Conjecture involving Harshad numbers and primes of the form $6 k+1$

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that for any prime p of the form $6 * k+1$ there exist an infinity of Harshad numbers of the form $p * q 1 * q 2$, where $q 1$ and $q 2$ are distinct primes, $q 1=p+6 *^{\prime} m$ and $q 2=p+6{ }^{*} n$.

Conjecture:

For any prime p of the form $6 * k+1$ there exist an infinity of Harshad numbers H of the form $p * q 1 * q 2$, where $q 1$ and $q 2$ are distinct primes, $q 1=p+6 * m$ and $q 2=p+$ 6*n.

Note: see the sequence A005349 for Harshad numbers.

The sequence of the numbers H for $p=7$:

```
: 1729 (= 7*13*19), 2821 (= 7*13*31), 8911 (=
    7*19*67), 19201 (= 7*13*211), 20881 (= 7*19*157)
    (...),
    obtained respectively for (m, n) = (1, 2), (1, 4),
    (2, 10), (1, 34), (2, 25) (...)
    and divisible respectively by 19, 13, 19, 13, 19
    (...)
: other examples of numbers H for p = 7:
    : H = 346549=7*31*1597,
    : H = 3947419=7*37*15241,
    : H = 7388647 = 7*43*24547 (...),
    obtained respectively for (m, n) = (4, 265),
    (5, 2539), (6, 4090) (...)
    and divisible respectively by 31, 37, 43 (...)
```

Note that the first three numbers from this sequence are
also Carmichael numbers.

The sequence of the numbers H for $p=13:$

```
: 15067 (= 13*19*61), 18031 (= 13*19*73), 19513 (=
    13*19*79), 40261 (= 13*19*163) (...)
    obtained respectively for (m, n) = (1, 8), (1, 10),
    (1, 11), (1, 25) (...)
    and divisible respectively by 19, 13, 19, 13 (...)
```

: other examples of numbers H for $p=13:$

```
: H = 416299 = 13*31*1033,
: H = 496093 = 13*31*1231 (...),
    obtained respectively for (m, n) = (3, 170),
    (3, 203) (...)
    and divisible respectively by 31, 31 (...)
```


The sequence of the numbers H for $\mathrm{p}=19$:

: $25327(=19 * 31 * 43), 46531(=19 * 31 * 79)$, $51319(=$ 19*37*73), 57133 (= 19*31*97), 127243 (= 19*37*181), 131347 (= 19*31*223) (...)
obtained respectively for $(m, n)=(2,4),(2,10)$, $(3,9),(2,13),(3,27),(2,34)(. .$.
and divisible respectively by 19, 19, 19, 19, 19, 19 (...)

The sequence of the numbers H for $p=31$:

```
: 69967 (= 31*37*61), 126697 (= 31*61*67), 137299 (=
31*43*103), 145669 (= 31*37*127), 185287 (=
31*43*139), 186961 (= 31*37*163), 194773 (=
31*61*103) (...)
obtained respectively for (m, n) = (1, 5), (5, 6),
(2, 12), (1, 16), (2, 18), (1, 22), (5, 12) (...)
and divisible respectively by 37, 31, 31, 31, 31,
31, 31 (...)
```

