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Abstract: The search for a phase coherent signal near 50.93 µHz in the data set of the super-
conducting gravimeter H1 indicates a weakly damped signal 14 dB below noise. It might belong to 
the long-sought Slichter triplet.

Introduction
Very strong earthquakes can probably move the inner, solid core, which is surrounded by the liquid 
outer core. This should lead to a harmonic oscillation around its resting position and measurable 
fluctuations of gravitation here on the surface. The existence of the 1S1 natural mode was postulated 
55 years ago by Slichter[1], but could never be confirmed by measurements despite intensive search.

The main problem is that no theory provides reliable predictions, but only very vague assumptions. 
With the known data of the Earth, the expected period of oscillation is likely to be about five hours  
( ± two hours). The frequency difference of the three desired spectral lines is unknown, as is the 
damping. If the putative oscillation deep inside the Earth is triggered by changes on the surface, the 
search should focus on the period after a strong earthquake. This investigation focuses on the 
strongest event on 2004-12-26 since the invention of the Superconducting Gravimeter. 

The many unsuccessful attempts have shown one thing: the periodic change of gravitation is 
extremely small and disappears in the noise level caused by the frequent earthquakes. Moreover, in 
almost all previous searches, simple and best practices to reduce the noise have been omitted [2]. On
the contrary, extremely wide-band methods such as Fourier analysis were used and narrow-band 
filters were generally dispensed with. For this reason, a selective detection system has been devel-
oped which is capable of detecting signal whose amplitude is only about 10% of the average noise 
level.

An Integrating Coherent Detector for Noisy Signals
Resonance is the preferred method in communications engineering to identify extremely weak 
signals. The example of a swing shows that many tiny impulses arriving in the right rhythm, lead to 
a substantial whole amplitude. From the amplitude increase over time, the supplied energy can be 
calculated. If the pulses are randomly distributed (noise), the amplitude will fluctuate around a 
small average value. A small frequency deviation produces a beat, because the excitation is peri-
odically antiphase.

A particular property of the new method allows to determine the kind of the excitation: when the 
excitation (A) occurs with a constant amplitude and exactly on the resonant frequency, the ampli-
tude (B) of the oscillating circuit increases in proportion to time. The method is robust, since spuri-
ous spikes, deviating frequencies or noise can only slightly disturb the expected linear amplitude 
increase. 

If the stimulating amplitude (A) is not constant, the time dependency of the envelope of the inte-
grated amplitude (B) of the oscillating circuit can be either calculated with the relationship

A=const⋅
d
dt

B or by reconstructing the excitation (trial-and-error).

In order to investigate the gravitational data, the resonant and loss-free oscillating circuit is not 
implemented mechanically or by electronic components, it is simulated by software. The oscillation
is triggered by the serial data, which were measured by superconducting gravimeters at regular time
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intervals Δt. The amplitude of the resonant circuit is calculated in the same rhythm. This can be 
done very simply by extending the known trigonometric identities.

sin(α+β)=sin (α )cos ( β)+cos(α)sin( β) and cos (α+β )=cos (α)cos ( β)−sin(α)sin ( β)

We take two variables x and y. At time t = 0, we start with the initial values x = 0 and y = 0. We 
proceed from on time step to the next  

x (t+Δt)=P⋅x (t)+Q⋅y (t) and y (t+Δt )=P⋅y (t )−Q⋅x (t)+S ( t)

The resonant frequency f0 and sampling period Δt define the constant values

P=cos (2 π Δt f 0) and Q=sin (2 π Δt f 0)

If the signal S remains zero, the resonant circuit never starts to oscillate. If the signal is noise, the 
circuit responds with an oscillation of variable amplitude. If the signal contains a small component 
of the frequency f0, it forces the circuit to oscillate with approximately the same phase. An in-phase,
long lasting signal component increases the integrated amplitude remarkably. Noise results in a 
wavy envelope.

Using MATLAB, a few lines of code will do the job:

j=2e-6*pi*Ts*f0; P=cos(j); Q=sin(j);
L=length(S); x=zeros(L,1); y=x;
  for j=2:L 
    x(j)=x(j-1)*P+y(j-1)*Q; %Add-Theorem
    y(j)=y(j-1)*P-x(j-1)*Q+S(j);
  end 
plot(x), title('Coherent Demodulation')

The only freely selectable parameters in the formulas above are the desired resonance frequency f0 

and the start time of the integration. Experiments have shown that (at least near 50 µHz with time 
steps Δt = 600 seconds) no feedback is necessary to reduce the bandwidth. This avoids all problems 
that accompany IIR filters. Likewise, no complex control circuit is required to bring the phases of 
the signal and the resonant circuit into coincidence.

Analyzing 50.9 µHz
Previous investigations[3][4] have shown that near 50.9 µHz, there is a weak signal which is not 
listed in the catalog HW95[5]. The signal-to-noise ratio is very poor, which is why the signal can 
only be detected in the data of a few stations. After preparing the 2004/2005 CORMIN records in 
the usual way, the two-year data chain recorded by the station H1 looks like this: 

There are no abnormalities or longer data gaps and the very strong earthquake on 2004-12-26 (time 
= 518459 minutes after 2004-01-01) produces no significant signal in the specified frequency range.
It is advisable to clean up the data series of unbalanced (unipolar) spikes, which are very common 
in some stations and are probably caused by faulty electronics. Disturbances generated by earth-
quakes are always symmetrical to the zero line.



The following figure shows the output signal (B) of the
integrating detector with the resonance frequency 50.935
μHz. The surprisingly large increase of the amplitudes can
be explained by the extraordinarily high phase consistency
of the exciting signal. Because of the very long integration
time, the process is very sensitive to tiny frequency devi-
ations. A change of only ± 0.003 μHz reduces the integrat-
ed amplitude by about 10%.

It can be seen that the mysterious vibration near 50.935
μHz has obviously been fueled twice: in March 2004 by a
weak earthquake and in December 2004 by a much stronger one. Because of the better SNR, only 
the latter is examined.

Analysis of the period after 2004-12-26
The resonant data integration starts 518459 minutes after the
2004-01-01 and yields the illustrated blue envelope of the
integrated amplitude (B).

The red curve is the best approximation during the first 300
days after the earthquake, followed by disturbances because of
the bad SNR. The integrated amplitude is described by:

y (B)=194⋅(1−e−t /T 0) with T 0=242days

The curved envelope (B) shows that the amplitude of the
exciting oscillation (A) is not constant but decreases with time. 
When the signal frequency deviates from the resonance frequen-
cy of the coherent detector, phase jumps of the signal can be
strongly emphasized, as shown in the lower figure. In contrast to
the previous picture, the earthquake on 2005-03-28 is clearly
visible here. The tiny frequency deviation of only 98 ppm causes
a slight drop of the integrated amplitude. 

Now, for comparison and using the same program, the original
data series of station H1 is replaced by a synthetic attenuated
oscillation (f0 = 50.935 μHz). The initial amplitude and the
damping are varied until exactly the same output signal of the integrating detector is obtained. This 
synthetic oscillation is described by

yReplace=0.0232⋅exp (
−t
T 0

)⋅sin(2π f 0⋅t) with T 0=242days

and is shown in the left figure below. Comparing with the data, one realizes that the signal strength 
is well below the average noise level of the SG data, corresponding to an SNR of about -14 dB.



The damping of this mysterious oscillation on f0 = 50.935 μHz may be characterized by the very 
high Q-factor Q=π f T 0=3346 . Perhaps it is one of the long-sought Slichter triplet lines.
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