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Abstract 

 

A fractal approach to the long-short portfolio optimization is proposed. The algorithmic system 

based on the composition of market-neutral spreads into a single entity has been considered. The 

core of the optimization scheme is a fractal walk model of returns, modifying a risk aversion 

according to the investment horizon. The covariance matrix of spread returns has been used for the 

optimization and modified according to the Hurst stability analysis. Out-of-sample performance data 

has been represented for the space of exchange traded funds in five period time period of 

observation. The considered portfolio system has turned out to be statistically more stable than a 

passive investment into benchmark with higher risk adjusted cumulated return. 

 

Introduction 

 

According to the research of Malkiel [1] only 14% of long-term equity funds represent an average 

return of 2-4% above S&P500 benchmark in ten years time frame. This statistics correspond to pre-

ETF era of 1990-2001. However the typical Sharpe ratio of S&P500 reaches 1.5-2 levels of desirable 

return stability only for 5-10 years horizon. In combination with bond funds it makes global index a 

comfortable instrument for pension programs, but inefficient for middle-term investment of 1-5 years 

horizon. The local diversification of Long-Only funds doesn’t efficiently provide a systematic risk 

aversion. The Global Asset Allocation models simplified a diversification at the beginning. However 

while there are several major drivers of a Global Market like US or Asia this model still lacks a 

market-neutrality in long term strategies. Another approach to market neutral investment is portfolio 

of hedge funds which apply short term long-short arbitrage models with high beta neutrality. 

Unfortunately their models still preserve properties of ―black boxes‖ and are not comfortable for the 

transparent investing. In the current research we derive to prove that a long-short model is suitable 

for the long term investments and may provide the stable trends. This model is represented on the 

basis of market-neutral pair spreads which use relative competitive advantages of assets. 

Diversification of spreads allows eliminating both systematic and non systematic portfolio risks. A 

fractal model of volatility estimation is introduced which allows taking into account nonlinear risks 

such as volatility clustering. This approach suggests a new step outside the standard statistics. In 

following sections we provide description of market neutralization of spreads, their composition into 

the single entity and portfolio optimization scheme.        

 

Market neutrality 

 

Let’s represent daily returns of assets i and j in the linear form: 
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Here 0

ir and 
0

jr are constant drift terms, mr is a mutual market return. Residuals express a random 

component in case of a perfect regression model. Otherwise residuals may be represented as 

nonlinear functions of market returns. If we consider long-term investments, returns are to be 

normalized in relation to the investment entry point at the beginning of the holding period: 
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The market term expresses the mutual market of these two assets which has to be defined in a 

quantitative way. Consequently i and
j are constant factors which show a relation of each asset to 

the market linear motion.  
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Definition of betas may be expressed through the increments of returns: 

                           )()()( mimii rtrtr    )()()( mjmjj rtrtr                                  (3) 

Here new residuals are weakly nonlinear terms  , ,( )i j m i j mr r  . Hedge factors /ij i j    may 

be defined by the relation with weakly nonlinear residual (4): 
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Here ( , )m ijr  is assumed to be a weakly nonlinear term. Long/Short position (spread) of assets i and 

j correspondingly tends to the perfect market neutral state while two conditions are satisfied:

ijji ww /1/  , 0 . Second condition is equivalent to mij r  . The return of this spread 

may be represented in the following way: 

     0 0( ) ( ) ( , ) ( , )ij i ij j i ij j ij m ij ij m ijr t r t r r r const r                                   (5)                                                   

A fundamental sense of a stable spread return is a competitive advantage of the asset i in comparison 

to the asset j with weight correction. One way to control regression requirements is to make regression 

tests, such as Fisher test, based on the standard statistics. However, a standard statistics and normal 

distribution of residuals doesn’t take into account nonlinear effects such as clustering of volatility, 

―three-sigma‖ events, which provide additional risks [2]. In the current research we propose a fractal 

walk model of returns for analysis of volatility  - effects in the stage of spread selection and portfolio 

optimization. 

 

Spread selection and ranging   

 

The basic idea of proposed portfolio is a composition of beta-neutral spreads into single entity which 

can be transformed into long/short investment portfolio. However there is the uncertainty in the stage 

of a spread selection, which can be eliminated by the ranging mechanism. For N assets we work with 

upper triangular part of a generating matrix ij , 1,i N ; 1,j N . Assets, activated in a spread  ,i j

are removed from the generating space to provide diversification of spread returns. Therefore a correct 

consequence of spread activation is an important part of the whole portfolio preparation. Below we 

propose a criterion of evolutionary spread selection, based on the fractal walk hypothesis. A standard 

model of a geometric random walk, Gaussian process, implies normally distributed volatility of spread 

returns: 

)()( 0 tWt ijijij                                                                   (6) 

Amplitude of volatility ij  is assumed to be a constant factor. Volatility function is represented by 

the normally distributed Wiener random walk )1,0()( NtW  . According to the Kelly representation 

[3] an optimal relative weight ijw  may expressed from the return growth maximum condition. 

Averaging is realised according to the horizon t : 
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This criterion defines an optimal relative weight of the portfolio spread if cross correlation effects are 

neglected:  
2

/ij ij ijw   . The term ij is estimated as a variance of returns. This estimation is 

sufficient for a one-period (one day) investment horizon. For N days a rescaling of Gaussian process 

gives the following estimation: 
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However a constant term N may be neglected for the task of relative weighting – the investment 

horizon is excluded from the parametric space. In this point a standard walk approach is to be 

modified.  In this research we propose a one-parameter model of volatility evolution – a model of 

Fractal Brownian Motion (FBM), introduced by Kolmogorov and Mandelbrot [4]. This model is 

relatively simple (one parameter) but explains such effects as volatility clustering and instabilities 

[5]. It may be applied as a second estimation model without significant processing resources. 

According to Mandelbrot [5] the FBM of the exponent H is a moving average of ( )W t
 with 

increments weighted by the kernel  
1/2H

t



. Let's denote a basic relation for the volatility rescaling, 

derived from a Fractal Brownian Motion model (FBM): 
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Expectation for the price fluctuation square in two arbitrary time moments 
1 2 2 1, :t t t t  is rescaled 

through the Hurst exponent, which is a measure of time series memory. Correspondingly an average 

one period volatility 
1

ij  may be used to express the N-periods volatility 
N

ij  in the following way:

1 ijHN

ij ij N   . For the standard random walk process a Hurst exponent has a fixed value of 0.5 and 

doesn’t take into account evolution of volatility due to non stationary effects. The proposed model 

allows modifying of optimal weight first estimation with account of an individual Hurst exponent of 

spread ijH : 
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An estimation of 
0

ij  is an average daily return of spreads ,i j . A definition of Hurst exponent is an 

object of numerous researches. In this paper we apply an approach of small data basis, suggested in 

work [6]. This algorithm gives an estimated Hurst exponent ijH and its mistake ijH . We should 

recall that the mean-reversion process corresponds to area of parameters  0,0.5ijH  . The critical 

level 0.5ijH   may be decreased for the searching of more stable spreads. However this procedure 

leads to narrowing of spread space and to decrease of diversification. Typically this critical level may 

be used for the empirical optimization of current portfolio. However in this research we propose only 

a prototype optimization with maximal critical level 0.5ijH  .   

A preliminary selection of spreads may be executed on the basis of a following algorithm: 

 The calculation of maximal weight in space of spreads  ij  

 The control of the criterion 0.5ij ijH H  and ij ijH H    

 A record of corresponding spread assets ,i j  and calculation of portfolio spread 
ij or 

ij  

according to the condition 0  

 An exclusion of assets ,i j  from the generating spreads 

 Return to step one 

 

As a result of this selection we prefer spreads with 0( )ij ijt  in comparison to more volatile 

components. The final space of spreads can be used for more complex nonlinear portfolio 

optimization. In this stage we prepared a set of ―long‖ positions for spreads 1,k M . 
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Portfolio optimization 

 

According to the Kelly interpretation [3] effects of cross correlation may be taken into account by 

covariance matrix of returns:  cov ,l rC    , 1,l M , 1,r M . Here we consider spreads as the 

synthetic market-neutral assets with ―long‖ position. A standard walk model allows defining relative 

weights vector according to the standard solution:
1w C  . Here we consider modification 

according the fractal walk approach, described above. An element of covariance matrix cov( , )l r   

can be modified according to the definition of correlation: 

     cov( , ) cov( , )l r

l r F F l r lrW W R                                                            (11) 

Here l

FW  are fractal motion residuals of the modified model (6) while lrR  is a correlation factor.      

Relations for daily volatilities can be rescaled for the N horizon: lH

l l N   , rH

r r N   . A basic 

question is rescaling of correlation – a squared root of determination factor for linear regression 

model l lr r lk     . The definition gives us a statistical relation of lrR : 
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Here variance of linear term *

l lr rk   is compared to the total variance 2( )l lVar   . Rescaling of 

both variances allows finding a rescaling law for the correlation.  A linear regression curve has a 

Hurst factor * 1iH  . Than a final solution can be represented as a right part of (12). Here a non 

rescaled correlation is to be derived from the input data. A final relation for the rescaled covariance 

element is represented in the following way (arrow symbol designates rescaling): 

    1cov( , ) cov( , ) rH

R l r l rC N                                                       (13) 

The criterion of allocation is a simple consequence of this relation: 
1

R Rw C N                                                                  (14) 

In case of portfolio investment N corresponds to the investment horizon – a portfolio manager 

parameter. In this research we consider a half year time frame. An algorithm of optimization may be 

represented in the following way: 

 

 Definition of daily volatilities of spreads ,l r  

 Definition of non rescaled covariance matrix  cov ,l rC     

 Rescaling of covariance matrix and volatilities  

 Calculation of rescaled covariance matrix rC  

 Calculation of rescaled vector of relative weights Rw  

 Composition of long/short positions 

 For leverage l the final vector Rw  is multiplied by constant factor: / n

R

n

k l w   

In current research we consider basically the leverage l=2. This parameter may be used for regulation 

of risk tolerance – from conservative to aggressive portfolio. 

 

Input data  

 

In current investigation we use the universe of most liquid equity-based exchange traded funds, 

ETFs. We take into account the growing popularity of ETFs among investment firms due to their 

internal diversification and relatively low costs in comparison to mutual funds. According to [7] an 

average growth of ETF AuM (assets under management) is 27% per year for recent 10 years. High 

liquidity of chosen ETFs gives opportunity to make realistic simulation of the current portfolio 
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system and to decrease influence of trade fees. The liquidity has been evaluated through the average 

half year volume: May 2016-October 2016. The algorithm of ETFs filtering is given below: 

 Hundred most liquid ETFs according to the half year trading volume 

 ETFs introduced later than 2010 are excluded 

 Passively managed ETFs are chosen 

 Non levereged ETFs are chosen 

 Reverse ETFs are excluded 

 Volatility ETFs are excluded 

 Non shortable ETFs are excluded 

 

We prefer passively managed ETFs in order to minimize subjective properties of management team – 

the current research is sufficiently quantitative. Any artificial influences like risk control, leveraging 

are excluded. We tend to use assets that reflect purely market trends – reverse and volatility ETFs are 

excluded for this reason. The final list includes 25 funds: EEM, XLF, IWM, QQQ, EFA, XLU, XLP, 

XLI, XLV, XLK, AMLP, ITB, XBI, KRE, XLY, XLB, EWW, XME, EZY, EWT, KBE, EWH, 

EWY, EWY, XHB. We limit our out-of-sample simulation to five years time frame – a subjective 

consensus between diversification of the universe and the historical significance. Adjusted daily close 

prices are used - exported from Interactive Brokers (IB) historical datebase. Commissions and 

overnight rates correspond to IB trading conditions as well: commission of $0,005 for single stock, 

overnight rate of 0.410% per annum. Selected ETFs are quoted in US dollars and traded in 

NYSE/NASDAQ. Internal management fees are added according to individual conditions of ETF 

issuers. The considered initial investment is $100,000 which corresponds to the institutional level of 

capital - however we admit the utilization of this model to the capital above $50,000.  

 

Simulation results 

 

Simulation is based on historical adjusted closing prices for November 2010-Novermber 2016. We 

use out-of-sample testing for the model validation. The frame of training data corresponds to half 

year – the same as out-of-sample horizon. The consequence of testing may be represented in the 

following way: 

 Retrieving prices for the first half year training sample 

 Calculation of investment weights vector and portfolio composition 

 Testing portfolio performance for the next half year test sample 

 Recording performance metrics 

 Using current test sample for training data 

The overall observation period includes five years frame. We compare the performance with buy-

hold passive strategy for the SPY benchmark. In Fig.1a the cumulated return of reinvestment strategy 

is represented for ten periods (five years, half year horizon). The correlation of half-year returns and 

SPY returns corresponds to 24% level, which confirms the efficient hedging of proposed strategy. 

Global diversification is preserved: the number of assets varies from 14 to 20 with average 

investment weight of 19%. The average return in frame of reinvestment scheme is higher for 

benchmark (market) – 11% against 10% for portfolio.  

However the 2R of portfolio linear regression is 92%, 5% higher than one for passive SPY. It may be 

useful to analyze stability in relation to risk measure, volatility. We use single half year returns 

without reinvestment for estimation of an average single return: 4.3% for portfolio and 4.6% for 

benchmark. Annual single returns estimations are 8.6% and 9.2% correspondingly.  
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         Fig. 1a. Cumulated returns, half year horizon           Fig. 1b. Risk adjusted cumulated returns 

 

Half year volatilities (ten points) may be approximately rescaled into annual (twice period) 

volatilities according to the Lo relation 2VV  [8]. Finally we derived Sharpe of 1.07 for portfolio 

system and 0.84 for benchmark investment. The comparative performance metrics are represented in 

Table 1. 

 Portfolio Benchmark 

Volatility,% 133 170 

Max. drawdown,% 12 21 

Market neutrality,% 76 0 

Annual return (reinvested),% 10 11 

Annual return,% 8.6 9.2 

Annual Sharpe ratio 1.07 0.84 

Table 1. Comparative performance metrics 
      
Volatility is calculated among individual half-year returns and is normalized in relation to average 

half-year return. We recorded a maximal weight in each out-of-sample test and calculated an average 

quantity, represented in the first raw of the table. Maximal drawdown is calculated on the basis of 

cumulated daily returns (Fig.2).  

We illustrate risk adjusted cumulated returns by constant factor normalization norm. Here we apply 

the relation of a half-year volatility of market and the portfolio strategy. The result is represented in 

Fig.1b. This result corresponds approximately to the leverage l=2.7 and is too risky as it provides 

drawdown of 17% of initial capital (Fig.2, rectangular). 

 

Fig. 2. Cumulated returns, daily horizon, l=2.7 
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However it allows making a correct comparison. The following remarks can be made on the basis of 

this data: 

 Portfolio system is stable enough for one and two years horizon 

 Its risk adjusted cumulated return is 1.3 times higher than benchmark return 

 Its neutrality is significant enough to use it as a hedging opportunity 

 

Conclusions 

 

In this paper we applied a hybrid approach to the portfolio risk elimination. Portfolio algorithmic 

system is based on composition of market-neutral pair spreads of ETFs into single diversified entity. 

Hedging of market risks is achieved in frame of a linear regression model for return increments. 

Control of model validity is realized through the fractal walk model of returns, which allows 

modifying risk analysis according to the constant investment horizon and possible volatility 

clustering. This model has been used for the preliminary selection of spreads from the generating 

matrix. The final space of spreads has been used for fractal portfolio optimization. It has been shown 

that the covariance matrix of returns should be rescaled according to the preferred investment 

horizon. Individual properties of spread returns have been taken into account through the Hurst 

stability analysis. Out-of-sample analysis has been realized for the space of 25 equity exchange 

traded funds (ETFs) in five period time period. We have compared the portfolio performance with a 

buy-hold passive strategy for SPY benchmark.  

Hedging opportunities have been confirmed: correlation of half-year returns and SPY returns 

corresponds to 24%. Global diversification has been preserved as well: the number of assets varies 

from 14 to 20 with average investment weight of 19%. It turned out that a portfolio system is more 

stable than a passive investment for one year horizon. Its risk adjusted cumulated return is 1.3 times 

higher than benchmark return, which gives opportunities to beat the market with comparable risk 

tolerance. We suppose that the proposed model may be used as a hedging alternative in the portfolio 

of strategies. It may be combined with bond portfolios to achieve inflation neutrality and with other 

hedging investments. The advantage of this model is its internal sensitivity to investment horizon, 

which makes it comfortable for individual approach of portfolio advisors and gives protection from 

nonlinear risks. However we admit that the growth of passive investment may lead to the decrease of 

competitive difference between ETFs due to their growing beta. Besides we understand the risks of 

regulations regarding short positions, particularly in the stage of financial crisis or recessing. 

However we hope that the flexibility of a model will make it more stable in relation to the changing 

market environment.  
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