Two conjectures involving Harshad numbers, primes and powers of 2

Marius Coman email: mariuscoman130gmail.com

Abstract. In this paper I make the following two conjectures: (I) For any prime p, p > 5, there exist n positive integer such that the sum of the digits of the number $p*2^n$ is divisible by p; (II) For any prime p, p > 5, there exist an infinity of positive integers m such that the sum of the digits of the number $p*2^m$ is prime.

Conjecture I:

For any prime p, p > 5, there exist n positive integer such that the sum of the digits of the number $p*2^n$ is divisible by p.

The least n for which $s(p*2^n)$ is divisible by p, for few primes p:

:	$n = 14$ for $p = 7$, because $s(7*2^{14}) = s(114688) =$
	28, divisible by 7;
:	$n = 6$ for $p = 11$, because $s(11*2^6) = s(704) = 11$,
	divisible by 11;
:	$n = 6$ for $p = 13$, because $s(13*2^6) = s(832) = 13$,
	divisible by 13;
:	$n = 6$ for $p = 17$, because $s(17*2^{6}) = s(1088) = 17$,
	divisible by 17;
:	$n = 19$ for $p = 19$, because $s(19*2^{19}) = s(9961472) =$
	38, divisible by 19;
:	$n = 12$ for $p = 23$, because $s(23*2^{12}) = s(94208) =$
	23, divisible by 23;
:	$n = 12$ for $p = 29$, because $s(29*2^{12}) = s(118784) =$
	29, divisible by 29;
:	$n = 12$ for $p = 31$, because $s(31*2^{12}) = s(126976) =$
	31, divisible by 31;
:	$n = 149$ for $p = 37$, because $s(37*2^{149}) =$
	s (26404082315060257799578290434815660023080812544) =
	185, divisible by 37;
:	$n = 30$ for $p = 41$, because $s(41*2^30) =$
-	s(44023414784) = 41, divisible by 41;
:	$n = 24$ for $p = 47$, because $s(47*2^24) = s(788529152)$
-	= 47 , divisible by 47 .
Note	the interesting thing that:

: s(11*2^5) = 10, while s(11*2^6) = 11; : s(29*2^11) = 28, while s(29*2^12) = 29; : s(47*2^23) = 46, while s(47*2^24) = 47.

Conjecture II:

For any prime p, p > 5, there exist an infinity of positive integers m such that the sum of the digits of the number $p*2^m$ is prime.

The sequence of the primes $s(p*2^m)$ for p = 7:

: $5(= s(7*2^{1}) = s(14)), 11(= s(7*2^{3}) = s(56)), 23(= s(7*2^{7}) = s(896)), 19(= s(7*2^{8}) = s(1792)), 17(= s(7*2^{1}) = s(14336)) (...)$

The sequence of the primes $s(p*2^m)$ for p = 11:

: $11 (= s(11*2^6) = s(704)), 13 (= s(11*2^7) = s(1408)),$ $17 (= s(11*2^8) = s(2816)), 19 (= s(11*2^11) =$ $s(22528)), 13 (= s(11*2^13) = s(90112)) (...)$