Epstein-Barr virus (EBV) – A main cause of rheumatoid arthritis.

Ilija Barukčić¹

¹ Horandstrasse, DE-26441 Jever, Germany. E-Mail: Barukcic@t-online.de

Received December 28, 2016

Objective.

Many studies presented some evidence that EBV might play a role in the pathogenesis of rheumatoid arthritis. Still, there are conflicting reports concerning the existence of EBV in the synovial tissue of patients suffering from rheumatoid arthritis.

Material and methods.

Takeda et al. designed a study to detected EBV DNA is synovial tissues obtained at synovectomy or arthroplasty from 32 patients with rheumatoid arthritis (RA) and 30 control patients (no rheumatoid arthritis). In this study, the data as published by Takeda et al. were re-analysed.

Results.

EBV infection of human synovial tissues is a condition per quam of rheumatoid arthritis. And much more than this. There is a highly significant causal relationship between an EBV infection of human synovial tissues and rheumatoid arthritis (k = +0,546993718, p-value = 0,00001655).

Conclusion.

These findings suggest that EBV infection of human synovial tissues is a main cause of rheumatoid arthritis.

Introduction.

Rheumatoid arthritis (RA), a systemic, predominantly¹ CD4+ T helper type 1 (Th1)-driven disease characterized by an extensive synovial hyperplasia and infiltration by macrophages, monocytes, lymphocytes and fibroblasts, is a destructive, chronic and debilitating arthritis. RA affects more or less about 1% of the world's population². The prevalence of rheumatoid arthritis in men is twofold to fourfold less ^{3, 4} than in women. The long-term prognosis of rheumatoid arthritis remains very poor. In particular, the average life expectancy is reduced by 3 to 18 years ⁵. The loss from the workplace, the indirect costs of disability and the direct costs of treatment of RA are very high ^{6,7}. At present there is no known cure for rheumatoid arthritis. Many exposures investigated as possible risk factors for the development of rheumatoid arthritis such as dietary

factors (antioxidants)^{8,9}, red meat protein^{10,11}, fat intake^{12,13}, breast feeding, the use of oral contraceptives or hormone replacement therapy^{14,15,16} have shown no strong associations. Only cigarette smoking has been found to increase the risk of rheumatoid arthritis^{17,18,19,20}. In the quest to uncover the unknown etiology of rheumatoid arthritis, viruses including Epstein–Barr virus (EBV), human herpesvirus-6, human herpesvirus-8, parvovirus B19, HTLV-1, and human endogenous retroviruses-5 have all been hypothesized for many years to be involved in the pathogenesis of rheumatoid arthritis^{21,22,23,24,25,26,27,28,29}. Many studies presented some evidence suggesting that especially EBV might play a role in the pathogenesis of RA. Among them Alspaugh and Tan³⁰ were one of the first. However, due to conflicting reports concerning the existence of EBV in the synovial tissue of

VIXra.org Ilija Barukčić – Epstein-Barr Virus (EBV) – A main cause of rheumatoid arthritis.

RA patients ^{31,32,33}, a cause or the cause of rheumatoid arthritis, a highly disabling systemic autoimmune disease, remains unknown.

Material and methods

Study design

Takeda et al. ³⁴ designed a study to evaluate the presence of the EBV genome in the synovial tissue of RA patients and to localize the EBV-infected cells. Synovial tissues were obtained at the time of synovectomy or arthroplasty from knees, elbows, and hips of 32 patients with RA of 30 patients with no rheumatoid arthritis (osteoarthritis). The patients with rheumatoid arthritis fulfilled the 1987 revised criteria of the American College of Rheumatology (formerly, the American Rheumatism Association) ³⁵. EBV DNA was detected by PCR in synovial tissues from RA and NO-RA patients. Takeda et al. detected EBV DNA by PCR in none of those from the 30 NO-RA (no rheumatoid arthritis) patients but in 15 of the 32 samples from rheumatoid arthritis. The following table illustrates the data as obtained by Takeda et al.

Table 1.		Rheumatoid arthritis		
		yes	no	
EBV DNA	yes	15	0	15
	no	17	30	47
		32	30	62

Statistical Analysis

All statistical analyses were performed with Microsoft Excel version 14.0.7166.5000 (32-Bit) software (Microsoft GmbH, Munich, Germany). The method of the conditio per quam³⁶ was used to proof the hypotheses: if EBV infection then rheumatoid arthritis. The mathematical formula of the causal relationship³⁷ k and the chi-square³⁸ distribution were applied to determine the significance of a causal relationship between a EBV infection and rheumatoid arthritis. A one-tailed test makes it much more easier to reject a null hypothesis (no causal relationship) while a two-tailed test makes it more difficult to reject a null hypothesis and is more conservative on this account.

Results

An Epstein-Barr virus infection is a conditio per quam of rheumatoid arthritis

Claims.

Null hypothesis:

An Epstein-Barr virus infection is a conditio per quam of rheumatoid arthritis.

 $p_0(EBV \rightarrow RA) \ge p_{critical} (EBV \rightarrow RA).$

Alternative hypothesis:

An Epstein-Barr virus infection is not a conditio per quam of rheumatoid arthritis.

 $p_0(EBV \rightarrow RA) < p_{critical} (EBV \rightarrow RA).$ Conditions. Significance level (Alpha) below which the null hypothesis will be rejected: 0.05

Proof.

The data as obtained by Takeda et al. ³⁴ are viewed in the 2×2 table. The proportion of successes of a conditio per quam relationship between EBV and RA is calculated ³⁶ as

$$p_{\text{calculated}} (\text{EBV} \to \text{RA}) \equiv \frac{(15+17+30)}{62} = \frac{62}{62} = 1$$

The critical value p_{lower} (significance level alpha = 0.05) is calculated ³⁶ approximately as

$$p_{\text{lower}} \equiv 1 - \frac{3}{62} = 0,951612903$$

The critical value $p_{lower} = 0.951612903$ and thus far less than the proportion of successes calculated as $p_{calculated}(EBV \rightarrow RA) = 1$. Consequently, we cannot reject the null hypothesis in favour of the alternative hypotheses. The data as published by by Takeda et al. ³⁴ do support our Null hypothesis that an Epstein-Barr virus infection is a conditio per quam of rheumatoid arthritis.

An Epstein-Barr virus infection is a main cause of rheumatoid arthritis.

Claims.

Null hypothesis:

An Epstein-Barr virus infection is not a main cause of rheumatoid arthritis. (k(EBV, RA) = 0).

Alternative hypothesis:

An Epstein-Barr virus infection is a main cause of rheumatoid arthritis. ($k(EBV,RA)\!<\!\!>\!0$).

Conditions.

Significance level (Alpha two tailed) below which the null hypothesis will be rejected: 0.05.

Degrees of freedom: 1.

The two tailed critical Chi square value (degrees of freedom = 1) for alpha level 5% is 3.841458821.

Proof.

The data for this hypothesis test provided by Takeda et al. ³⁴ are illustrated in the 2×2 table. The causal relationship k(EBV, RA) is calculated ^{36, 37} as

$$k_{calc} (EBV, RA) = \frac{(15 \times 30) - (0 \times 17)}{\sqrt[2]{(32 \times 30) \times (15 \times 47)}} = 0,546993718$$

The value of $k_{calc}(EBV, RA)$ is equivalent to a calculated ³⁷ chi-square value of

© Ilija Barukčić, Jever, Germany 28. Dezember 2016. All rights reserverd.

 $\chi^{2}_{calc} = n \times k_{calc} (EBV, RA) \times k_{calc} (EBV, RA)$

$$\chi^2_{calc} = 62 \times 0,546993718 \times 0,546993718$$

 $\chi^2_{calc} = 18,55053191$

The calculated chi-square statistic itself, uncorrected for continuity, is 18,55053191 and equivalent to a P value of 0.00001655. The calculated chi-square statistic is 18,55053191 and exceeds the critical chi-square value of 3.841458821. The data of Takeda et al. ³⁴ do not support our null hypothesis. Consequently, we must reject the null hypothesis and accept the alternative hypothesis. In general, there is a highly significant causal relationship between an Epstein-Barr virus infection and rheumatoid arthritis (k = +0,546993718, p-value = 0,00001655). A sample size which is too small may fail to detect what is intended to do. A study based on a very large sample can waste unnecessarily more resources in the form of money, manpower, materials and time than needed to detect what is intended to do. Thus far, according to the central limit theorem as sample size of at least 30 samples is needed for a sample mean to be normally distributed. In this context we can state that about 100*(15/32) = 47% of rheumatoid arthritis is caused by Epstein-Barr virus. Altogether, an Epstein-Barr virus infection is a main cause of rheumatoid arthritis.

Discussion

Several study findings support the hypothesis that EBV is involved in RA disease pathogenesis. In contrast to healthy controls patients with existing RA have higher levels of antibodies against several EBV-encoded proteins, including VCA ³⁹, EBNA-1 ^{39,40,41,42}, EBNA-2 ⁴³, and early antigen (EA) ³⁹. The EBV DNA load in peripheral blood mononuclear cells of patients suffering from rheumatoid arthritis is 10-fold elevated compared with the EBV DNA load in peripheral blood mononuclear cells in controls. ⁴⁴. The numbers of circulating EBV-infected B cells ⁴⁵ and EBV DNA loads in saliva ⁴⁶ is significantly higher in patients suffering from rheumatoid arthritis. In particular, several studies were able to provide some evidence that the levels of EBV DNA and mRNA are much higher in the synovium of patients with rheumatoid arthritis than in that of healthy controls ^{31,} ^{33, 34, 40}. Takeda³⁴ et al. were able to detect EBV in the synovial tissue of RA patients and concluded that EBV may be involved in the pathogenesis of RA. Still, one might argue that the very interesting study of Takeda et al. 34 is based on a very small sample size of n=62 patient and is of only of limited value to detect large differences between designs or measures or to establish a causal relationship. In principle, bearing in mind the precision, statistical power and validity limitations of trials with small sample sizes, there is nothing wrong with conducting a well-designed small study. The technical quality of the study of Takeda et al. ³⁴ is very high. Takeda et al. used southern blot hybridization and/or polymerase chain

reaction (PCR) amplification to detect EBV DNA. However, Takeda³⁴ et al. and all these other observations noted above have never been able to establish a cause effect relationship between Epstein-Barr virus and rheumatoid arthritis.

This study showed that there is a significant and an extremely high conditio per quam relationship $(p(EBV \rightarrow RA)=1)$ between Epstein-Barr virus and rheumatoid arthritis. Together with the establishment of a conditio per quam relationship between Epstein-Barr virus and rheumatoid arthritis, our present study indicates that not only Epstein-Barr virus implicates rheumatoid arthritis but Epstein-Barr virus is a cause of rheumatoid arthritis (k=+0.546993718, p-value = 0.00001655).About 100*(15/32) = 47% of rheumatoid arthritis is caused by Epstein-Barr virus. Consequently, Epstein-Barr virus, a DNA-containing herpesvirus which is infecting more than 98% of the human population by the age of 40 years 47 and which is extremely prevalent worldwide, is not the cause of rheumatoid arthritis but a main cause (k=+0.546993718, p-value = 0,00001655) of rheumatoid arthritis.

Conclusion.

A main cause of rheumatoid arthritis, a systemic and highly disabling autoimmune disease, no longer remains unknown. Highly significant evidence points to Epstein-Barr virus as a main cause of rheumatoid arthritis.

Conflicts of Interest:

The author declares that there are no competing interests.

References

- 1. Miossec P, van den Berg W: Th1/Th2 cytokine balance in arthritis. Arthritis Rheum 1997, 40:2105-1215.
- Gabriel SE, Crowson CS, O'Fallon WM: The epidemiology of rheumatoid arthritis in Rochester, Minnesota, 1955–1985. Arthritis Rheum 1999, 42:415-420.
- Linos A, Worthington JW, O'Fallon WM, Kurland LT: The epidemiology of rheumatoid arthritis in Rochester, Minnesota: a study of incidence, prevalence, and mortality. Am J Epidemiol 1980, 111:87-98.
- 4. Symmons DP, Barrett EM, Bankhead CR, Scott DG, Silman AJ: The incidence of rheumatoid arthritis in the United Kingdom: results from the Norfolk Arthritis Register. Br J Rheumatol 1994, 33:735-739.
- Pincus T, Callahan LF: Taking mortality in rheumatoid arthritis seriously—predictive markers, socioeconomic status and comorbidity. J Rheumatol 1986, 13:841-845.
- 6. Yelin E, Wanke LA: An assessment of the annual and long-term direct costs of rheumatoid

VIXra.org Ilija Barukčić – Epstein-Barr Virus (EBV) – A main cause of rheumatoid arthritis.

arthritis: the impact of poor function and functional decline. Arthritis Rheum 1999, 42: 1209-1218.

- 7. McIntosh E: The cost of rheumatoid arthritis. Br J Rheumatol 1996, 35:781-790.
- 8. Jaswal S, Mehta HC, Sood AK, Kaur J: Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 2003, 338:123-129.
- 9. Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C: Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 2004, 22:53-57.
- Pattison D, Symmons D, Luben R, Welch A, Khaw KT, Day NJ, Silman AJ: High red meat and total protein consumption are risk factors for new onset inflammatory polyarthritis: results from a population-based prospective study [abstract]. Arthritis Rheum 2003, 48:S393.
- 11. Grant WB: The role of meat in the expression of rheumatoid arthritis. Br J Nutr 2000, 84:589-595.
- Shapiro JA, Koepsell TD, Voigt LF, Dugowson CE, Kestin M, Nelson JL: Diet and rheumatoid arthritis in women: a possible protective effect of fish consumption. Epidemiology 1996, 7:256-263.
- Linos A, Kaklamani VG, Kaklamani E, Koumantaki Y, Giziaki E, Papazoglou S, Mantzoros CS: Dietary factors in relation to rheumatoid arthritis: a role for olive oil and cooked vegetables? Am J Clin Nutr 1999, 70:1077-1082.
- Hernandez-Avila M, Liang MH, Willett WC, Stampfer MJ, Colditz GA, Rosner B, Chang RW, Hennekens CH, Speizer FE: Exogenous sex hormones and the risk of rheumatoid arthritis. Arthritis Rheum 1990, 33:947-953.
- Hernandez Avila M, Liang MH, Willett WC, Stampfer MJ, Colditz GA, Rosner B, Roberts WN, Hennekens CH, Speizer FE: Reproductive factors, smoking, and the risk for rheumatoid arthritis. Epidemiology 1990, 1:285-291.
- 16. Karlson EW, Mandl LA, Hankinson SE, Grodstein F: Do breast-feeding and other reproductive factors influence future risk of rheumatoid arthritis? Results from the Nurses' Health Study. Arthritis Rheum 2004, 50:3458-3467.
- Karlson EW, Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH: A retrospective cohort study of cigarette smoking and risk of rheumatoid arthritis in female health professionals. Arthritis Rheum 1999, 42:910-917.
- Hutchinson D, Shepstone L, Moots R, Lear JT, Lynch MP: Heavy cigarette smoking is strongly associated with rheumatoid arthritis (RA), particularly in patients without a family history of RA. Ann Rheum Dis 2001, 60:223-227.
- 19. Mattey DL, Dawes PT, Fisher J, Brownfield A, Thomson W, Hajeer AH, Ollier WE: Nodular disease in rheumatoid arthritis: association with

cigarette smoking and HLA-DRB1/TNF gene interaction. J Rheumatol 2002, 29:2313-2318.

- 20. Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L, Alfredsson L: Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis 2003, 62:835-841.
- 21. Inman RD: Infectious etiology of rheumatoid arthritis. Rheum Dis Clin North Am 1991, 17:859-870.
- 22. Zhang L, Nikkari S, Skurnik M, Ziegler T, Luukkainen R, Mottonen T, Toivanen P: Detection of herpesviruses by polymerase chain reaction in lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum 1993, 36:1080-1086.
- 23. Newkirk MM, Watanabe Duffy KN, Leclerc J, Lambert N, Shiroky JB: Detection of cytomegalovirus, Epstein-Barr virus and herpes virus-6 in patients with rheumatoid arthritis with or without Sjogren's syndrome. Br J Rheumatol 1994, 33:317-322.
- 24. Dostal C, Newkirk MM, Duffy KN, Paleckova A, Bosak V, Cerna M, Zd'arsky E, Zvarova J: Herpes viruses in multicase families with rheumatoid arthritis and systemic lupus erythematosus. Ann N Y Acad Sci 1997, 815:334-337.
- 25. Cooke SP, Rigby SP, Griffiths DJ, Venables PJ: Viral studies in rheumatic disease. Ann Med Interne (Paris) 1998, 149:30-33.
- 26. Griffiths DJ: Rheumatoid arthritis: a viral aetiology? Hosp Med 2000, 61:378-379.
- 27. Kerr JR: Pathogenesis of human parvovirus B19 in rheumatic disease. Ann Rheum Dis 2000, 59:672-683.
- 28. Meyer O: Parvovirus B19 and autoimmune diseases. Joint Bone Spine 2003, 70:6-11.
- 29. Carty SM, Snowden N, Silman AJ: Should infection still be considered as the most likely triggering factor for rheumatoid arthritis? J Rheumatol 2003, 30:425-429.
- Alspaugh MA, Tan EM: Serum antibody in rheumatoid arthritis reactive with a cell-associated antigen. Demonstration by precipitation and immunofluorescence. Arthritis Rheum 1976, 19: 711-719.
- 31. Takei M, Mitamura K, Fujiwara S, Horie T, Ryu J, Osaka S, et al. Detection of Epstein-Barr virusencoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int Immunol 1997;9:739–43.
- 32. Mousavi-Jazi M, Bostrom L, Lovmark C, Linde A, Brytting M, Sundqvist VA. Infrequent detection of cytomegalovirus and Epstein-Barr virus DNA in synovial membrane of patients with rheumatoid arthritis. J Rheumatol 1998;25:623–8.
- 33. Saal JG, Krimmel M, Steidle M, Gerneth F, Wagner S, Fritz P, et al. Synovial Epstein-Barr

© Ilija Barukčić, Jever, Germany 28. Dezember 2016. All rights reserverd.

VIXra.org Ilija Barukčić – Epstein-Barr Virus (EBV) – A main cause of rheumatoid arthritis.

virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA–DR4 epitope. Arthritis Rheum 1999;42:1485–96.

- 34. Takeda T, Mizugaki Y, Matsubara L, Imai S, Koike T, Takada K: Lytic Epstein-Barr virus infection in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 2000, 43:1218-1225.
- 35. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315–24.
- Barukčić, K. and Barukčić, I. Epstein Barr Virus -The Cause of Multiple Sclerosis. Journal of Applied Mathematics and Physics. 2016; 4:1042-1053.
- Barukčić, I. The Mathematical Formula of the Causal Relationship k. International Journal of Applied Physics and Mathematics. 2016; 6: 45-65.
- 38. Pearson, K. On the Criterion That a Given System of Deviations from the Probable in the Case of a Correlated System of Variables Is Such That It Can Be Reasonably Supposed to Have Arisen from Random Sampling. Philosophical Magazine Series. 1900; 5: 157-175.
- 39. Ferrell PB, Aitcheson CT, Pearson GR, Tan EM: Seroepidemiological study of relationships between Epstein-Barr virus and rheumatoid arthritis. J Clin Invest 1981, 67:681-687.
- 40. Blaschke S, Schwarz G, Moneke D, Binder L, Muller G, Reuss-Borst M: Epstein-Barr virus infection in peripheral blood mononuclear cells, synovial fluid cells, and synovial membranes of patients with rheumatoid arthritis. J Rheumatol 2000, 27:866-873.
- 41. Catalano MA, Carson DA, Slovin SF, Richman DD, Vaughan JH: Antibodies to Epstein-Barr virus-determined antigens in normal subjects and in patients with seropositive rheumatoid arthritis. Proc Natl Acad Sci USA 1979, 76:5825-5828.
- 42. Alspaugh MA, Henle G, Lennette ET, Henle W: Elevated levels of antibodies to Epstein-Barrvirus antigens in sera and synovial fluids of patients with rheumatoid arthritis. J Clin Invest 1981, 67:1134-1140.
- 43. Hazelton RA, Sculley TB, Pope JH: The prevalence of antibodies to an Epstein-Barr virusinduced polypeptide (EBNA-2) in the sera of rheumatoid arthritic families. Br J Rheumatol 1987, 26:193-196.
- 44. Balandraud N, Meynard JB, Auger I, Sovran H, Mugnier B, Reviron D, Roudier J, Roudier C: Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum 2003, 48:1223-1228.
- 45. Tosato G, Steinberg AD, Yarchoan R, Heilman CA, Pike SE, De Seau V, Blaese RM: Abnormally elevated frequency of Epstein-Barr

virus-infected B cells in the blood of patients with rheumatoid arthritis. J Clin Invest 1984, 73:1789-1795.

- 46. Newkirk MM, Watanabe Duffy KN, Leclerc J, Lambert N, Shiroky JB: Detection of cytomegalovirus, Epstein-Barr virus and herpes virus-6 in patients with rheumatoid arthritis with or without Sjogren's syndrome. Br J Rheumatol 1994, 33:317-322.
- Linde A: Epstein-Barr virus. In Manual of Clinical Microbiology. Vol. 2. 8th edition. Edited by Murray PR, Baron EJ, Jorgensen JH,Pfaller MA, Yolken RH. Washington DC: ASM Press; 2003:1331-1340.