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Abstract 

A mathematical model describing the nonlinear oscillations in elastic structures is proposed. 

The Energy Balance Method (EBM) is applied to solve the generalized nonlinear Duffing 

equation obtained in absence of excitation. The numerical results show an excellent 

agreement with the periodic solutions obtained through the Energy Balance Method. Finally 

the effects of different parameters on the system behavior are studied. 

Keywords: Generalized Duffing equation, periodic solution, Energy Balance Method,  

Numerical simulation. 

 

Introduction 

A best understanding of dynamical behavior of engineering structures requires a  

mathematical modeling of these structures. This is a primary stage for various scientific 

applications in mechanical engineering, civil engineering, artificial intelligence, aircraft 

industry, motor-car industry, etc. Several nonlinear mathematical models of different 

complexities have been proposed in literature. Most of these models represent a generalization 

of existing nonlinear oscillators such as Mathieu, Rayleigh, Helmholtz-Duffing, Van-der-pol 

and Duffing equations [1]. These equations are widely used in many areas of physics and 

engineering applications [2, 3]. Among these oscillators, Duffing equation is most used for 

modeling many practical engineering systems and various physical phenomena [4, 5]. In 

mathematical modeling of the elastic structure depicted on Figure	1, most of investigators 

take into account only the linear elasticity of the system. But, it is well-known that the 

components of engineering systems show in general a nonlinear behavior under an exciting 

force [6]. Therefore, a good modeling of elastic structures must then take into consideration 

the nonlinear elastic behavior of structure components. Thus the resulting differential 

equations become more complex to be resolved. Due to this fact, obtaining an exact analytical 

solution becomes very difficult [7-10] or even sometimes impossible. Therefore, several 

approximate methods have been proposed for solving the nonlinear differential equations. The 

perturbation methods [5, 11, 12] are commonly used in the study of vibrations modeling and 

control. These techniques are based on the existence of small parameters, the so-called 

perturbation quantity. Nevertheless other approaches have also been developed recently in 
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literature for determining an approximate analytical solution of nonlinear differential 

equations without existing the perturbation quantity. Variational iteration method [13- 16],  

He's frequency-amplitude formulation [17-20], energy balance method [21], harmonic 

balance method [10, 22, 24], Hamiltonian approach [3,7 , 13, 25, 27], and coupled Homotopy-

variational formulation [27-29] are some examples.  Among all these techniques, it is well-

known that the energy balance method is widely used in many practical problems to solve the 

nonlinear equations [27, 30, 35]. The objective of this paper consists of taking into account 

the nonlinear elastic behavior for analyzing the periodic solutions for specific values of 

parameters of mechanical structure represented on Figure1 by applying energy balance 

method. In this way, we perform first, the mathematical model of the problem (section 2), 

afterward we carry out the system analysis via the Energy Balance Method (section 3) and the 

results are discussed (section 4) and finally some conclusions of the work are given in the last 

section. 

 

2 Mathematical modeling 

2.1- Formulation of the problem 

We consider a simple system constituted of a mass �, attached in the middle of a uniform 

string of cross-section Α  and total length l2 , as shown in Figure 1(a). When an excitation is 

applied to the mass, the system takes the elastic configuration shown in Figure 1(b) [36]. 

 

 
(a)                                                              (b) 

Figure 1- The physical model of the elastic structure 

Now we purpose to determine the governing equation of motion of the system represented in 

Figure 1. 

 

2.2 Equation of motion 

 When the mass moves in the x  direction (Figure 1-b), the application of the fundamental 

relation of the dynamics yields: 

  )(sin2 tFTxm =+ θ&&                                                                                                               (1) 

  

 where F  and T  represent the excitation  and the tension in the elastic structure, respectively. 
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On substituting the following expression of the tension T  when the system takes the elastic 

configuration 

 σATT += 0                                                                                                                             (2) 

 where 0T  denotes the initial tension when the system is at rest, A  the cross-section and σ  

the stress in the system, into the equation (1), we obtain 

)(sin)(2 0 tFATxm =++ θσ&&                                                                                                    (3) 

Now, on supposing that the stress in the system can be written as follows 
nEεσ =                                                                                                                                    (4) 

where E  means the elastic module, ε  represents the normal strain in the x  direction and n  

designates the strain hardening exponent,  the equation (3) becomes 
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 Using the Taylor-series expansion of the expressions ε  and θsin  to the third order for small 

x , the equation (5) can be written as 
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 which can be rewritten in nondimensional form as 
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where t0ωτ = , is nondimensional time, 
ml

T0
0

2
=ω , 

l

x
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F
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AE
=α , and the 

symbol ‘ denotes the differentiation with respect to nondimensional time τ . 

        So, note that the obtained equation (7) represents a generalized Duffing oscillator 

equation subjected to forcing excitation. At present, we determine in the section 3 the 

approximate analytical solution of this equation under unforced oscillations conditions. 

 

3  System analysis 

3.1 Unforced equation 
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In this subsection, we analyze the nonlinear oscillations of the elastic system in the absence of 

the external excitation force, that is to say, when 0)( =τf . In this condition, the equation (7) 

becomes 

0
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It is necessary to notice that for different values of strain hardening exponent n  one can 

obtain various behaviors of the Duffing oscillator equation. It is again necessary to signal that 

for 1=n  and 2=n , the exact and approximate analytical solutions of the corresponding 

oscillator equation can be determined [32, 33, 37]. 

Now, it is interesting to solve the generalized Duffing nonlinear oscillator equation (8) by 

means of the Energy Balance Method (EBM) (subsection 3.2) 

 

3.2 Application of the Energy Balance Method (EBM) 

In the Energy Balance Method (EBM) the nonlinear oscillator equation (8) can be put in the 

form [8, 38] 

0)( =+′′ ugu                                                                                                                       (9) 

under following initial conditions 
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Taking into account the equations (8) and (9) we obtain 
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which will be used to determine variation and Hamiltonian formulations of the equation (8). 

 Thus referring to [8], the variational principle for nonlinear oscillation equation (8) can be 

written as: 
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The Hamiltonian of the equation (8) can be obtained in the form: 
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where A  denotes the initial amplitude. Choosing the following trial function 

 ωττ cos)( Au =                                                                                                                      (13) 

 we obtain the following residual equation 
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 If we collocate at 
4

π
ωτ = , we obtain after some algebraic operations the following result: 
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The period can be written in the form: 
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Substituting the equation (15}) into the equation (13), we obtain the following approximate 

solution: 
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Therefore, with various n , different behaviors of solution of the equation (8) can be 

determined. 

 

4  Numerical results and discussion 

 In this section, the accuracy of the Energy Balance Method (EBM) is tested in the firstt time 

by comparing the approximate analytical solution with exact numerical solution obtained by 

Matlab (subsection 4.1). Secondly the effects of different parameters on the response have 

been analyzed. At last the variations of frequency with amplitude A , strain hardening 

exponent n  and  α  have been performed, respectively. 

 

 4.1 Comparison between approximate analytical result and exact 

numerical solution 

  This subsection compares the approximate analytical solution represented in solid line with 

the exact numerical solution plotted in circles for different values of the parameters of the 

system. Thus, we observe in Figure 2(a)-(d), that the approximate analytical solution obtained 
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by Energy Balance Method is in excellent agreement with the exact numerical solution 

obtained by Matlab ode solver 45 . The mean square error (mse) values that justify this 

agreement are 1.9719e-009 for Figure 2 (a), 1.9336e-005 for Figure 2 (b), 3.3917e-005 for 

Figure 2 (c) and 7.8925e-005 for Figure 2 (d). 

 

 

 

 

 

4.2 Effects of the parameters on the system response 

Here, the effects of the nondimensional tension α and strain hardening exponent n  are carried 

out in the phase plane by keeping the initial amplitude constant. Thus the Figure 3 represents 

the effect of the hardening parameter n  on the system response for six different values of n . 

The values of other parameters are kept constants. This Figure 3 shows elliptical trajectories 

of horizontal focal axis.  
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Figure 3- Phase portrait showing the effects of the strain hardening exponent n  for 1=A  and

3=α   

 

In Figure 4, we also note that the trajectories of the system are ellipses of horizontal focal 

axis.  

 
Figure 4- Phase portrait exhibiting the effects of the tension α  for 1=A  and 2=n  

Therefore we can note that α  and n  have opposite effects on the system response. This 

observation is confirmed by the Figure 5 and Figure 6 
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 Figure 5- Frequency variation with strain hardening exponent )(n for 4,3,2,1=α  

  

Figure 6- Frequency variation with α for 3,2,1,5.0,
3

1
=n  

4.3 Amplitude variation with angular frequency 

 The variation of the angular frequency with respect to amplitude is performed in Figure 7 and 

Figure 8 for different values of n  and α , respectively. In Figure 7 we note that for positive 

values of n  smaller than 1, the frequency increases with amplitude to attain fast its maximal 

value, and then decreases slowly to reach its minimal value. On the other hand, for higher 

values of n , the frequency decreases rapidly to attain its minimal value. 
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Figure 7- Effects of the strain hardening exponent n  on frequency 

The Figure 8 shows that the angular frequency decreases rapidly with amplitude when α  

decreases. 

 
Figure 8- Effects of the stiffness α  on frequency 

 

Conclusion 

A generalized Duffing oscillator equation was developed in this study for analyzing the 

unforced nonlinear oscillations in elastic structures. The Energy Balance Method (EBM) was 

used for determining the approximate analytical solution of the governing nonlinear equation. 

The accuracy of the approximate analytical solution obtained was verified by comparing with 

exact numerical solution given by Matlab ode solver 45 . As result, an excellent agreement 

was obtained between the approximate analytical solution and exact numerical solution. The 

effects of the strain hardening exponent n, the tension α  and amplitude are carried out. 
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