Conjecture involving Harshad numbers and sexy primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that for any pair of sexy primes ($p, p+6$) there exist a prime $q=p+6 * n$, where $n>1$, such that the number $p^{*}(p+6) *(p+6 * n)$ is a Harshad number.

Conjecture:

For any pair of sexy primes ($\mathrm{p}, \mathrm{p}+6$) there exist a prime $q=p+6 * n$, where $n>1$, such that the number $p *(p$ $+6) *\left(p+6 *_{n}\right)$ is a Harshad number.

Note: see the sequence A005349 in OEIS for Harshad numbers and the sequence A023201 for sexy primes.

The least such prime q for the first nine pairs of sexy primes:

```
: q = 17 for (p, p + 6) = (5, 11), because 5*11*17 =
    935 is a Harshad number, divisible by 17;
: q = 19 for (p, p + 6) = (7, 13), because 7*13*19 =
    1 7 2 9 \text { is a Harshad number, divisible by 19;}
: q = 107 for (p, p + 6) = (11, 17), because 11*17*107
    = 20009 is a Harshad number, divisible by 11;
: q = 61 for (p, p + 6) = (13, 19), because 13*19*61 =
    15067 is a Harshad number, divisible by 19;
: q = 29 for (p, p + 6) = (17, 23), because 17*23*29 =
    11339 is a Harshad number, divisible by 17;
: q = 41 for (p, p + 6) = (23, 29), because 23*29*41 =
    27347 is a Harshad number, divisible by 23;
: q = 61 for (p, p + 6) = (31, 37), because 31*37*61 =
    6 9 9 6 7 ~ i s ~ a ~ H a r s h a d ~ n u m b e r , ~ d i v i s i b l e ~ b y ~ 3 7 ; ~
: q = 157 for (p, p + 6) = (37, 43), because 37*43*157
    = 249787 is a Harshad number, divisible by 37;
: q = 311 for (p, p + 6) = (41, 47), because 41*47*311
    = 599297 is a Harshad number, divisible by 41.
```

The sequence of Harshad numbers of the form $p *(p+6) *(p+$ $6 * n$), where $p, p+6$ and $p+6 * n$ are primes and $n>1$:
$: \quad 935(=5 * 11 * 17), 1729(=7 * 13 * 19), 2821(=7 * 13 * 31)$, $10505(=5 * 11 * 191), 11339(=17 * 23 * 29)$, $15067(=$ $13 * 19 * 61), 18031(=13 * 19 * 73), 19201(=7 * 13 * 211)$, 20009 ($=11 * 17 * 107$) (...)

