Every even integer greater than six can be expressed as the sum of two co-prime odd integers atleast one of which is a prime

Prashanth R. Rao

Abstract

In this paper we prove a simple theorem that is distantly related to the Even Goldbach conjecture and is weaker than Chen's theorem regarding the expression of any even integer as the sum of a prime number and a semiprime number. We show that any even integer greater than six can be written as the sum of two odd integers coprime to one another and atleast one of them is a prime.

Proof:

Consider any even integer $2 \mathrm{n}>6$.
Let it be $2 n=2 p_{1} p_{2} p_{3} p_{4} \ldots \ldots p_{k}$ where $p_{1}, p_{2}, p_{3}, \ldots \ldots . . p_{k}$ are all the remaining prime factors.

Bertrand's postulate suggests that there must be atleast one positive prime integer between $n=p_{1} p_{2} p_{3} p_{4} \ldots \ldots p_{k}$ and $2 n=2 p_{1} p_{2} p_{3} p_{4} \ldots \ldots p_{k}$

Let us call this prime as p and this will be an odd prime integer. This prime integer p will be co-prime to all the factors of 2 n .

Therefore there must exist another odd integer x such that :
$\mathrm{p}+\mathrm{x}=2 \mathrm{n}$
Since p is coprime to all the prime factors of $2 n, x$ must also be coprime to all the prime factors of 2 n and similarly x must be co-prime to p (otherwise common factors would arise for the three integers $x, p, 2 n$).

Consistently $\mathrm{n}<\mathrm{p}<2 \mathrm{n}$ and x is an odd integer such that: $3 \leq x<n$.
Also note that $\mathrm{p}, \mathrm{x}, \mathrm{n}$ are unequal.

