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Abstract. Although appearance based trackers have been greatly improved in the last decade, they are still struggling with 

some challenges like occlusion, blur, fast motion, deformation, etc. As known, occlusion is still one of the soundness challeng-

es for visual tracking. Other challenges are also not fully resolved for the existed trackers. In this work, we focus on tackling 

the latter problem in both color and depth domains. Neutrosophic set (NS) is as a new branch of philosophy for dealing with 

incomplete, indeterminate and inconsistent information. In this paper, we utilize the single valued neutrosophic set (SVNS), 

which is a subclass of NS, to build a robust tracker. First, the color and depth histogram are employed as the appearance fea-

tures, and both features are represented in the SVNS domain via three membership functions T, I, and F. Second, the single 

valued neutrosophic cross-entropy measure is utilized for fusing the color and depth information. Finally, a novel SVNS based 

MeanShift tracker is proposed. Applied to the video sequences without serious occlusion in the Princeton RGBD Tracking 

dataset, the performance of our method was compared with those by the state-of-the-art trackers. The results revealed that our 

method outperforms these trackers when dealing with challenging factors like blur, fast motion, deformation, illumination var-

iation, and camera jitter. 
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1.  Introduction 

Object tracking has been extensively studied in 

computer vision due to its applications such as sur-

veillance, human-computer interaction, video index-

ing, and traffic monitoring, to name a few. 

While a lot of effort has been done in the past dec-

ades [30,31,33], it remains a very challenging task to 

build a robust tracking system to deal with the prob-

lems like occlusion, blur, fast motion, deformation, 

illumination variation, and rotation, etc. 
There are mainly two ways to tackle those prob-

lems. One is utilizing robust features. Color model is 

frequently employed for tracking due to its robust-

ness for confronting blur, deformation and rotation, 

etc. MeanShift [9] and CAMShift [7] employed color 

information to separate the object from the back-

ground. Both trackers perform well unless a similar 

color appears around the target. Cross-Bin metric 

[22], SIFT [36] and texture feature [6] were intro-

duced into the mean shift based trackers, and the en-

hanced trackers outperform the corresponding tradi-

tional tracker. The other way is training an effective 

adaptive appearance model. Semi-supervised boost-

ing [10] was employed for building a robust classifier; 

multiple instance learning [4] was introduced into the 

classifier training procedure due to the interference of 

the inexact training instance; compressive sensing 



 

Fig. 1. Main steps of the proposed algorithm. 

theory [18] was applied for developing effective and 

efficient appearance models for robust object track-

ing due to factors such as pose variation, illumination 

change, occlusion, and motion blur. In addition, Ross 

et al. [25] proposed the IVT method for dealing with 

appearance variation, other schemes like kernelized 

structured support vector machine [16], LGT [8] and 

TLD [19] also perform well. As known, though many 

efforts have been done for handling occlusion prob-

lem [1,8,18,34], it is still one of the soundness chal-

lenges for visual tracking. Other challenges are also 

not fully resolved for the existed trackers [1-17]. 

All the trackers mentioned above are based on 

RGB information. The depth information is directly 

discarded. That is mainly caused by three reasons. 

Firstly, most cameras cannot provide depth infor-

mation. Secondly, though a multi-camera stereo rig 

can achieve such a goal, 3D reconstruction remains a 

very challenging task [17]. Lastly, although depth 

sensors like Microsoft Kinect, Asus Xtion and 

PrimeSense can produce depth and RGB information, 

each of them has limitations. For example, all of 

them are sensitive for distance and illumination. Re-

liable depth information can only achieve in a limited 

range, e.g. 0.8-3.5 meters for Kinect. Besides, lack of 

effective scheme for fusing depth and RGB infor-

mation is another main reason. Due to the fact that 

RGBD information can provide another dimension of 

information for object tracking, a lot of algorithms 

[2,14,15,23,27,28] based on RGBD information have 

been proposed. However, most algorithms focused 

on tracking a specific target  tracking, e.g. people 

[2,14,15,23] or hand [28]. Few category free RGBD 

trackers are proposed. Due to problems like blur, fast 

motion, deformation, illumination variation and rota-

tion, tracking an object without occlusion in a small 

area is still a very challenging job for both RGB and 

RGBD trackers. Thus, finding an effective way to 

improve existing category free tracker by using 

RGBD information is very meaningful [27]. 

Neutrosophic set (NS) [26] is as a new branch of 

philosophy to deal with the origin, nature and scope 

of neutralities. It has an inherent ability to handle the 

indeterminate information like the noise included in 

images [3,11,20,35] and video sequences. Till now, 

NS has been successfully applied into many comput-

er vision research fields, such as image segmentation 

[3,11,20,35] and skeleton extraction [13]. For image 

segmentation applications, specific neutrosophic im-

age was usually computed [3,11,20,35].  A NS-based 

cost function between two neighboring voxels was 

proposed in [13]. In addition, the NS theory is also 

utilized for improving the clustering algorithm, such 

as c-means [12]. Decision-making can be regarded as 

a problem-solving activity terminated by a solution 

deemed to be satisfactory. A lot NS-based decision 

making methods [5,21,24,32] were proposed. A sin-

gle valued neutrosophic set (SVNS) [29] is an in-

stance of a neutrosophic set and provides an addi-

tional possibility to represent uncertainty, imprecise, 

incomplete, and inconsistent information which exist 

in real world. Therefore, several  SVNS-based algo-

rithms, combining with some other metrics, were 

proposed for handling the multicriteria decision mak-

ing problem. Biswas, et al. [5] proposed TOPSIS 

method for multi-attribute group decision-making. 

Single valued neutrosophic cross-entropy was intro-

duced in [32]. Fusing features from color and depth 

domain is also an indeterminate problem, and it can 

be translated into a kind of decision making problem. 



 

Fig. 2. Example of target extracting. 

 

Table 1 

Basic flow of the proposed tacking algorithm 

Algorithm 1 SVNCE Tracking 

Initialization 

Input: 1-st video frame in the color and depth domain 

1) Select an object on the image plane as the target 

2) Select object seeds in the depth domain 

        3) Extract object from the image using the depth information 

4) Calculate the corresponding color and depth histograms as object model 

Tracking 

Input: (t+1)-th video frame in the color and depth domain 

        1) Calculate back-projections in both color and depth domain 

        2) Represent both features in the NS domain via three membership subsets T, I, and F 

        3) Fusing color and depth information using the single valued neutrosophic cross-entropy method 

        4) Find the location of the object in the CAMShift framework 

        5) Update object model and seeds 

Output: Tracking location 

 

Fig. 2. Main steps of the proposed algorithm. 

 

NS is still an open area for information fusion appli-

cations. Therefore, it is meaningful to form a bridge 

between NS theory and information fusion.  

1.1. Proposed Contribution 

In this work, the proposed tracking algorithm 

based on RGBD data mainly exhibits three contribu-

tions. First, a more accurate ROI for initializing tar-

get model is achieved using depth-based segmenta-

tion. Secondly, the depth distance of the target be-

tween adjacent frames is incorporated into the back-

projection to facilitate object discrimination. Finally, 

a color-depth fusion method based on single valued 

neutrosophic cross-entropy is proposed to enhance 

object tracking. To our own knowledge, it is the first 

time to introduce the NS theory into the visual object 

tracking domain. 

The remainder of this paper is organized as fol-

lows. In Section 2, main steps and basic flow of our 

algorithm is first given, and then the details of the 

proposed algorithm are illustrated in the following 

subsections. Experimental evaluations and discus-

sions are presented in Section 3, and Section 4 is the 

conclusion. 

2.  Problem Formulation 

In this section, we present the algorithmic details 

of this paper. 

The main steps of our tracking system are summa-

rized in Figure 1. Algorithm 1 illustrates the basic 

flow of our algorithm, as shown in Table 1. Details 

of each main step of our algorithm are given in the 

following subsections. 

2.1. Extracting Object 

The bounding box (as shown in Figure 2) is al-

ways applied for indicating the location of the target 

by most trackers [30,31,33]. The color information in 

the bounding box is frequently employed to initialize 

the target’s model [6,7,9,22], represented as a color 

histogram. However, in addition to the target, the 

area in the bounding box sometimes contains back-

ground information. Thus, such a model could not 

represent the target’s feature exactly. 

Given an initial bounding box (as shown in the left 

part of Figure 2), we try to extract the target’s area 

with the help of the depth data. A depth-based meth-

od for extracting the target’s area is proposed. 

It is reasonable that we assume target area is the 

part which is closer to us. In addition, the target oc-

cupies most space of the bounding box. Then the 

target seeds can be automatically selected by 



 ( ) , 1...ir i n  S x RD x               (1) 

where ( )RD x  is the distance rank in the bounding 

box, e.g., ( )RD x  = 5% means the depth at pixel lo-

cation x placed at the order 5%NBbox by sorting the 

depth of each point in the bounding box from near to 

far. Here, NBbox is the total number of the pixels in the 

bounding box. 

Then the target region A owns n points, suppose B 

is the set of the points which borders at least one of 

the points of A, at each loop, target region is updated 

by 

  ( ) ( ) ,mean T


   

x A
A x D x D x x P    (2) 

where A
+
 is the newly added pixel set, ( )D x is the 

depth at pixel location x . 

In this work, we set five ranks in Equations (1) for 

seed selection, where r1, r2, r3, r4, r5 are set as 10%, 

15%, 20%, 25%, 30% respectively. Experimental 

results have proved its robustness. As shown in Fig-

ure 2, given a rough bounding box, our method can 

extract the target area much more exactly. The rough 

edge of the extracted target is mainly caused by the 

noise of the source data in the depth domain. Due to 

the RGB and depth data are not tightly aligned, 

thumb dislocation is also occurred. 

2.2. Calculating Back-projections 

Back-projection is a probability distribution map 

with the same size as the input image. Each pixel 

value of the back-projection demonstrates the likeli-

hood of the corresponding pixel located in the area of 

the tracked object on the current image plane. Before 

calculating the back-projection, we build the object 

model in both color and depth domain when the tar-

get area is extracted. 

Let {xi}i = 1…n be the pixel locations in the region 

of the target area, the function b: Ｒ2→{1…m} asso-

ciates to the pixel at location xi the index b(xi) of its 

bin in the quantized feature space. The probability of 

the feature u = 1, 2, …, m in the object model is then 

computed by 

1 1
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c c d d

u i u i

i i

q C b u q D b u 
 

          x x  (3) 

where b
c
 is the transformation function in color do-

main, b
d
 is for the depth domain, δ is the Kronecker 

delta function. C and D is the normalization constant 

derived by imposing the conditions 
1

ˆ =1
cm c

uu
q

  and 

1
ˆ =1

dm d

uu
q

 . 

2.2.1. Calculating the Back-projection In Color 

Domain 

As shown in Algorithm 1, back-projections in both 

color and depth domain should be computed in every 

loop of the tracking procedure. The color histogram 

ˆc

uq  is employed to calculate the back-projection in 

color domain: 

( )
ˆ( ) c

c

c b
q

x
P x                          (4) 

where x is the pixel location. 

2.2.2. Calculating the Back-projection In Depth 

Domain 

We assume that the object need to be tracked is a 

relative low speed target. For a space point which is 

reconstructed by a RGBD sensor, it is reasonable to 

assign a higher probability value to it if it is closer to 

the location of the target at the previous time. In ad-

dition, only these pixels which are not very far from 

the previous location of the target on the image plane 

may belong to the target. Thus, if only the space re-

striction is considered, the probability of the pixel x 

obtained from the target at current time can be calcu-

lated by 

1 ( , )
( ) (4 2), 2

2
d pre

d
erfc

MAXD
  

x T
P x x R      (5) 

where MAXD is the maximum depth distance be-

tween the previous and current target's locations, 

2Rpre is the points set which is covered by a bounding 

box with the twice size than the previous one, but 

with the same center, and then d(x, T) is the distance 

between a point and the target, which is approximate-

ly calculated by 

( , ) min( ( ) ( ) ), 1...
ir

d i n  x T D S D x      (6) 

where Sri is the i-th seed of the target. 

2.3. Fusing Color and Depth Information 

Employing discriminative feature is one of the 

most critical factors for a robust tracker, and the 

method for selecting discriminative feature during 

the tracking process is still an open issue. A well dis-

criminative feature owns the ability of effectively 

setting the target apart from the clutter background. 

Color and depth features are used by our tracker. 

However, similar depth or color may appear sur-

rounding the target, and the tracker will fail if a bad 

feature is applied. To build a robust feature fusion 

mechanism, the single valued neutrosophic cross-

entropy measure [32] is utilized here. 



2.3.1. Cross-entropy measure of SVNSs for decision 

making 

For a multicriteria decision-making problem, Let A 

= {A1, A2, …, Am} be a set of alternatives and C = 

{C1, C2, …, Cn} be a set of criteria. Assume wj is the 

weight of the criteria Cj, wj[0, 1], and 
1

1
n

jj
w


 . 

Then the character of the alternative Ai (i = 1, 2…m) 

can be represented by the following SVNS infor-

mation: 
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where ( ), ( ), ( ) [0,1]
j j jC i C i C iT A I A F A  . ( )

jC iT A  de-

notes the degree to which the alternative Ai satisfies 

the criterion Cj, ( )
jC iI A  indicates the indeterminacy 

degree to which the alternative Ai satisfies or does not 

satisfy the criterion Cj, ( )
jC iF A  indicates the degree 

to which the alternative Ai does not satisfy the criteri-

on Cj.  

In the multicriteria decision-making problem, a 

weighted cross entropy measure between any alterna-

tive Ai and the ideal alternative A
*
 = {<1, 0, 0>, <1, 0, 

0>, …, <1, 0, 0>} is proposed in SVNS domain [32] 

as follows: 
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(8) 

The smaller the value of Di is, the better the Ai is. 

That is, the alternative Ai with smaller Di is closer to 

the idea alternative. Thus, after calculating each Di, 

we can decide which alternative Ai is the best one. 

2.3.2. Information Fusion 

Both color and depth features are expressed in the 

SVNS domain by  ( ), ( ), ( )
j j ji C i C i C iA T A I A F A . 

Each feature corresponds to an alternative Ai. A
c
 cor-

responds to the color feature, and A
d
 corresponds to 

the depth feature. For the proposition of color feature 

is a discriminative feature, T(A
c
), I(A

c
), F(A

c
) repre-

sent the probability of such a proposition is true, in-

determinate and false degrees, respectively. Using 

the near region similarity criterion, we can define as: 

1

ˆ ˆ( )

c

n

m
c c c

C u u

u

T A q p


                    (9) 

1
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c

n

m
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C u u

u
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                  (10) 

( ) 1 ( )
n n

c c

C CF A T A                  (11) 

Equation (9) is the Bhattacharyya coefficient 

which is frequently employed as a similarity judg-

ment [9], where ˆc

uq  is the object model in the color 

domain, ˆ c

up  is the histogram feature corresponding 

to the tracking location (a rectangle bounding box, 

region G in Figure 3) in the previous frame. 

The indeterminacy degree to which the alternative 

A
c
 satisfies or does not satisfy the criteria is defined 

in Equation (10), where ˆ c

up   corresponds to the near 

region Gn, Gn = αG - G, as shown in Figure 3. Both 

ˆ c

up  and ˆ c

up   are computed by using Equation (3). 

As the location estimated by the tracker may 

sometimes drifts from the target, to make the infor-

mation fusion results robust to tracking location er-

rors, we integrate the other condition, far region simi-

larity criteria Cf, into the multicriteria decision-

making problem.  

 

Fig. 3. Region illustration for information fusion. 

 



In the SVNS, the three functions using the far re-

gion similarity criteria Cf are defined as: 

1
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where ˆ c

up   is the histogram feature corresponding to 

the far region Gf, Gf = βG – Gn. 

The method for computing the subsets T, I, and F 

for the depth feature is the same as the above steps. 

Similarly, for the proposition of depth feature is a 

discriminative feature, T(A
d
), I(A

d
), F(A

d
) represent 

the probability of such a proposition is true, indeter-

minate and false degrees, respectively. By applying 

the criteria Cn and Cf, the related functions are pre-

sented as follows: 

1 1
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where ˆd

uq  is the object depth model, ˆ d

up  and ˆ d

up   is 

the corresponding depth histogram feature for the 

regions of Gn and Gf, respectively. 

Substituting ( )
n

c

CT A , ( )
n

c

CI A , ( )
n

c

CF A , ( )
f

c

CT A , 

( )
f

c
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f
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n

d
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n

d

CF A , 

( )
f

d

CT A , ( )
f

d

CI A , ( )
f

d

CF A  into Equation (8), we 

can obtain two values, Dc and Dd. Then we can de-

cide which feature to choose. Considering a single 

feature may result in a confusing back-projection, we 

fusing features in both domains, the new back-

projection after the fusion is defined as 
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where Td and Tc are two thresholds. As shown in 

Equation (13), the feature with a smaller value of 

cross-entropy decides the final back-projection, and 

we call this feature the main feature. In addition, the 

left feature is utilized to remove the possible noise. 

2.4. Tracking the Object 

The core of the CAMShift algorithm [7] is em-

ployed here. We choose the previous bounding box 

of the target as the mean shift window. Then the 

tracking location can be calculated by 

10 01

00 00

,
M M

x y
M M

                       (14) 

where 10 ( )
BBox

M x


 x
P x , 01 ( )

BBox
M y


 x

P x , 

and 00 ( )
BBox

M


 x
P x . Then, the size of the 

bounding box is 002 256s M . 

2.5. Update Object Model 

After finding the location of the target in the cur-

rent frame, we begin to update the object model in 

both color and depth domain. 

Before updating the object model, the object seed 

set is updated using Equation (1). Instead of consid-

ering all the pixels located in the bounding box, these 

pixels which satisfy P(x) > Ts are considered for up-

dating the object seeds during the tracking process. 

By utilizing the object seeds, the target area can be 

well extracted with the help of the depth information. 

Thus a more exact color histogram can be computed 

at each time of the whole video sequence. Suppose 

ˆ ( )c

up t  is the color histogram corresponding to the 

extracted target area at time t, then the updated color 

model of the object can be calculated by 

ˆ ˆ ˆ( ) ( 1) (1 ) ( )c c c

u u uq t q t p t             (15) 

where λ(0, 1). 

Considering that the depth distribution of the tar-

get shifts faster than the color’s and the extracted 

target area is relatively credible, we replace the pre-

vious object depth model by the new model: 

ˆ ˆ( ) ( )d d

u uq t p t                   (16) 

3. Experimental Result and Discussions 

We tested our algorithm on several challenging 

video sequences which are publicly available in the 

Princeton RGBD Tracking dataset. All of the se-

quences are captured from a Kinect sensor, and the 

information of both color and depth domain is pro-

vided. As mentioned at the beginning, we try to pro-

pose a robust algorithm for tackling challenging fac-

tors along with object tracking, such as blur, fast mo-

tion, deformation, illumination variation, and camera 



jitter, without considering occlusion. Thus, several 

sequences without serious occlusion challenge are 

selected as testing sequences.  

To gauge absolute performance, we compare our 

results to four state-of-the-art trackers including CT 

[18], LGT [8], IVT [25] and TLD [19]. All the four 

tackers are based on the scheme of tracking-by-

detection except LGT. Two layers are employed by 

the LGT tracker. Local patches which represent the 

target’s geometric deformation in the local layer are 

updated by using global visual properties, such as 

color, shape, and apparent local motion. 

3.1. Setting Parameters 

For the proposed algorithm, five object seeds are 

kept during the tracking procedure, thus, in Equations 

(1), five ranks are selected, where r1, r2, r3, r4, r5 are 

set as 10%, 15%, 20%, 25%, 30% respectively. The 

parameter T which decides the accuracy of the seg-

mentation of the target area is set to 60mm in Equa-

tion (2). The value of the parameter MAXD in Equa-

tion (5) depends on the displacement of the target 

between adjacent frames. According to the attribution 

of the dataset employed in this work, MAXD is set to 

70mm. In order to keep enough information in the 

fused back-projection map, both parameters Tc, Td 

defined in Equation (13) should be assigned a rela-

tively low value, all of them are set to 0.1 here. Final-

ly, all parameters were kept constant for all experi-

ments. 

3.2. Evaluation Criteria 

Two kinds of evaluation criteria are considered. 

The center position error is plotted based on the loca-

tion error metric and the success is plotted based on 

the overlap metric. The center position error is on the 

base of the Euclidean distance between the center 

location of the tracked target and the manually la-

beled ground truth in each frame.  

The overlap score is defined as 
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           (17) 

where ROITi is the target bounding box in the i-th 

frame and ROIGi is the corresponding ground truth 

bounding box. By setting an overlap score r which is 

defined as the minimum overlap ratio, one can decide 

whether an output is correct or not, the success ratio 

can be calculated by the following formula: 

1

1
,

0

N i

i ii

if s r
R u N u

otherwise


  


     (18) 

where N is the number of frames. 

3.3. Tracking Results 

The screen captures for some of the clips are 

shown in Figures 4-8. The quantitative plots are giv-

en in Figures 9-10. Details of these video sequences 

are shown in Table 2. A more detailed discussion of 

the tracking results is described below. 

Hand_no_occ sequence: This sequence highlights 

the challenges of target’s deformation, illumination 

variation. As shown in Figure 4, both CT and IVT 

Table 2 

An overview of the video sequences 

Sequence Target Challenges Frames 

hand_no_occ hand deformation, illumination variation 196 

toy_car_no toy car rotation, illumination variation, scale change 103 

toy_no toy blur, fast motion, rotation 102 

zball_no1 ball illumination variation, rapid motion, camera jitter 122 

new_ye_no_occ head rolling, appearance change 235 

wr_no1 rabit rolling, blur, fast motion, appearance change 156 

wdog_no1 dog rolling, blur, fast motion, appearance change 86 

zcup_move_1 cup scale change 370 

 



trackers fails soon due to that much background area 

are judged as object model at the phase of tracker 

initialization. The TLD tracker performs better than 

CT and IVT. However, as shown in frame #61, TLD 

also lost the target on account of the serious defor-

mation of the hand. On the contrary, the LGT tracker 

successfully tackled the problem of deformation. 

Overall, as shown in Figure 9, our tracker gives the 

 

Fig. 4. Screenshots of tracking results of the video sequence used for testing (hand_no_occ, target is selected in frame #1). 

 

Fig. 5. Screenshots of tracking results of the video sequence used for testing (toy_car_no, target is selected in frame #1). 



best performance. As seen in frame #18, #61, #134, 

#175, our tracker can produce a more accurate 

bounding box. 

Toy_car_no sequence: This sequence presents 

challenging target rotation and light changes (lights 

mounted on the car winked sometimes, as seen in 

frame #13, #92 in Figure 5) . As shown in Figure 5, 

all the trackers perform well before frame #23. In the 

 

Fig. 6. Screenshots of tracking results of the video sequence used for testing (toy_no, target is selected in frame #1). 

 

Fig. 7. Screenshots of tracking results of the video sequence used for testing (zball_no1, target is selected in frame #1). 



course of turning, trackers except ours begin to lose 

the toy car. Both the feature model and the model 

updating method employed by CT, LGT, IVT and 

TLD cannot fit the serious change of the target’s ap-

pearance and size, which leads to failures. 

Toy_no sequence: Challenges of blur, fast motion 

and rotation are presented in this sequence. As shown 

in Figure 6, the CT and IVT trackers have already 

failed in frame #9 on account of the factors of blur 

and fast motion. Both ours and the LGT tracker per-

form well throughout the sequence. However, as 

shown in frame #9, we can see from the estimated 

bounding boxes that the size of the object is often 

poorly estimated by the LGT tracker, which leads to 

failures. That is mainly because the sudden move of 

the target, and the update of local patched cannot 

follow such a rapid change. 

Zball_no1 sequence: This sequence presents the 

challenges of illumination change, rapid motion, 

camera jitter, similar color and depth information. As 

shown in Figure 7, the TLD tracker fails soon. An 

inappropriate size of the bounding box is estimated 

by the IVT tracker, and it also fails soon (as seen in 

Figure 9). As shown in frames #76 and #77 in Figure 

7, when the tracked ball rolled into the shadow of the 

sofa, both fast move and camera jitter happens. The 

CT tracker lost the target ball, and the LGT tracker 

cannot produce a proper bounding box because of the 

sudden movement and similar background. As seen 

in Figure 7 and Figure 9, our tracker performs best. 

Other sequences: The tracking results of another 

four sequences are given in Figures 8 and 10. The 

plot of the mean success rate of all the sequences is 

shown in Figure 10. As seen in Figures 8 and 10, the 

proposed tracker performs best among all the trackers 

compared in this work.  

Analysis of our tracker: Figures 9-10 present the 

tracking results in terms of center location error and 

success rate. Our tracker achieves much better results 

than other trackers. By extracting target area in depth 

domain, the noisy background information can be 

filtered (e.g. hand_no_occ and toy_no), and a more 

reliable object model can be achieved when illumina-

tion or object orientation changes (e.g. toy_car_no 

 

Fig. 8. Screenshots of tracking results of the video sequence used for testing (each target is selected in frame #1). (a) new_ye_no_occ; (b) 

wr_no1; (c) wdog_no1; (d) zcup_move_1. 



and zball_no1). By employing the multicriteria deci-

sion-making method in NS domain (the key of our 

tracker), the information fusion facilitates enhancing 

the robustness of the back-projection. Challenges of 

similar information in color and depth domain can be 

tackled in all of the sequences. Challenges of blur 

and fast motion are successfully tackled by using a 

relative large searching area and robust back-

projection. 
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Fig. 9. Success and center position error plots of the sequence hand_no_occ, toy_car_no, toy_no and zball_no1. 



4. Conclusions 

In this paper, we present a new scheme for track-

ing an object in RGBD domain. A distribution map 

in the depth domain is calculated by employing sev-

eral object seeds. The object seeds are updated during 

the whole tracking procedure depending on the fused 

back-projection. The information fusion problem in 

both color and depth domain is translated into a mul-

ticriteria decision-making problem. Two kinds of 

criteria are proposed and the cross-entropy of SVNSs 

is utilized to tackling the information fusion problem. 

Such a discriminative back-projection leads to a more 

robust and efficient tracker. Experimental results on 

challenging video sequences demonstrate that our 

tracker achieves favorable performance when com-

pared with several state-of-the-art algorithms. As 

discussed in this paper, we focus on the tracking task 

without serious occlusion. It will be our primary mis-

sion to try to tackle the occlusion problem through 

the RGBD information in future. 
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