Conjecture on numbers n obtained concatenating two primes related to the number of primes up to n

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that there exist an infinity of numbers n obtained concatenating two primes p and q, where $p=30 * k+m 1$ and $q=30 * h+m 2, p<q, m 1$ and m2 distinct, having one from the values 1, 7, 11, 13, 17, 19, 23, 29, such that the number of primes congruent to $m 1$ (mod 30) up to n is equal to the number of primes congruent to m2 (mod 30) up to n. Example: for $n=1723$ obtained concatenating the primes $p=17$ and $q=23$, there exist 34 primes of the form $30 * k+17$ up to 1723 and 34 primes of the form $30 * k+23$ up to 1723.

Conjecture:

There exist an infinity of numbers n obtained concatenating two primes p and q, where $p=30 * k+m 1$ and $q=30 * h+m 2, p<q, m 1$ and $m 2$ distinct, having one from the values $1,7,11,13,17,19,23,29$, such that the number of primes congruent to $m 1$ (mod 30) up to n is equal to the number of primes congruent to m2 (mod 30) up to n .

Example: for $n=1723$ obtained concatenating the primes p $=17$ and $q=23$, there exist 34 primes of the form $30 * k+$ 17 up to 1723 and 34 primes of the form $30 * k+23$ up to 1723.

The first seventeen numbers n :

```
: 711, because there exist }16\mathrm{ primes congruent to 7
        (mod 30) respectively 16 primes congruent to 11 (mod
        30) up to n;
        : 713, because there exist }16\mathrm{ primes congruent to 7
        (mod 30) respectively 16 primes congruent to 13 (mod
        30) up to n;
        : 723, because there exist }16\mathrm{ primes congruent to 7
        (mod 30) respectively 16 primes congruent to 23 (mod
        30) up to n;
        : 729, because there exist }17\mathrm{ primes congruent to 7
        (mod 30) respectively 17 primes congruent to 29 (mod
        30) up to n;
```

: 743, because there exist 17 primes congruent to 7 (mod 30) respectively 17 primes congruent to 13 (mod 30) up to n;
: 753, because there exist 17 primes congruent to 7 (mod 30) respectively 17 primes congruent to 23 (mod 30) up to n ;
: 783, because there exist 18 primes congruent to 7 (mod 30) respectively 18 primes congruent to 23 (mod 30) up to n;
: 1167, because there exist 26 primes congruent to 11 (mod 30) respectively 26 primes congruent to 7 (mod 30) up to n;
: 1317, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 17 (mod 30) up to n;
: 1323, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 23 (mod 30) up to n;
: 1329, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 29 (mod 30) up to n;
: 1347, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 17 (mod 30) up to n;
: 1353, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 23 (mod 30) up to n ;
: 1359, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 29 (mod 30) up to n ;
: 1389, because there exist 27 primes congruent to 13 (mod 30) respectively 27 primes congruent to 29 (mod 30) up to n;
: 1723, because there exist 34 primes congruent to 17 (mod 30) respectively 34 primes congruent to 23 (mod 30) up to n;
: 1737, because there exist 34 primes congruent to 17 (mod 30) respectively 34 primes congruent to 7 (mod 30) up to n.

