Conjecture on odd semiprimes which are Harshad numbers that relates them with 2-Poulet numbers

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In a previous paper I conjectured that for any largest prime factor of a Poulet number pl with two prime factors exists a series with infinite many Poulet numbers p2 formed this way: p2 mod $(p 1-d)=d$, where d is the largest prime factor of $p 1$ (see the sequence A214305 in OEIS). In this paper I conjecture that for any least prime factor of an odd Harshad number h1 with two prime factors, not divisible by 3, exists a series with infinite many Harshad numbers h2 formed this way: h2 mod (h1 - d) $=d$, where d is the least prime factor of $p 1$.

Conjecture:

For any least prime factor of an odd Harshad number h1 with two prime factors, not divisible by 3, exists a series with infinite many Harshad numbers h2 formed this way: h2 mod (h1 $-d$) $=d$, where d is the least prime factor of pl .

Note: see the sequence A214305 posted by me in OEIS to see a related conjecture on Poulet numbers with two prime factors.

The sequence of the odd Harshad semiprimes not divisible by 3 :

```
: 209, 247, 407, 481, 511, 629, 803, 1141, 1387, 1417,
    1651, 1679, 1853 (...)
```


Examples:

```
: for h1 = 209 = 11*19 we have the following Harshad
    numbers h2 of the form 198*n + 11:
        : 407, 605, 803 (...);
:for h1 = 247= 13*19 we have the following Harshad
    numbers h2 of the form 234*n + 13:
        :481, 715, 1183 (...);
:for h1 = 481= 13*37 we have the following Harshad
    numbers h2 of the form 468*n + 13:
        : 1417, 2353, 2821 (...);
: for h1 = 511 = 7*73 we have the following Harshad
    numbers h2 of the form 504*n + 7:
        : 1015, 2023, 3031 (...);
```

: for h1 = $629=17 * 37$ we have the following Harshad numbers h2 of the form 612*n +17 : : 1853, 2465, 3077 (...);
: for h1 = $1387=19 * 73$ we have the following Harshad numbers h2 of the form 1368*n +19 :

2755, 5491, 8227 (...);
: for $h 1=1417=13 * 109$ we have the following Harshad numbers h2 of the form 1404*n +13 :

$$
: \quad 2821,4225,7033(\ldots) ;
$$

: for h1 = $1651=13 * 127$ we have the following Harshad numbers h2 of the form 1638*n $+13:$: 8203, 13117, 18031 (...);
: for h1 = $1679=23 * 73$ we have the following Harshad numbers h2 of the form 1656*n $+23:$

$$
\text { : 4991, 6647, } 14927 \text { (...); }
$$

: for h1 = 1853 = 17*109 we have the following Harshad numbers h2 of the form 1836*n $+17:$: 5525, 7361, 14705 (...).

