Two conjectures involving Harshad numbers, primes and powers of 2

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I make the following two conjectures: (I) For any prime $p, p>5$, there exist n positive integer such that the sum of the digits of the number $\mathrm{p}^{\star} 2^{\wedge} \mathrm{n}$ is divisible by p; (II) For any prime $\mathrm{p}, \mathrm{p}>$ 5, there exist an infinity of positive integers m such that the sum of the digits of the number $p^{*} 2^{\wedge} m$ is prime.

Conjecture I:

For any prime p, $p>5$, there exist n positive integer such that the sum of the digits of the number $p^{*} 2^{\wedge} n$ is divisible by p.

The least n for which $s\left(p * 2^{\wedge} n\right)$ is divisible by p, for few primes p:

```
: n = 14 for p = 7, because s(7* 2^14) = s(114688)=
    28, divisible by 7;
: n = 6 for p = 11, because s(11*2^6) = s(704)=11,
    divisible by 11;
: n = 6 for p = 13, because s(13*2^6) = s(832)=13,
    divisible by 13;
: n = 6 for p = 17, because s(17*2^6) = s(1088)=17,
    divisible by 17;
: n = 19 for p = 19, because s(19* 2^19) = s(9961472)=
    38, divisible by 19;
: n = 12 for p = 23, because s(23*2^12) = s(94208)=
    23, divisible by 23;
: n = 12 for p = 29, because s(29*2^12) = s(118784)=
    29, divisible by 29;
: n = 12 for p = 31, because s(31*2^12) = s(126976)=
    31, divisible by 31;
: n = 149 for p = 37, because s(37*2^149) =
    s(26404082315060257799578290434815660023080812544)=
    185, divisible by 37;
: n = 30 for p = 41, because s(41*2^30)=
    s(44023414784) = 41, divisible by 41;
: n = 24 for p = 47, because s(47*2^24) = s(788529152)
    = 47, divisible by 47.
```

Note the interesting thing that:
: $s\left(11 * 2^{\wedge} 5\right)=10$, while $s\left(11 * 2^{\wedge} 6\right)=11 ;$
$: \quad s\left(29 * 2^{\wedge} 11\right)=28$, while $s\left(29 * 2^{\wedge} 12\right)=29$;
$: \quad s\left(47 * 2^{\wedge} 23\right)=46$, while $s\left(47 * 2^{\wedge} 24\right)=47$.

Conjecture II:

For any prime p, $p>5$, there exist an infinity of positive integers m such that the sum of the digits of the number $p^{\star} 2^{\wedge} m$ is prime.

The sequence of the primes $s\left(p * 2^{\wedge} m\right)$ for $p=7:$

```
: 5(= s(7* 2^1) = s(14)), 11(= s(7*2^3) = s(56)), 23(=
    s(7*2^7) = s(896)), 19(= s(7*2^8) = s(1792)), 17(=
    s(7*2^11) = s(14336)) (...)
```

The sequence of the primes $s\left(p * 2^{\wedge} m\right)$ for $p=11:$

```
: 11(= s(11*2^6) = s(704)), 13(= s(11*2^7) = s(1408)),
    17(= s(11*2^8) = s(2816)), 19(= s(11*2^11) =
    s(22528)), 13(= s(11*2^13) = s(90112)) (...)
```

