not a conditional PMF, but can be considered as a collection of conditional PMFs, one for
each x ∈ ΩX . If we combine PX and PY |X using pointwise multiplication followed by normalization,
an operation that we denote by ⊗, then we obtain PX,Y , i.e., PX,Y = PX ⊗PY |X , i.e., PX,Y (x, y) =
PX(x)PY |X(x, y) = PX(x)PY |x(y) for all (x, y) ∈ Ω{X,Y }. As PX and PY |x are PMFs, there is no
need for normalization (or the normalization constant is 1).

Shannon defined entropy of PY |X as follows:

Hs(PY |X) =
∑
x∈ΩX

PX(x)Hs(PY |x) (4)

We call Hs(PY |X) the conditional entropy of Y given X.
It follows from Axiom 3 that

Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) +Hs(PY |X). (5)

If we call Hs(PX) as marginal entropy of X, Eq. (5) is the compound distribution axiom underlying
Shannon’s entropy expressed in terms of marginal and conditional entropies. Eq. (5) is also called
the chain rule of entropy.
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If X and Y are independent with respect to PX,Y , i.e., PY |x(y) = PY (y) for all (x, y) ∈ Ω{X,Y }
such that PX(x) > 0, then it follows from Eq. (4) that Hs(PY |X) = Hs(PY ). Thus, if X and Y are
independent with respect to PX,Y , then Hs(PX,Y ) = Hs(PX) +Hs(PY ).

If X and Y are not independent with respect to joint PMF PX,Y , then it can be shown that
Hs(PX|Y ) < Hs(PX). This leads to the definition of mutual information between X and Y , denoted
by I(X;Y ), defined as follows:

I(X;Y ) = Hs(PX)−Hs(PX|Y ) (6)

Eq. (6) defining mutual information is the central concept in information theory. I(X;Y ) ≥ 0,
with equality if and only if X and Y are independent (with respect to PX,Y ). From the chain rule
of entropy, Hs(PX,Y ) = Hs(PX) + Hs(PY |X) = Hs(PY ) + Hs(PX|Y ). Rearranging terms, we have
Hs(PX)−Hs(PX|Y ) = Hs(PY )−Hs(PY |X), i.e., I(X;Y ) = I(Y ;X). I(X;Y ) is a measure of total
dependence between X and Y (with respect to PX,Y ).

I(X;Y ) is related to the concept of Kullback-Leibler divergence between two PMFs [26]. Sup-
pose P1 and P2 are two PMFs forX. We assume that P2(x) > 0 for all x ∈ ΩX . The Kullback-Leibler
divergence between P1 and P2, denoted by D(P1, P2), is defined as follows:

D(P1, P2) =
∑
x∈ΩX

P1(x) log

(
P1(x)

P2(x)

)
(7)

D(P1, P2) has the following properties. D(P1, P2) ≥ 0, with equality if and only if P1 = P2. Also,
D(P1, P2) is not symmetric, i.e., D(P1, P2) may not be equal to D(P2, P1). It can be easily shown
that I(X,Y ) = D(PX,Y , PX ⊗ PY ).

Suppose PX and PY are the marginal PMFs obtained from the joint PMF PX,Y . As discussed
above, it follows from the chain rule of entropy and the inequality Hs(PY |X) ≤ Hs(PY ), that

Hs(PX,Y ) ≤ Hs(PX) +Hs(PY ), (8)

with equality if and only if X and Y are independent with respect to PX,Y . The inequality in Eq.
(8) is called subadditivity in the literature, see e.g., [12].

3 Basic Definitions of the D-S Belief Functions Theory

In this section we review the basic definitions in the D-S belief functions theory. Like the various
uncertainty theories, D-S belief functions theory includes functional representations of uncertain
knowledge, and operations for making inferences from such knowledge.

Basic Probability Assignment Suppose X is a random variable with state space ΩX . Let 2ΩX

denote the set of all non-empty subsets of ΩX . A basic probability assignment (BPA) m for X is
a function m : 2ΩX → [0, 1] such that ∑

a∈2ΩX

m(a) = 1. (9)

The non-empty subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. An example
of a BPA for X is the vacuous BPA for X, denoted by ιX , such that ιX(ΩX) = 1. We say m is
deterministic if m has a single focal element (with probability 1). Thus, the vacuous BPA for X is
deterministic with focal element ΩX . If all focal elements of m are singleton subsets of ΩX , then we
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say m is Bayesian. In this case, m is equivalent to the PMF P for X such that P (x) = m({x}) for
each x ∈ ΩX . Let mu denote the Bayesian BPA with uniform probabilities, i.e., mu({x}) = 1

|ΩX |
for all x ∈ ΩX . If ΩX is a focal element, then we say m is non-dogmatic, and dogmatic otherwise.
Thus, a Bayesian BPA is dogmatic.

Plausibility Function The information in a BPA m can be represented by a corresponding
plausibility function Plm that is defined as follows.

Plm(a) =
∑

b∈2ΩX : b∩a6=∅

m(b) (10)

for all a ∈ 2ΩX . For an example, suppose ΩX = {x, x̄}. Then, the plausibility function PlιX
corresponding to BPA ιX is given by PlιX ({x}) = 1, PlιX ({x̄}) = 1, and PlιX (ΩX) = 1.

Belief Function The information in a BPA m can also be represented by a corresponding belief
function Belm that is defined as follows.

Belm(a) =
∑

b∈2ΩX : b⊆a

m(b) (11)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the belief function BelιX corresponding
to BPA ιX is given by BelιX ({x}) = 0, BelιX ({x̄}) = 0, and BelιX (ΩX) = 1.

Commonality Function The information in a BPA m can also be represented by a correspond-
ing commonality function Qm that is defined as follows.

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b) (12)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the commonality function QιX cor-
responding to BPA ιX is given by QιX ({x}) = 1, QιX ({x̄}) = 1, and QιX (ΩX) = 1. If m is
non-dogmatic, then Qm(a) > 0 for all a ∈ 2ΩX . Notice also that for singleton subsets a ∈ 2ΩX

(|a| = 1), Qm(a) = Plm(a). This is because for singleton subsets a, the set of all subsets that have
non-empty intersection with a coincide with the set of all supersets of a.

All four representations—BPA, belief, plausibility, and commonality—have exactly the same
information. Given any one, we can transform it to another [40]. However, they have different
semantics. Next, we describe the two main operations for making inferences.

Dempster’s Rule of Combination In the D-S theory, we can combine two BPAs m1 and m2

representing distinct pieces of evidence by Dempster’s rule [9] and obtain the BPA m1⊕m2, which
represents the combined evidence. Dempster referred to this rule as the product-intersection rule,
as the product of the BPA values are assigned to the intersection of the focal elements, followed by
normalization. Normalization consists of discarding the probability assigned to ∅, and normalizing
the remaining values so that they add to 1. In general, Dempster’s rule of combination can be used
to combine two BPAs for arbitrary sets of variables. In this paper, we are interested only in two
special situations: combination of BPAs defined for the same variable, and combination of BPAs
defined for disjoint sets of variables.
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Suppose m1 and m2 are two BPAs for X. In this case, formally,

(m1 ⊕m2)(a) = K−1
∑

b1, b2∈2ΩX : b1∩b2=a

m1(b1)m2(b2), (13)

for all a ∈ 2ΩX , where K is a normalization constant given by

K = 1−
∑

b1, b2∈2ΩX : b1∩b2=∅

m1(b1)m2(b2). (14)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero. If K = 0,
then the two BPAs m1 and m2 are said to be in total conflict and cannot be combined. If K = 1,
we say m1 and m2 are non-conflicting.

Dempster’s rule can also be described in terms of commonality functions [40]. Suppose Qm1 and
Qm2 are commonality functions corresponding to BPAs m1 and m2, respectively. The commonality
function corresponding to BPA Qm1⊕m2 is as follows:

Qm1⊕m2(a) = K−1Qm1(a)Qm2(a), (15)

for all a ∈ 2ΩX , where the normalization constant K is exactly the same as in Eq. (14). In terms
of commonality functions, Dempster’s rule is pointwise multiplication of commonality functions
followed by normalization.

Suppose that mX and mY are two BPAs for X and Y , respectively. In this case, mX ⊕mY is
a BPA for {X,Y }. To define this two-dimensional BPA formally we have to first define projection
of states, and then projection of subsets of states.

Projection of states simply means dropping extra coordinates; for example, if (x, y) is a state of
{X,Y }, then the projection of (x, y) to X, denoted by (x, y)↓X , is simply x, which is a state of X.

Projection of subsets of states is achieved by projecting every state in the subset. Suppose
b ∈ 2Ω{X,Y } . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

The combination of BPAs mX and mY for X and Y , respectively, simplifies to the formula

(mX ⊕mY )(c) = mX(c↓X)mY (c↓Y ), (16)

for all c ∈ 2Ω{X,Y } . Notice that in this case there is no need for normalization as there is no mass
on the empty set, i.e., mX and mY are always non-conflicting.

Marginalization Marginalization in D-S theory is addition of values of BPAs. Suppose m is a
BPA for {X,Y }. Then, the marginal of m for X, denoted by m↓X , is a BPA for X such that for
each a ∈ 2ΩX ,

m↓X(a) =
∑

b∈2
Ω{X,Y } : b↓X=a

m(b). (17)

Conditional belief functions In probability theory, it is common to construct joint probability
mass functions for a set of discrete variables by using conditional probability distributions. For
example, PX,Y = PX ⊗ PY |X . We can construct joint BPA for {X,Y } in a similar manner.

Consider a BPA mX for X with corresponding plausibility function PlmX . Let mY |x denote
a conditional BPA for Y given that X = x where x ∈ ΩX is such that PlmX ({x}) > 0, i.e.,
mY |x : 2ΩY → [0, 1] such that

∑
b∈2ΩY mY |x(b) = 1. mY |x represents our belief about Y if we

know that X = x. We can embed this conditional BPA for Y into a (unconditional) BPA for
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{X,Y }, say mx,Y , such that the following two conditions hold. First, mx,Y tells us nothing about

X, i.e., m↓Xx,Y = ιX . Second, if we combine mx,Y with the deterministic BPA mX=x for X such
that mX=x({x}) = 1 using Dempster’s rule, and marginalize the result to Y we obtain mY |x,

i.e., (mx,Y ⊕ mX=x)↓Y = mY |x. One way to obtain such an embedding is suggested by Smets

[46, 42], called conditional embedding, and it consists of taking each focal element b ∈ 2ΩY of
mY |x, and converting it to a corresponding focal element of mx,Y (with the same mass) as follows:
({x} × b) ∪ ((ΩX \ {x})× ΩY ). It is easy to confirm that this method of embedding satisfies both
conditions mentioned above.

Example 1. Consider discrete variables X and Y , with ΩX = {x, x̄} and ΩY = {y, ȳ}. If we have a
conditional BPA mY |x for Y given X = x as follows: mY |x(y) = 0.8, and mY |x(ΩY ) = 0.2, then its
conditional embedding into BPA mx,Y for {X,Y } is as follows: mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,
and mx,Y (Ω{X,Y }) = 0.2. Similarly, if we have a conditional BPA mY |x̄ for Y given X = x̄
as follows: mY |x̄(ȳ) = 0.9, and mY |x̄(ΩY ) = 0.1, then its conditional embedding into BPA mx̄,Y

for {X,Y } is as follows: mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.9, mx̄,Y (Ω{X,Y }) = 0.1. Assuming we
have these two conditional BPAs, and their corresponding embeddings, it is clear that the two
BPA mx,Y and mx̄,Y are distinct, and can be combined with Dempster’s rule of combination, re-
sulting in the BPA mY |X = mx,Y ⊕ mx̄,Y for {X,Y } as follows: mY |X({(x, y), (x̄, ȳ)}) = 0.72,
mY |X({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.08, mY |X({(x, y), (x̄, y), (x̄, ȳ)}) = 0.18, and mY |X(Ω{X,Y }) =

0.02. mY |X has the following properties. First, m↓YY |X = ιY . Second, if we combine mY |X with de-

terministic BPA mX=x({x}) = 1 for X, and marginalize the combination to Y , then we get mY |x,

i.e., (mY |X ⊕mX=x)↓Y = mY |x. Third, (mY |X ⊕mX=x̄)↓Y = mY |x̄.

There are some differences with conditional probability distributions. First, in probability
theory, PY |X consists of all conditional distributions PY |x that are well-defined, i.e., for all x ∈ ΩX

such that PX(x) > 0. In D-S belief function theory, there are no such constraints. We can include
only those conditionals that we have (non-vacuous) knowledge of. Also, if we have more than one
conditional BPA, say for X = x1, and X = x2, we embed these conditionals into unconditional
BPAs and combine them using Dempster’s rule of combination to obtain a (unconditional) BPA
mY |X . Second, given any joint PMF PX,Y for {X,Y }, we can always factor this into PX for X,
and PY |X for {X,Y }, such that PX,Y = PX ⊗ PY |X . This is not true in D-S belief function theory.
Given a joint BPA mX,Y for {X,Y }, we cannot always find a belief function mY |X for {X,Y } such

that mX,Y = m↓XX,Y ⊕mY |X . However, we can always construct joint BPA mX,Y for {X,Y } by first
assessing mX for X, and assessing conditionals mY |xi for those xi that we have knowledge about,
embed these conditionals into unconditional BPAs, and combine all such BPAs to obtain the BPA
mY |X for {X,Y }. We can then construct mX,Y = mX ⊕mY |X .

This completes our brief review of the D-S belief function theory. For further details, the reader
is referred to [40].

4 Entropy of BPAs in the D-S Theory

First, we propose five properties that an entropy function for BPAs in the D-S theory should satisfy.
Next, we compare these properties with those proposed by Klir and Wierman [24] for the same
purposes. Finally, we discuss some definitions that have been proposed in the literature, and how
they compare vis-a-vis the list of properties.

First, we are concerned in this paper only with the D-S belief functions theory that includes
Dempster’s rule of combination as the operation for aggregating uncertain knowledge. There are
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theories of belief functions that use other combination rules. For example, a BPA m for X can be
considered as an encoding of a collection of PMFs Pm for X such that for all a ∈ 2ΩX we have

Belm(a) =
∑
b⊆a

m(b) = min
P∈Pm

∑
x∈a

P (x). (18)

Pm is referred to as a credal set corresponding to m in the imprecise probability literature (see,
e.g. [54]). For such a theory of belief functions, a combination rule is proposed by Fagin and
Halpern [13] that is different from Dempster’s combination rule. Thus, a BPA m in the D-S theory
cannot be interpreted as a collection of PMFs satisfying Eq. (18) [41, 14]. There are, of course,
semantics that are consistent with D-S theory, such as multivalued mappings [9], random codes
[41], transferable beliefs [50], and hints [25].

Second, given a BPA m for X in the D-S theory, there are many ways to transform m to a
corresponding PMF Pm for X [8]. However, only one of these ways, called plausibility transform, is
consistent with m in the D-S theory in the sense that Pm1 ⊗ Pm2 = Pm1⊕m2 , where ⊗ is the com-
bination rule in probability theory, and ⊕ is Dempster’s combination rule in D-S theory [7]. Thus,
any method for defining entropy of m in the D-S theory by first transforming m to a corresponding
PMF should use the plausibility transformation method.

Thus, one requirement we implicitly assume is that any definition of entropy of m should be
based on semantics for m that are consistent with the basis tenets of D-S theory. Also, we implicitly
assume existence and continuity—given a BPA m, H(m) should always exist, and H(m) should be
a continuous function of m. We do not list these three requirements explicitly.

Desired Properties of Entropy for D-S Theory The following list of desired properties of
entropy H(m), where m is a BPA, are motivated by the properties of Shannon’s entropy for PMFs
described in Section 2.

Let X and Y denote random variables with state spaces ΩX and ΩY , respectively. Let mX and
mY denote distinct BPAs for X and Y , respectively. Let ιX and ιY denote the vacuous BPAs for
X and Y , respectively.

1. (Non-negativity) H(mX) ≥ 0, with equality if and only if there is a x ∈ ΩX such that
mX({x}) = 1. This is similar to the probabilistic case.

2. (Maximum entropy) H(mX) ≤ H(ιX), with equality if and only if mX = ιX . This makes
sense as the vacuous BPA ιX for X has the most uncertainty among all BPAs for X. Such a
property is advocated in [4].

3. (Monotonicity) If |ΩX | < |ΩY |, then H(ιX) < H(ιY ). This is similar to Axiom 2 of Shannon.

4. (Probability consistency) If mX is a Bayesian BPA for X, then H(mX) = Hs(PX), where PX
is the PMF of X corresponding to mX , i.e., PX(x) = mX({x}) for all x ∈ ΩX , and Hs(PX)
is Shannon’s entropy of PMF PX . In other words, if mX is a Bayesian BPA for X, then

H(mX) =
∑

x∈ΩX
mX({x}) log

(
1

mX({x})

)
.

5. (Additivity) As mX and mY are distinct, we can combine them using Dempster’s rule yielding
BPA mX ⊕mY for {X,Y }. Then,

H(mX ⊕mY ) = H(mX) +H(mY ). (19)

This is similar to the compound axiom for Shannon’s entropy of a PMF in case of independent
random variables.
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Klir and Wierman [24] also describe a set of properties that they believe should be satisfied by
any meaningful measure of uncertainty based on intuitive grounds. Some of the properties that
they suggest are also included in the above list. For example, probability consistency and additivity
appear in both sets of requirements. Two of the properties that they require do not make intuitive
sense to us.

First, Klir and Weirman suggest a property that they call “set consistency” as follows: H(m) =
log(|a|) whenever m is deterministic with focal set a. This property would require that H(ιX) =
log(|ΩX |). The probability consistency property would require that for the Bayesian uniform BPA
mu, H(mu) = log(|ΩX |). Thus, these two requirements would entail that H(ιX) = H(mu) =
log(|ΩX |). We disagree. Consider the following experiment. Suppose we have an urn with 2
balls. Each of the two balls could be either black (b) or white (w), i.e., they can be both black,
or both white, or one of each color. One ball is drawn at random from the urn. Let X denote
the color of the ball drawn. For this experiment, ΩX = {b, w}. If we have no further information
of this experiment beyond what is already stated, we can represent our uncertainty of X by the
vacuous BPA ιX for X. The set consistency requirement would require that H(ιX) = log(2) = 1.
If we also know that we have exactly one black ball and exactly one white ball in the urn, then
we have more information than we had earlier, and consequently, less uncertainty. Given this
additional information, we can represent our uncertainty about X by a Bayesian uniform BPA mu,
mu({b}) = mu({w}) = 1

2 . The Shannon entropy of mu is log(2) = 1. Thus, the set consistency
property together with the probability consistency property would imply that ιX and Bayesian
BPA mu have the same uncertainty! According to our requirements, H(ιX) > H(mu), which make
more intuitive sense than requiring H(ιX) = H(mu).

Second, Klir and Wierman require a property they call “range” as follows: For any BPA mX

for X, 0 ≤ H(mX) ≤ log(|ΩX |). The probability consistency property requires that H(mu) =
log(|ΩX |). Also including the range property prevents us, e.g., from having H(ιX) > H(mu). So
we do not include it in our list as it violates our intuition.

Finally, Klir and Wierman require the subadditivity property defined as follows. Suppose m is
a BPA for {X,Y }, with marginal BPAs m↓X for X, and m↓Y for Y . Then,

H(m) ≤ H(m↓X) +H(m↓Y ) (20)

We agree that this property is important, and the only reason we do not include it in our list is
because we are unable to meet this requirement in addition to the five requirements that we do
include, and our implicit requirement that any definition be consistent with the semantics of D-S
theory of belief functions.

Abellán and Moral [4] interpret a BPA m as a credal set of PMFs as in Eq. (18). With this
interpretation, they propose a monotonicity-like property as follows:

• (Abellán-Moral’s monotonicity-like property) If m1 and m2 are BPA functions for X with
credal sets Pm1 and Pm2 , respectively, such that Pm1 ⊆ Pm2 , then H(m1) ≤ H(m2).

We can construct such a pair of BPAs by enlarging a focal set of m1 while keeping everything else
the same [3]. For example, if m1 is a BPA for X with ΩX = {x1, x2, x3} such that m1(x1, x2) = 1

3 ,
m1(x1, x3) = 1

2 , and m1(x2, x3) = 1
6 , then consider BPA m2 such that the first focal element {x1, x2}

is enlarged to {x1, x2, x3}, i.e., m2(x1, x2, x3) = 1
3 , m2(x1, x3) = 1

2 , and m2(x2, x3) = 1
6 . It is easy to

confirm that Belm1(a) ≥ Belm2(a) for all a ∈ 2ΩX . Consequently, we have the following relations
between the credal sets of the two BPAs: Pm1 ⊆ Pm2 . Assuming that the credal set semantics of a
BPA function are appropriate, it is reasonable to adopt such a monotonicity-like property. However,
Dempster’s combination rule is not consistent with the credal set semantics [41, 43, 44, 14]. If our
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current knowledge of X is represented by BPA m1, and we obtain an piece of evidence represented
by BPA m2 for X that is distinct from m1, then in the D-S theory, our new knowledge is now
represented by m1 ⊕m2. In general, it is not possible to formulate any relationship between Pm1

and Pm1⊕m2 . For this reason, we do not adopt Abellán-Moral’s monotonicity-like property. Abellán
et al. [2] and Bronevich and Klir [6] describe some measures of uncertainty in credal sets.

The most important axiom that characterizes Shannon’s definition of entropy is the compound
axiom H(PX,Y ) = H(PX ⊗PY |X) = H(PX) +H(PY |X). This translated to the D-S theory of belief

function would require factorizing a BPA m for {X,Y } into BPA m↓X for X, and mY |X for {X,Y }
such that m = m↓X ⊕mY |X . This cannot be done for all BPA m for {X,Y }. But, as we discussed
in Section 3, we could construct m for {X,Y } such that m = mX ⊕mY |X , where mX is a BPA for

X, and mY |X is a BPA for {X,Y } such that m↓XY |X = ιX , and mX and mY |X are non-conflicting.

Notice that such a constructed BPA m would have the property m↓X = (mX ⊕mY |X)↓X = mX .
For such constructive BPAs m, we could require a compound property as follows:

H(m) = H(mX ⊕mY |X) = H(mX) +H(mY |X). (21)

However, we are unable to formulate a definition of H(m) to satisfy such a compound property. So
like the subadditivity property, we do not include a compound property in our list of properties.
The additivity property included in Klir-Wierman’s and our list is so weak that it is satisfied by
any definition on a log scale. All definitions of entropy for belief functions in the literature are
defined on a log scale, and, thus, they all satisfy the additivity property.

Literature Review One of the earliest definitions of entropy for D-S theory is due to Höhle [18],
who defines entropy of BPA m as follows. Suppose m is a BPA for X with state space ΩX .

Ho(m) =
∑

a∈2ΩX

m(a) log

(
1

Belm(a)

)
, (22)

where Belm denotes the belief function corresponding to m as defined in Eq. (11). Ho(m) captures
only the conflict measure of uncertainty. Ho(ιX) = 0. Thus, Ho does not satisfy non-negativity,
maximum entropy, and monotonicity properties. For Bayesian BPA, m({x}) = Belm({x}), and
therefore, Ho does satisfy the probability consistency property. It satisfies the additivity property
but not the subadditivity property [12].

Smets [47] defines entropy of BPA m as follows. Suppose m is a non-dogmatic BPA for X,
i.e., m(ΩX) > 0. Let Qm denote the commonality function corresponding to BPA m. As m is
non-dogmatic, it follows that Qm(a) > 0 for all a ∈ 2ΩX . The entropy of m is as follows:

Ht(m) =
∑

a∈2ΩX

log

(
1

Qm(a)

)
(23)

Smets’ definition Ht(m) is designed to measure “information content” of m, rather than uncertainty.
Like Höhle’s definition, Ht(ιX) = 0, and therefore, Ht does not satisfy the non-negativity, maximum
entropy, and monotonicity properties. As a Bayesian BPA is not non-dogmatic, the probabilistic
consistency property is not satisfied either. If m1 and m2 are two non-conflicting (i.e., normalization
constant in Dempster’s combination rule K = 1) and non-dogmatic BPAs, then Ht(m1 ⊕m2) =
Ht(m1) +Ht(m2). Thus, it satisfies the additivity property for the restricted class of non-dogmatic
BPAs. It does not satisfy the subadditivity property [12].
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Another definition of entropy of BPA m is due to Yager [55]:

Hy(m) =
∑

a∈2ΩX

m(a) log

(
1

Plm(a)

)
, (24)

where Plm is the plausibility function corresponding to m as defined in Eq. 10. Yager’s definition
Hy(m) measures only conflict in m, not total uncertainty. Like Höhle’s and Smets’ definitions,
Hy(ιX) = 0, and therefore, Hy does not satisfy the non-negativity, maximum entropy, and mono-
tonicity properties. It does satisfy the probability consistency property because for Bayesian BPA,
Plm({x}) = m({x}). It satisfies the additivity property, but not the subadditivity property [12].

Nguyen [34] defines entropy of BPA m for X as follows:

Hn(m) =
∑

a∈2ΩX

m(a) log

(
1

m(a)

)
(25)

The same definition is stated in [32]. Like all previous definitions, it captures only the conflict
portion of uncertainty. As in the previous definitions, Hn(ιX) = 0. Thus, Hn does not satisfy the
non-negativity, maximum entropy, and monotonicity properties. However, as it immediately follows
from the properties of Shannon’s entropy, it does satisfy the probabilistic consistency property.
The fact that it also satisfies the additivity property follows from the fact that log of a product is

the sum of the logs. Thus, H(mX⊕mY ) =
∑

a∈2
Ω{X,Y } mX(a↓X)mY (a↓Y ) log

(
1

mX(a↓X)mY (a↓Y )

)
=(∑

a↓X∈2ΩX mX(a↓X) log
(

1
mX(a↓X)

))
+
(∑

a↓Y ∈2ΩY mY (a↓Y ) log
(

1
mY (a↓Y )

))
= H(m↓X)+H(m↓Y ).

It does not satisfy the subadditivity property as can be seen from Example 2.

Example 2. Consider BPA m for {X,Y } as follows: m({(x, y), (x̄, ȳ)}) = m({(x, ȳ), (x̄, y)}) = 1
2 .

For this BPA, Hn(m) = 1. Also, m↓X = ιX , and m↓Y = ιY . Therefore, Hn(m↓X) = 0, and
Hn(m↓Y ) = 0. Thus, subadditivity is not satisfied.

Dubois and Prade [12] define entropy of BPA m for X as follows:

Hd(m) =
∑

a∈2ΩX

m(a) log(|a|). (26)

Recall that |a| denotes the cardinality of a. Dubois-Prade’s definition captures only the non-
specificity portion of uncertainty. If X is a random variable with state space ΩX , Hartley [17]
defines a measure of entropy of X as log(|ΩX |). Dubois-Prade’s definition Hd(m) can be regarded
as the mean Hartley entropy of m. If ιX denotes the vacuous BPA for X, then Hd(ιX) = log(|ΩX |).
If m is a Bayesian BPA, then Hd(m) = 0 as all the focal elements of m are singletons. Thus,
Hd satisfies the maximum entropy and monotonicity properties, but it does not satisfy the non-
negativity and probabilistic consistency properties. However, it does satisfy the additivity and
subadditivity properties [12]. Ramer [38] proves that Hd is the unique definition of non-specificity
entropy of m that satisfies additivity and the subadditivity properties.

Lamata and Moral [27] suggest a definition of entropy of BPA m as follows:

Hl(m) = Hy(m) +Hd(m), (27)

which combines Yager’s definition Hy(m) as a measure of conflict, and Dubois-Prade’s definition
Hd(m) as a measure of non-specificity. It is easy to verify that Hl(ιX) = Hl(mu) = log(|ΩX |), which
violates the maximum entropy property. It satisfies the non-negativity, monotonicity, probability
consistency, and additivity properties. It does not satisfy the subadditivity property [12].
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Klir and Ramer [23] define entropy of BPA m for X as follows:

Hk(m) =
∑

a∈2ΩX

m(a) log

 1

1−
∑

b∈2ΩX m(b) |b\a||b|

+Hd(m) (28)

The first component in Eq. (28) is designed to measure conflict, and the second component is
designed to measure non-specificity. It is easy to verify that Hk(ιX) = Hk(mu) = log(|ΩX |), which
violates the maximum entropy property. It satisfies the non-negativity, monotonicity, probability
consistency, and additivity properties. It does not satisfy the subadditivity property [51].

Klir and Parviz [22] modify Klir and Ramer’s definition Hk(m) slightly to measure conflict in
a more refined way. The revised definition is as follows:

Hp(m) =
∑

a∈2ΩX

m(a) log

 1

1−
∑

b∈2ΩX m(b) |a\b||a|

+Hd(m) (29)

Klir and Parviz argue that the first component in Eq. (29) is a better measure of conflict than
the first component in Eq. (28). Like Hk(m), Hp(m) satisfies the non-negativity, monotonicity,
probability consistency, and additivity properties, but not the maximum entropy, and subadditivity
[52] properties.

Pal et al. [35, 36] define entropy Hb(m) as follows:

Hb(m) =
∑

a∈2ΩX

m(a) log

(
|a|
m(a)

)
(30)

Hb(m) satisfies non-negativity, monotonicity, probability consistency, and additivity [36]. Hb(ιX) =
Hb(mu) = log(|ΩX |). Thus, it does not satisfy the maximum entropy property. The maximum value
of Hb(m) is attained for m such that m(a) ∝ |a|, for all a ∈ 2ΩX . Thus, for a binary-valued variable
X, the maximum value of Hb(m) is 2 whereas Hb(ιX) = 1.

Suppose m is a BPA for X. Then, there exists a set of PMFs Pm such that each PMF PX ∈ Pm
satisfies Eq. (18) [14]. Thus, a BPA m can be interpreted as an encoding of a set of PMFs as
described in Eq. (18). If m = ιX , then PιX includes the set of all PMFs for X. If m is a Bayesian
BPA for X, then Pm includes a single PMF PX corresponding to the Bayesian BPA m.

Unfortunately, this interpretation of a BPA function is incompatible with Dempster’s rule of
combination [41, 43, 44, 14]. Fagin and Halpern [13] propose a new rule for updating beliefs, which
is referred to as the Fagin-Halpern combination rule. If we start with a set of PMFs characterized by
BPA m for X, and we observe some event b ⊂ ΩX , then one possible updating rule is to condition
each PMF in the set P on event b, and then find a BPA m′ that corresponds to the lower envelope
of the revised set of PMFs. The Fagin-Halpern rule [13] does precisely this, and is different from
Dempster’s rule of conditioning, which is a special case of Dempster’s rule of combination.

Example 3. Consider a BPA m1 for X with state space ΩX = {x1, x2, x3} as follows: m1({x1}) =
0.5, m1(ΩX) = 0.5. With the credal set semantics of a BPA function, m1 corresponds to a set of
PMFs Pm1 = {P ∈ P : P (x1) ≥ 0.5}, where P denotes the set of all PMFs for X. Now suppose we
get a distinct piece of evidence m2 for X such that m2({x2}) = 0.5, m2(ΩX) = 0.5. m2 corresponds
to Pm2 = {P ∈ P : P (x2) ≥ 0.5}. The only PMF that is in both Pm1 and Pm2 is P ∈ P such that
P (x1) = P (x2) = 0.5, and P (x3) = 0. Notice that if we use Dempster’s rule to combine m1 and
m2, we have: (m1 ⊕m2)({x1}) = 1

3 , (m1 ⊕m2)({x2}) = 1
3 , and (m1 ⊕m2)(ΩX) = 1

3 . The set of
PMFs Pm1⊕m2 = {P ∈ P : P (x1) ≥ 1

3 , P (x2) ≥ 1
3} is not the same as Pm1 ∩ Pm2. Thus, credal set

semantics of belief functions are not compatible with Dempster’s rule of combination.
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Maeda-Ichihashi [30] define Hi(m) as follows:

Hi(m) = max
PX∈Pm

{Hs(PX)}+Hd(m), (31)

where the first component is interpreted as a measure of conflict only, and the second component is
interpreted as a measure of non-specificity. Hi(m) satisfies all properties including the subadditivity
property described in Eq. (20) [30]. Hi(m) may be appropriate for a theory of belief functions
interpreted as a credal set with the Fagin-Halpern combination rule. It is, however, inappropriate
for the Dempster-Shafer theory of belief functions with Dempster’s rule as the rule for combining
(or updating) beliefs.

Maeda-Ichihashi’s definition Hi(m) does not satisfy the monotonicity-like property suggested
by Abellán-Moral [4]. They suggest a modification of the Maeda-Ichihashi’s definition where they
add a third component so that the modified definition satisfies the monotonicity-like property in
addition to the six properties satisfied by the Maeda-Ichihashi’s definition. Abellán [1] describes
a decomposition of Hi into two components such that the first component (different from the
first component in Eq. (31)) is a measure of conflict, and the second component is a measure of
non-specificity. Regarding numerical computation of the first component of Hi(m), which involves
nonlinear optimization, some algorithms are described in [31, 33, 16, 28, 5].

Harmanec-Klir [15] define Hh(m) as follows:

Hh(m) = max
PX∈Pm

Hs(PX), (32)

where they interpret Hh(m) as a measure of total uncertainty. They interpret
minPX∈Pm Hs(PX) as a measure of conflict, and the difference between Hh(m) and
minPX∈Pm Hs(PX) as a measure of non-specificity. Hh(ιX) = Hh(mu) = log(|ΩX |). Thus, it doesn’t
satisfy the maximum entropy property. It does, however, satisfy all other properties including
subadditivity. Like, Maeda-Ichihashi’s definition, Harmanec-Klir’s definition (based on credal set
semantics) is inconsistent with Dempster’s rule of combination.

Jousselme et al. [19] define Hj(m) based on first transforming a BPA m to a PMF BetPm using
the so-called pignistic transformation [11, 48], and then using Shannon entropy of BetPm. First,
let’s define BetPm. Suppose m is a BPA for X. Then BetPm is a PMF for X defined as follows:

BetPm(x) =
∑

a∈2ΩX :x∈a

m(a)

|a|
(33)

for all x ∈ ΩX . It is easy to verify that BetPm is a PMF.

Example 4. This example is taken from [49]. Consider a BPA m for X with ΩX = {x1, . . . , x70}
as follows: m({x1}) = 0.30, m({x2}) = 0.01, and m({x2, . . . , x70}) = 0.69. Then BetPm is as
follows: BetPm(x1) = 0.30, BetPm(x2) = 0.02, and BetPm(x3) = . . . = BetPm(x70) = 0.01.

Jousselme et al.’s definition of entropy of BPA m for X is as follows.

Hj(m) = Hs(BetPm) =
∑
x∈ΩX

BetPm(x) log

(
1

BetPm(x)

)
(34)

A similar definition, called pignistic entropy, appears in [10] in the context of the Dezert-Smarandache
theory, which can be considered as a generalization of the D-S belief functions theory.

Hj(m) satisfies the non-negativity, monotonicity, probability consistency, and additivity prop-
erties [19]. It does not satisfy the maximum entropy property as Hj(ιX) = Hj(mu) = log(|ΩX |).

17

https://www.researchgate.net/publication/233173696_Completing_a_total_uncertainty_measure_in_Dempster-Shafer_theory?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/220354953_An_Algorithm_to_Compute_the_Upper_Entropy_for_Order-2_Capacities?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/4049683_On_the_Blackman's_association_problem?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/264960921_On_several_representations_of_an_uncertain_body_of_evidence?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/250893187_Measuring_total_uncertainty_in_Dempster-Shafer_theory_A_novel_approach?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/247032503_On_the_computation_of_uncertainty_measure_in_Dempster-Shafer_theory?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/3412558_Measuring_ambiguity_in_the_evidence_theory?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/3412558_Measuring_ambiguity_in_the_evidence_theory?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/3412659_Reducing_Algorithm_Complexity_for_Computing_an_Aggregate_Uncertainty_Measure?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/250893450_Uncertainty_measure_with_monotonicity_under_the_random_set_inclusion?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/250893450_Uncertainty_measure_with_monotonicity_under_the_random_set_inclusion?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/266985037_Maximum_entropy_algorithms_for_uncertainty_measures?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/228461315_Calculating_maximum-entropy_probability_densities_for_belief_functions?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/221404642_Constructing_the_Pignistic_Probability_Function_in_a_Context_of_Uncertainty?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==
https://www.researchgate.net/publication/239067127_Decision_Making_in_a_Context_where_Uncertainty_is_Represented_by_Belief_Functions?el=1_x_8&enrichId=rgreq-ee4a6d1a-51c4-480c-b1f5-ae4d6e8a8504&enrichSource=Y292ZXJQYWdlOzI5NzY5ODgzMDtBUzozMzc3NjA3NTQ5MTMyODFAMTQ1NzUzOTg0NzU5Ng==


Although Jousselme et al. claim that Hj(m) satisfies the subadditivity property (Eq. (20)), a
counter-example is provided in [21].

One basic assumption behindHj(m) is thatBetPm is an appropriate probabilistic representation
of the uncertainty inm in the D-S theory. However, it is argued in [7] that BetPm is an inappropriate
probabilistic representation of m in the D-S theory. Consider a situation where we have vacuous
prior knowledge of X and we receive evidence represented as BPA m as described in Example 4.
If BetPm were appropriate for m, then x1 would be 15 times more likely than x2. Now suppose
we receive another distinct piece of evidence that is also represented by m. As per the D-S theory,
our total evidence is now m ⊕m. If on the basis of m (or BetPm), x1 was 15 times more likely
than x2, then now that we have evidence m⊕m, x1 should be 225 times more likely than x2. But
BetPm⊕m(x1) ≈ 0.156 and BetPm⊕m(x2) ≈ 0.036. So according to BetPm⊕m, x1 is only 4.33 more
likely than x2. Thus, BetPm is not consistent with Dempster’s combination rule. For this reason,
we don’t believe Hj(m) is an appropriate measure of entropy of m in the D-S theory.

Pouly et al. [37] define entropy of a “hint” associated with a BPA m. A hint is a formalization
of the multivalued mapping semantics for BPAs, and is more fine-grained than a BPA. Consider
the following example. A witness claims that he saw the defendant commit a crime. Suppose that
we have a PMF on the reliability R of the witness as follows. Let r and r̄ denote the witness is
reliable or not, respectively. Then, P (r) = 0.6, and P (r̄) = 0.4. The question of interest, denoted
by variable G, is whether the defendant is guilty (g) or not (ḡ). If the witness is reliable, then given
his statement, the defendant is guilty. If the witness is not reliable, then his claim has no bearing
on the question of guilt of the defendant. Thus, we have a multivalued mapping Γ : {r, r̄} → 2{g,ḡ}

such that Γ(r) = {g}, and Γ(r̄) = {g, ḡ}. In this example, the hint H = ({r, r̄}, {g, ḡ}, P,Γ). The
hint H induces a BPA for G as follows: m({g}) = 0.6,m({g, ḡ}) = 0.4.

Pouly et al.’s definition of entropy of hint H = (Ω1,Ω2, P,Γ) is as follows:

Hr(H) = Hs(P ) +Hd(m) (35)

where m is the BPA on state space Ω2 induced by hint H. The expression in Eq. (35) is derived
using Shannon’s entropy of a joint PMF on the space Ω1 ×Ω2 whose marginal for Ω1 is P , and an
assumption of uniform conditional PMF for Γ(ω) ⊆ Ω2 given ω ∈ Ω1. This assumption results in a
marginal PMF for Ω2 that is equal to BetPm, where m is the BPA on state space Ω2 induced by hint
H. Dempster’s combination rule never enters the picture in the derivation on Hr(H). Hr(H) has
nice properties (on the space of hints). Hr(H) in Eq. (35) is on the scale [0, log(|Ω1|) + log(|Ω2|)].
For a BPA m defined on the state space Ω2, it would make sense to use only the marginal of the
joint PMF on Ω1 ×Ω2 for Ω2, which is BetPm. Thus, if one were to adapt Pouly et al.’s definition
for BPAs, it would coincide with the Jousselme et al.’s definition, i.e.,

Hr(m) = Hj(m) = Hs(BetPm) =
∑
θ∈Ω2

BetPm(θ) log

(
1

BetPm(θ)

)
(36)

Thus, Pouly et al.’s definition of entropy of BPA m would have the same properties as Jousselme
et al.’s definition.

Table 1 summarizes the properties of the various definitions of entropy for belief functions in
the D-S theory.

5 A New Definition of Entropy for D-S Theory

In this section, we propose a new definition of entropy for D-S theory. The new definition of entropy
is based on the plausibility transformation of a belief function to a probability function. Therefore,
we start this section by describing the plausibility transformation introduced originally in [7].
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Table 1: A Summary of Properties of Various Definitions of Entropy of D-S Belief Functions

Definition Non-neg. Max. ent. Monoton. Prob. Cons. Additivity Subadd. Cons. w D-S

Höhle, Eq. (22) no no no yes yes no yes

Smets, Eq. (23) no no no no yes no yes

Yager, Eq. (24) no no no yes yes no yes

Nguyen, Eq. (25) no no no yes yes no yes

Dubois-Prade, Eq. (26) no yes yes no yes yes yes

Lamata-Moral, Eq. (27) yes no yes yes yes no yes

Klir-Ramer, Eq. (28) yes no yes yes yes no yes

Klir-Parviz, Eq. (29) yes no yes yes yes no yes

Pal et al., Eq. (30) yes no yes yes yes no yes

Maeda-Ichihashi, Eq. (31) yes yes yes yes yes yes no

Harmanec-Klir, Eq. (32) yes no yes yes yes yes no

Jousselme et al., Eq. (34) yes no yes yes yes no no

Pouly et al., Eq. (36) yes no yes yes yes no no

Plausibility Transformation of a BPA to a PMF Suppose m is a BPA for X. What is the
PMF of X that best represents m in the D-S theory? An answer to this question is given by Cobb
and Shenoy [7], who propose the plausibility transformation of m as follows. First consider the
plausibility function Plm corresponding to m. Next, construct a PMF for X, denoted by PPlm , by
the values of Plm for singleton subsets suitably normalized, i.e.,

PPlm(x) = K−1 · Plm({x}) = K−1 ·Qm({x}) (37)

for all x ∈ ΩX , where K is a normalization constant that ensures PPlm is a PMF, i.e., K =∑
x∈ΩX

Plm({x}) =
∑

x∈ΩX
Qm({x}).

Example 5. Consider a BPA m for X as described in Example 4 as follows: m({x1}) = 0.30,
m({x2}) = 0.01, m({x2, . . . , x70}) = 0.69. Then, Plm for singleton subsets is as follows: Plm({x1}) =
0.30, Plm({x2}) = 0.70, Plm({x3}) = · · · = Plm({x70}) = 0.69. The plausibility transformation
of m is as follows: PPlm(x1) = 0.3/49.72 ≈ 0.0063, and PPlm(x2) = 0.7/49.72 ≈ 0.0.0146, and
PPlm(x3) = · · · = PPlm(x70) ≈ 0.0144. Notice that PPlm is quite different from BetPm. In BetPm,
x1 is 15 times more likely than x2. In PPlm, x2 is 2.33 times more likely than x1.

[7] argues that of the many methods for transforming belief functions to PMFs, the plausibility
transformation is one that is consistent with Dempster’s rule of combination in the sense that
if we have BPAs m1, . . . ,mk for X, then PPlm1⊕...⊕mk

= PPlm1
⊗ . . . ⊗ PPlmk , where ⊗ denotes

Bayes combination rule (pointwise multiplication followed by normalization [53]). It can be shown
that the plausibility transformation is the only transformation method that has this property, which
follows from the fact that Dempster’s rule of combination is pointwise multiplication of commonality
functions followed by normalization (Eq. (15)).

Example 6. Consider the BPA m for X in Example 4. Notice that as per PPlm, x2 is 2.33 times
more likely than x1. Now suppose we get a distinct piece of evidence that is identical to m, so
that our total evidence is m ⊕ m. If we compute m ⊕ m and PPlm⊕m, then as per PPlm⊕m, x2

is 2.332 more likely than x1. This is a direct consequence of the consistency of the plausibility
transformation with Dempster’s combination rule.
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A New Definition of Entropy of a BPA To explain the basic idea behind the following
definition consider a simple example with an urn containing n balls of up to two colors: white (w),
and black (b). Suppose we draw a ball at random from the urn and X denotes its color. What
is the entropy of the BPA for X in the situation where we know that there is at least one ball of
each color in the urn? The simplest case is when n = 2. In this case the entropy is exactly the
same as in tossing a fair coin: log(2) = 1. Naturally, the greater n is, the greater uncertainty in
the model. As there is no information preferring one color to another one, the only probabilistic
description of the model is a uniform PMF. In D-S theory, the BPA describing this situation is
m({w}) = m({b}) = 1

n , and m({w, b}) = n−2
n . Therefore, the entropy function for this BPA must

be greater than or equal to Shannon’s entropy of a uniform PMF with two states (log(2) = 1), and
increasing with increasing n. This is why the following definition of entropy of a BPA m consists
of two components. The first component is Shannon’s entropy of a PMF that corresponds to m,
and the second component includes entropy associated with non-singleton focal sets of m.

Suppose m is a BPA for X. The entropy of m is defined as follows:

H(m) = Hs(PPlm) +Hd(m) =
∑
x∈ΩX

PPlm(x) log

(
1

PPlm(x)

)
+
∑

a∈2ΩX

m(a) log(|a|). (38)

Like some of the definitions in the literature, the first component in Eq. (38) is designed to
measure conflict in m, and the second component is designed to measure non-specificity in m. Both
components are on the scale [0, log(|ΩX |)], and therefore, H(m) is on the scale [0, 2 log(|ΩX |)].

Theorem 1. The entropy H(m) for BPA m for X defined in Eq. (38) satisfies the non-negativity,
maximum entropy, monotonicity, probability consistency, and additivity properties.

Proof. We know that Hs(PPlm) ≥ 0, and Hd(m) ≥ 0. Thus, H(m) ≥ 0. For H(m) = 0 to hold,
both Hs(PPlm) = 0, and Hd(m) = 0 must be satisfied. Hs(PPlm) = 0 if and only if there exists
x ∈ ΩX such that PPlm(x) = 1, which occurs if and only if m({x}) = 1. Hd(m) = 0 if and only if
m is Bayesian. Thus, H(m) satisfies the non-negativity property.

Let n denote |ΩX |. Then PPlιX (x) = 1
n for all x ∈ ΩX , and therefore Hs(PPlιX ) = log(n),

which is the maximum of all PMFs defined on ΩX . Also Hd(ιX) = log(n), which is the maximum
of Dubois-Prade’s entropy over all BPAs m for X. Thus, H(m) satisfies the maximum entropy
property.

H(ιX) = 2 log(|ΩX |). Thus, since it is monotonic in |ΩX |, H(m) satisfies the monotonicity
property.

If m is Bayesian, then PPlm(x) = m({x}) for all x ∈ ΩX , and Hd(m) = 0. Thus, H(m) satisfies
the probability consistency property.

Suppose mX is a BPA for X, and mY is a BPA for Y . Then, as it is shown in [7], PPlmX⊕mY =
PPlmX ⊗ PPlmY , and the normalization constant in the case of PMFs for disjoint arguments is 1.
Thus, Hs(PPlmX⊕mY ) = Hs(PPlmX ) +Hs(PPlmY ). Also, it is proved in [12], that Hd(mX ⊕mY ) =
Hd(mX) +Hd(mY ). Thus, H(m) satisfies the additivity property.

In the next section, we provide an example that shows that our definition does not satisfy the
subadditivity property.

Property 5 was stated in terms of BPAs mX for X and mY for Y . Suppose we have a set of
variables, say v, and r, s ⊆ v. This property could have been stated more generally in terms of
BPAs m1 for r and m2 for s where r ∩ s = ∅. In this case still H(m1 ⊕m2) = H(m1) + H(m2)
because both components of the new definition (i.e., Hs and Hd) satisfy the more general property.
However, if r ∩ s 6= ∅, then generally H(m1 ⊕m2) may be different from H(m1) +H(m2). This is
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because neither the first component of the new definition, nor the Dubois-Prade component, satisfy
the stronger property. An example illustrating this is described next. Thus, our new definition
does not satisfy the compound property in Eq. (21).

Example 7. Consider BPA m1 for binary-valued variable X as follows: m1({x}) = 0.1, m1({x̄}) =
0.2, m1(ΩX) = 0.7, and BPA m2 for {X,Y } as follows: m2({(x, y), (x̄, y)}) = 0.08, m2({(x, y), (x̄, ȳ)}) =
0.72, m2({(x, ȳ), (x̄, y)}) = 0.02, m2({(x, ȳ), (x̄, ȳ)}) = 0.18. Assuming these two BPAs represent
distinct pieces of evidence, we can combine them with Dempster’s rule obtaining m = m1 ⊕m2 for
{X,Y } as follows: m({(x, y)}) = 0.08, m({(x, ȳ)}) = 0.02, m({(x̄, y)}) = 0.02, m({(x̄, ȳ)}) = 0.18,
m({(x, y), (x̄, y)}) = 0.056, m({(x, y), (x̄, ȳ)}) = 0.504, m({(x, ȳ), (x̄, y)}) = 0.014,
m({(x, ȳ), (x̄, ȳ)}) = 0.126.

Now, the PMF PPlm1
of X obtained using the plausibility transformation of m1 is as follows:

PPlm1
(x) = 0.47, and PPlm1

(x̄) = 0.53, and its Shannon’s entropy is Hs(PPlm1
) = 0.998. Hd(m1) =

0.7. Thus, H(m1) = 1.698.
The PMF PPlm2

of {X,Y } obtained using the plausibility transformation is PPlm2
(x, y) =

0.4, PPlm2
(x, ȳ) = 0.1, PPlm2

(x̄, y) = 0.05, PPlm2
(x̄, ȳ) = 0.45, and its Shannon’s entropy is

Hs(PPlm2
) = 1.595. Hd(m2) = 1. Thus, H(m2) = 2.595.

The joint PMF of {X,Y } obtained using the plausibility transformation is as follows: PPlm(x, y) =
0.38, PPlm(x, ȳ) = 0.09, PPlm(x̄, y) = 0.05, PPlm(x̄, ȳ) = 0.48, and its Shannon’s entropy is
H(PPlm) = 1.586. Also, Dubois-Prade’s entropy of m is Hd(m) = 0.7. Thus, H(m) = 2.286.

Notice that H(m) = 2.286 6= H(m1) + H(m2) = 1.698 + 2.595 = 4.293, H(Plm) = 1.586 6=
H(PPlm1

) +H(PPlm2
) = 0.998 + 1.595 = 2.593, and Hd(m) = 0.7 6= Hd(m1) +Hd(m2) = 0.7 + 1 =

1.7.

6 Additional Properties of H(m)

In this section, we will describe some additional properties of H(m) defined in Eq. (38).

Entropy as an expected value One interpretation of Shannon entropy in probability theory
is that it equals the expected value of an information received when learning one symbol x ∈ ΩX ,
i.e.,

Hs(PX) =
∑
x∈ΩX

PX(x)I(x), (39)

where

I(x) = log2

(
1

PX(x)

)
expresses the information received when learning that state x ∈ ΩX has occurred. Notice that the
amount of this information is not the property of state x, but that of its probability.

In the case where our knowledge is encoded by a BPA m (instead of a PMF), we can decompose
the information in m into two parts. The first part is the PMF PPlm , and the second part (not
captured by the first part) is log(|a|), which happens with probability m(a). Consider the vacuous
BPA function ιX for X, where ΩX = {x, x̄}. We can decompose the uncertainty in ιX into the
uncertainty in the PMF PPlιX (which is given by PPlιX (x) = 1/2, and PPlιX (x̄) = 1/2). But this
doesn’t capture the entire uncertainty in ιX . We also have to include the uncertainty log(|ΩX |).
The expected value of the first part is Shannon’s entropy H(PPlιX ) = 1, and the expected value of
the second is ιX(ΩX) log(|ΩX |) = 1.
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Thus, we can interpret H(m) as an expected value, but with respect to two different sources of
uncertainty. The first part is expected value of information I(x) with respect to PMF PPlm , and
the second part is expected value of information necessary to eliminate the uncertainty emerging
from the size of ΩX , i.e., log(|a|), with respect to “distribution” m, i.e.,

∑
a∈2ΩX m(a) log(|a|). The

second part corresponds to the measure of uncertainty suggested by Richard Hartley in 1928 [17],
about which Rényi showed that it is the only one satisfying additivity and monotonicity properties
(for a precise formulation of this property see [39]).

Subadditivity Property As shown in Example 8 below, our definition does not satisfy the
subadditivity property in Eq. (20).

Example 8. Consider a two-dimensional BPA m for binary-valued variables {X,Y } with five focal
elements:

m({(x, y)}) = m({(x, ȳ)}) = 0.1, m({(x̄, y)}) = m({(x̄, ȳ)}) = 0.3, and m(Ω{X,Y }) = 0.2.

The joint PMF of {X,Y } using the plausibility transformation is as follows: PPlm((x, y)) = 0.1875,
PPlm((x, ȳ)) = 0.1875, PPlm((x̄, y)) = 0.3125, PPlm((x̄, ȳ)) = 0.3125. Its Shannon’s entropy is
Hs(PPlm) = 1.9544. The Dubois-Prade’s entropy of m is Hd(m) = 0.4. Thus, H(m) = 2.3544.

The marginal BPA m↓X is as follows: m↓X({x}) = 0.2, m↓X({x̄}) = 0.6, and m↓X(ΩX) =
0.2. The PMF PPl

m↓X
of X obtained using the plausibility transformation of m↓X is as follows:

PPl
m↓X

(x) = 0.333, and PPl
m↓X

(x̄) = 0.667, and its Shannon’s entropy is Hs(PPl
m↓X

) = 0.9183.

Similarly, the marginal BPA m↓Y is as follows: m↓Y ({y}) = 0.4, m↓Y ({ȳ}) = 0.4, and
m↓Y (ΩY ) = 0.2. The PMF PPl

m↓Y
of Y is as follows: PPl

m↓Y
(y) = PPl

m↓Y
(ȳ) = 0.5, and therefore

its Shannon’s entropy is Hs(PPl
m↓Y

) = 1.
Thus, Hs(PPlm) = 1.9544 > Hs(PPl

m↓X
) +Hs(PPl

m↓Y
) = 0.9183 + 1 = 1.9182. Dubois-Prade’s

entropies are as follows: Hd(m
↓X) = Hd(m

↓Y ) = 0.2. Thus, Hd(m) = 0.4 = Hd(m
↓X)+Hd(m

↓Y ) =
0.2 + 0.2 = 0.4. Therefore, H(m) = 2.3544 > H(m↓X) + H(m↓Y ) = (0.9183 + 0.2) + (1 + 0.2) =
1.1183 + 1.2 = 2.3183.

Entropy of m ⊕m It is well known that Dempster’s rule of combination ⊕ is, in general, not
idempotent, i.e., in general m⊕m 6= m. It is easy to confirm that vacuous, Bayesian uniform, and
Bayesian deterministic BPAs are idempotent. Notice that these types of BPAs express extreme
uncertainty. For Bayesian deterministic BPA there is no uncertainty, and therefore the measure
of uncertainty is 0. The Bayesian uniform and vacuous BPAs express maximal uncertainties:
probabilistic and absolute, respectively. Therefore, it is quite natural that for these specific BPAs,

H(m⊕m) = H(m).

However, a natural question arises: What is the value of H(m⊕m) in the general case? Repetitio
est mater studiorum. Learning the same knowledge twice should contribute to our cognizance more
than just learning it only once. Therefore we should not be surprised that the following assertion
holds true.

Theorem 2. For a Bayesian BPA m for X,

H(m⊕m) ≤ H(m), (40)

with equality if and only if m is idempotent with respect to Dempster’s rule of combination, i.e.,
m⊕m = m.
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Proof. We will use an obvious property of Shannon entropy Hs: for two PMF P1 and P2 for X, such
that P1(x) = P2(x) for all x ∈ ΩX \ {y, z}, P1(y)− P2(y) = P2(z)− P1(z) > 0, and P1(y) ≤ P1(z)
it holds that

Hs(P1) > Hs(P2). (41)

This property can be proven by the following simple consideration. Denote ε = P1(y)−P2(y), and

f(ε) = Hs(P1)−Hs(P2)

= −P1(y) log2(P1(y))− P1(z) log2(P1(z))

+(P1(y)− ε) log2(P1(y)− ε) + (P1(z) + ε) log2(P1(z) + ε).

Since f(0) = 0, and

f ′(α) = log2

(
P1(z) + α

P1(y)− α

)
· (ln(2))−1

is non-negative for all α ∈ [0, ε], it is clear that f(ε) > 0, and therefore strict inequality (41) holds
true.

To prove inequality (40) for Bayesian BPA m, we use the fact that in this case H(m) = Hs(PPlm)
= Hs((m({x}))x∈ΩX ). Moreover, we can restrict our attention to situations when m 6= m ⊕ m,
because if m = m⊕m, the assertion (Eq. (40)) holds with equality. Notice that in this case

(m⊕m)({x}) = (m({x}))2 ·K−1,

where K =
∑

x∈ΩX
(m({x}))2, and therefore

(m⊕m)({x}) < m({x}) iff m({x}) < K,
(m⊕m)({x}) > m({x}) iff m({x}) > K,

(42)

which means that the values m({y}) to be decreased are always less than the values m({z}) to be
increased,

To finish the proof we will construct a finite sequence of Bayesian BPAs, such that m =
m0,m1,m2, . . . ,mk = m⊕m, and H(mi) < H(mi−1) for all i = 1, 2, . . . , k.

Consider mi, and denote ai = {x ∈ ΩX : mi({x}) 6= (m ⊕m)({x})}. Let y be the element of
ai, for which the difference between mi and m⊕m is minimal, i.e.,

|mi({y})− (m⊕m)({y})| ≤ |mi({x})− (m⊕m)({x})| ∀x ∈ ai. (43)

Naturally, there must exist z ∈ ai such that

sign(mi({z})− (m⊕m)({z})) = −sign(mi({y})− (m⊕m)({y})), (44)

and, because of (43), |mi({z}) − (m ⊕ m)({z})| ≥ |mi({y}) − (m ⊕ m)({y})|. Therefore we can
define BPA mi+1:

mi+1({y}) = 0,

mi+1({z}) = mi({z}) + (mi({y})− (m⊕m)({y})) ,
mi+1({x}) = mi({x}) for all x ∈ ΩX \ {y, z}.

We immediately see that |ai+1| > |ai|, and therefore the sequence m = m0,m1, m2, . . . ,mk = m⊕m
must be finite. We also can see that we did not violate property (41), and therefore each pair mi

and mi+1 meets the assumptions of the property presented at the beginning of this proof. Therefore
Hs((mi+1)x∈ΩX ) < Hs((mi)x∈ΩX ), which completes the proof.
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A Bayesian BPA m for X is equivalent to a PMF PX for X such that PX(x) = m({x}) for all
x ∈ ΩX . Also, for a Bayesian BPA m, m⊕m = PX ⊗ PX , and H(m) = Hs(PX), where PX is the
PMF for X corresponding to m. Therefore, we have the following corollary.

Corollary 1. For a PMF PX for X,

Hs(PX ⊗ PX) ≤ Hs(PX), (45)

with equality if and only if PX is idempotent with respect to Bayesian combination rule, i.e., PX =
PX ⊗ PX .

One may be tempted to believe that the property in Theorem 2 also holds for all BPAs. But,
as shown in Example 9, it is not true.

Example 9. Consider a BPA m for X, where ΩX = {x1, x2, x3} as follows: m({x1}) = 1
3 ,

m({x2, x3}) = 2
3 . The Dubois-Prade entropy Hd(m) = 2

3 . Also, for this BPA m, the PMF PPlm
is as follows: PPlm(x1) = 1

5 , PPlm(x2) = PPlm(x3) = 2
5 . Thus, Hs(PPlm) = 1.522, and H(m) =

Hs(PPlm) +Hd(m) = 2.189.
If we compute m⊕m, we have (m⊕m)({x1}) = 1

5 , and (m⊕m)({x2, x3}) = 4
5 . Dubois-Prade

entropy Hd(m ⊕ m) = 4
5 . Notice that Hd(m ⊕ m) > Hd(m). The PMF PPlm⊕m is as follows:

PPlm⊕m(x1) = 1
9 , PPlm⊕m(x2) = PPlm⊕m(x3) = 4

9 . And, its Shannon entropy Hs(PPlm⊕m) = 1.392.
Notice that Hs(PPlm⊕m) < Hs(PPlm). However, H(m⊕m) =
Hs(m⊕m) +Hd(m⊕m) = 2.192, which is greater than H(m) = 2.189.

Our definition of entropy H(m) has two components. The first one, Hs(PPlm) can be considered
as a measure of conflict (or confusion or dissonance or discord or strife), and the second one,
Hd(m) can be considered as a measure of non-specificity. For probability distributions, the second
component is zero as all masses are on singleton subsets. The first component does satisfy the
intuition behind Theorem 2, the second component doesn’t. Thus, while Theorem 2 holds for
probability distributions, it is not valid for BPA in the DS theory because of the non-specificity
component. When we combine m with itself, probability will migrate from subsets with lower
plausibility to subsets with larger plausibility ([7]). If we have a BPA such that a larger subset has
higher plausibility, then Hd(m⊕m) > Hd(m).

7 Summary and Conclusions

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the amount of uncertainty
in the PMF [45], we propose five desirable properties of entropy of a basic probability assignment in
the D-S theory of belief functions. These five properties are motivated by the analogous properties
of Shannon’s entropy for PMFs, and they are based on our intuition that a vacuous belief function
has more uncertainty than a Bayesian belief function. These five properties are different from
the five properties proposed by Klir and Wierman [24]. Two of the properties they require, set
consistency and range, are inconsistent with some of the properties we propose. Also, one of
the properties that they require, subadditivity, is not included in our set as we are unable to
formulate a definition of entropy that would simultaneously satisfy the five properties we suggest
plus subadditivity. Also, besides the five properties, we also require that any definition should
be based on semantics consistent with the D-S theory of belief functions (with Dempster’s rule
as the combination rule), H(m) should always exist, and H(m) should be a continuous function
of m. Thus, a monotonicity-like property suggested by Abellán-Masegosa [3] based on credal set
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semantics of belief functions that are not compatible with Dempster’s rule is not included in our
set of requirements.

We review some earlier definitions given by Höhle [18], Smets [47], Yager [55], Nguyen [34],
Dubois-Prade [12], Lamata-Moral [27], Klir-Ramer [23], Klir-Parviz [22], Pal et al. [36], Maeda-
Ichihashi [30], Harmanec-Klir [15], Jousselme et al. [19], and Pouly et al. [37]. None of these
definitions satisfy all five properties listed earlier while satisfying the consistency with D-S theory
semantics requirement. Pouly et al.’s definition is for the joint space of hints, Ω1 ×Ω2. If one were
to adapt Pouly et al.’s definition for BPAs, then as the marginal entropy for Ω2 reduces to the
pignistic entropy, their definition for BPAs would coincide with that proposed by Jousselme et al.

Smets’ definition is motivated by interpreting H(m) as a measure of information contained in m,
rather than uncertainty. Höhle’s, Yager’s, and Nguyen’s definitions are motivated by interpreting
entropy of a BPA as a measure of only its conflict (or confusion or discord or strife). Dubois-
Prade’s definition is motivated by interpreting entropy of a BPA as a measure of its non-specificity
(or imprecision).

As first suggested by Lamata and Moral [27], we propose a new definition of entropy for BPA
as a combination of Shannon’s entropy for an equivalent PMF that captures the conflict measure
of entropy, and Dubois-Prade’s entropy of a BPA that captures the non-specificity (or Hartley)
measure of entropy. The equivalent PMF is that obtained by using the plausibility transformation
[7]. We show that this new definition satisfies all five properties we propose. More importantly,
our definition is consistent with the semantics for the D-S theory of belief functions.

One could create a definition, e.g., that combines Jousselme et al.’s definition (Eq. (34)) with
Dubois-Prade’s definition (Eq. (26)), i.e., H(m) = Hj(m) + Hd(m), and such a definition would
also satisfy all five properties, but as we have argued before, the first component, pignistic entropy,
is not consistent with semantics for the D-S theory.

We also describe some additional properties of our definition of entropy of BPA m. In particular,
we describe our definition as the sum of an expected value of Shannon’s entropy, which is a measure
of conflict, and expected value of Hartley’s entropy, which is a measure of non-specificity. We
demonstrate that our definition does not satisfy the subadditivity property. This is because the
first component, Hs(PPlm), does not satisfy the subadditivity property. Finally, we show that while
Shannon’s entropy satisfies the inequality Hs(PX ⊗ PX) ≤ H(PX), our definition of H(m) does
not satisfy the corresponding inequality, H(m ⊕m) ≤ H(m). This is because the Dubois-Prade
component, generalized Hartley entropy, does not satisfy this inequality, i.e., Hd(m ⊕m) may be
greater than Hd(m).

An open question is whether there exists a definition of entropy for BPAm in the D-S theory that
satisfies the five properties we list in Section 4, the subadditivity property, and most importantly,
that is consistent with semantics for the D-S theory. Our definition satisfies the five properties and
is consistent with semantics for the D-S theory, but it does not satisfy the subadditivity property.

Another open question is whether there is a class of BPA functions such that for this class, our
definition satisfies the subadditivity property.

A more ambitious agenda is to define entropy for D-S belief functions that satisfies the compound
property described in Eq. (21), that is analogous to the one that characterizes Shannon’s entropy.
If we can also show that H(mY |X) ≤ H(m↓Y ), then such a definition will enable generalizing
Kullback-Leibler divergence concept to the D-S theory of belief functions.
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