Conjecture involving Harshad numbers and sexy primes

Marius Coman email: mariuscoman130gmail.com

Abstract. In this paper I conjecture that for any pair of sexy primes (p, p + 6) there exist a prime q = p + 6*n, where n > 1, such that the number p*(p + 6)*(p + 6*n) is a Harshad number.

Conjecture:

For any pair of sexy primes (p, p + 6) there exist a prime q = p + 6*n, where n > 1, such that the number p*(p + 6)*(p + 6*n) is a Harshad number.

Note: see the sequence A005349 in OEIS for Harshad numbers and the sequence A023201 for sexy primes.

The least such prime q for the first nine pairs of sexy primes:

:	q = 17 for $(p, p + 6) = (5, 11)$, because $5*11*17 =$
	935 is a Harshad number, divisible by 17;
:	q = 19 for (p, p + 6) = (7, 13), because $7*13*19 =$
	1729 is a Harshad number, divisible by 19;
:	q = 107 for $(p, p + 6) = (11, 17)$, because $11*17*107$
	= 20009 is a Harshad number, divisible by 11;
:	q = 61 for $(p, p + 6) = (13, 19)$, because $13*19*61 =$
	15067 is a Harshad number, divisible by 19;
:	q = 29 for $(p, p + 6) = (17, 23)$, because $17*23*29 =$
	11339 is a Harshad number, divisible by 17;
:	q = 41 for $(p, p + 6) = (23, 29)$, because $23*29*41 =$
	27347 is a Harshad number, divisible by 23;
:	q = 61 for $(p, p + 6) = (31, 37)$, because $31*37*61 =$
	69967 is a Harshad number, divisible by 37;
:	q = 157 for $(p, p + 6) = (37, 43)$, because $37*43*157$
	= 249787 is a Harshad number, divisible by 37;
:	q = 311 for $(p, p + 6) = (41, 47)$, because $41*47*311$
	= 599297 is a Harshad number, divisible by 41.

The sequence of Harshad numbers of the form p*(p + 6)*(p + 6*n), where p, p + 6 and p + 6*n are primes and n > 1:

: 935 (= 5*11*17), 1729 (= 7*13*19), 2821 (= 7*13*31), 10505 (= 5*11*191), 11339 (= 17*23*29), 15067 (= 13*19*61), 18031 (= 13*19*73), 19201 (= 7*13*211), 20009 (= 11*17*107) (...)