Two conjectures on the number of primes obtained concatenating to the left with numbers lesser than p a prime p (II)

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that there exist an infinity of primes $p=30 * h+j$, where j can be 1, 7, 11, 13, 17, 19, 23 or 29, such that, concatenating to the left p with a number $m, m<p$, is obtained a number n having the property that the number of primes of the form $30 * k+j$ up to n is equal to p. Example: such a number p is $67=30 * 2+7$, because there are 67 primes of the form $30 * k+7$ up to 3767 and 37 < 67. I also conjecture that there exist an infinity of primes q that don't belong to the set above, i.e. doesn't exist $m, m<q$, such that, concatenating to the left q with m, is obtained a number n having the property shown. Primes can be classified based on this criteria in two sets: primes p that have the shown property like 13, 17, 23, 31, 37, 41, 47, 59, 61, 67, 71, 73, 89, 103 (...) and primes q that don't have it like 7, 11, 19, 29, 43, 53, 79, 83, 101 (...).

Conjecture 1:

There exist an infinity of primes $p=30 * h+j$, where j can be 1, 7, 11, 13, 17, 19, 23 or 29 , such that, concatenating to the left p with a number $m, m<p$, is obtained a number n having the property that the number of primes of the form $30 * k+j$ up to n is equal to p.

Example:
Such a number p is $67=30 * 2+7$, because there are 67 primes of the form $30 * k+7$ up to 3767 and $37<67$.

The sequence of primes p :

: $\quad \mathrm{p}=13$, because there are 13 primes of the form 30 k +13 up to 613 and 6 < 13;
: $\quad \mathrm{p}=17$, because there are 17 primes of the form 30 k +17 up to 817 and 8 < 17;
: $\quad \mathrm{p}=23$, because there are 23 primes of the form 30 k +23 up to 1123 and $11<23$;

```
: \(\quad \mathrm{p}=31\), because there are 31 primes of the form 30 k
    +1 up to 1831 and \(18<31\);
: \(\quad \mathrm{p}=37\), because there are 37 primes of the form 30 k
    +7 up to 1937 and \(19<37\);
: \(\quad \mathrm{p}=41\), because there are 41 primes of the form 30 k
    +11 up to 2141 and \(21<41\);
: \(\quad \mathrm{p}=47\), because there are 47 primes of the form 30 k
    +17 up to 2447 and \(24<47\);
: \(\quad \mathrm{p}=59\), because there are 59 primes of the form 30 k
    +29 up to 3259 and \(32<59\);
: \(\quad \mathrm{p}=61\), because there are 61 primes of the form 30 k
    +1 up to 3561 and \(35<61\);
: \(\quad \mathrm{p}=67\), because there are 67 primes of the form 30 k
    +7 up to 3767 and \(37<67\);
: \(\quad \mathrm{p}=71\), because there are 71 primes of the form 30 k
    +11 up to 4171 and \(41<71\);
: \(\quad \mathrm{p}=73\), because there are 73 primes of the form 30 k
    +13 up to 4173 and \(41<73\);
: \(\quad \mathrm{p}=89\), because there are 89 primes of the form 30 k
    +29 up to 5289 and \(52<89\);
: \(\quad \mathrm{p}=103\), because there are 103 primes of the form
    \(30 k+13\) up to 6103 and \(6<103\);
    (...)
Note that, in few cases above:
: \(\quad \mathrm{m}=(\mathrm{p}-1) / 2[\mathrm{n}=613,817\), 1123]
\(: \quad m=(p+1) / 2[n=1937,2141,2447]\)
\(: \quad m=(p+5) / 2[n=1831,3259]\)
\(: \quad m=(p+9) / 2[n=3561,4173]\)
\(: \quad m=p-30 \quad[n=3767,4171]\)
```


Conjecture 2:

There exist an infinity of primes q that don't belong to the set above, i.e. doesn't exist $m, m<q$, such that, concatenating to the left q with m, is obtained a number n having the property shown.

The sequence of primes q :

7, 11, 19, 29, 43, 53, 79, 83, 101 (...)

