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Abstract—An ElectroMagnetic-Power-based Characteristic 
Mode Theory (CMT) for Metal-Material combined objects 
(MM-EMP-CMT) was built by expressing the various 
electromagnetic powers as the functions of the line current on 
metal line, the surface current on metal surface, the surface 
current on the boundary of metal volume, and the total field in 
material volume, so it can be simply called as the 
Line-Surface-Volume formulation for the MM-EMP-CMT 
(LSV-MM-EMP-CMT). As a companion to the 
LSV-MM-EMP-CMT, a Line-Surface formulation for the 
MM-EMP-CMT (LS-MM-EMP-CMT) is established in this paper 
by expressing the various powers as the functions of the line and 
surface currents on metal part and the surface equivalent current 
on the boundary of material part. 

The physical essence of LS-MM-EMP-CMT is the same as 
LSV-MM-EMP-CMT, i.e., to construct the various power-based 
Characteristic Mode (CM) sets for metal-material combined 
objects, but the LS-MM-EMP-CMT is more advantageous than 
the LSV-MM-EMP-CMT in some aspects. For example, the 
former saves computational resources; the former avoids to 
calculate the modal scattering field in source region; the 
field-based definitions for the impedance and admittance of 
metal-material combined electromagnetic systems can be easily 
introduced into the former. 
 
 

Index Terms—Admittance, Characteristic Mode (CM), 
Electromagnetic Power, Impedance, Input Power, Interaction, 
Metal-Material Combined Object, Output Power, Surface 
Equivalent Principle. 
 
  

I. INTRODUCTION 

HE Characteristic Mode Theory (CMT) was firstly 
introduced by R. J. Garbacz in 1965 [1]. Subsequently, R. F. 

Harrington et al. built a series of MoM-based CMTs, such as 
the Surface EFIE-based CMT for PEC systems 
(PEC-SEFIE-CMT) [2], the Volume Integral Equation-based 
CMT for Material bodies (Mat-VIE-CMT) [3], and the Surface 
Integral Equation-based CMT for Material bodies 
(Mat-SIE-CMT) [4]. 
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The Poynting’s theorem-based interpretations for the power 
characteristics of the Characteristic Mode (CM) sets derived 
from the PEC-SEFIE-CMT and Mat-SIE-CMT are provided in 
[5] and [6], such that the physical pictures of these two 
MoM-based CMTs become clearer. 

Recently, some ElectroMagnetic-Power-based CMTs 
(EMP-CMT) are established, such as the EMP-CMT for PEC 
systems (PEC-EMP-CMT) [7], the EMP-CMT for Material 
bodies (Mat-EMP-CMT) [8]-[9], and the EMP-CMT for 
Metal-Material combined objects (MM-EMP-CMT) [10]. The 
metal-material combined objects discussed in [10] can include 
metal part (metal line, surface, and volume) and material part 
(material volume). 

In [10], the various electromagnetic powers generated by 
metal-material combined systems are expressed as the 
functions of the line current on metal line, the surface current 
on metal surface, the surface current on the boundary of metal 
volume, and the total field (the summation of incident field and 
scattering field) in material volume, so the theory developed in 
[10] can be simply called as the Line-Surface-Volume 
formulation for the MM-EMP-CMT (LSV-MM-EMP-CMT). 
As a companion to the LSV-MM-EMP-CMT, a new 
Line-Surface formulation for the MM-EMP-CMT 
(LS-MM-EMP-CMT) is provided in this paper by expressing 
the various powers as the functions of the line and surface 
currents on metal part and the surface equivalent current on the 
boundary of material part. 

The physical essence of LS-MM-EMP-CMT is the same as 
LSV-MM-EMP-CMT, i.e., to construct the various 
power-based CM sets for the metal-material combined objects, 
which have abilities to depict the inherent power characteristics 
of the metal-material combined objects. However, the 
LS-MM-EMP-CMT is more advantageous than the 
LSV-MM-EMP-CMT in some aspects. For example, the 
former saves the computational resources; the former avoids to 
compute the modal scattering field in source region; the 
field-based definitions for the impedance and admittance 
introduced in [7] and [9] can be easily generalized to the 
former. 

Although many power-based CM sets can be constructed by 
optimizing various objective powers, only the theory and 
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formulations corresponding to the input/output power are 
explicitly provided in this paper because of its notable 
importance as explained in [8]. 

This paper is organized as follows. The Secs. II-VII provide 
the fundamental principles and essential formulations of the 
LS-MM-EMP-CMT, and the Sec. VIII concludes this paper. In 
what follows, the j te ω  convention is used throughout. 
 
 

II. SCATTERING SOURCES, SURFACE EQUIVALENT SOURCES, 
AND BASIC VARIABLE 

In this paper, the metal-material combined object is simply 
called as scatterer, and the scatterer includes two parts, that are 
the metal part (including three subparts: metal line part, metal 
surface part, and metal volume part) and the material part (i.e., 
material volume part). When an external excitation incF  
incidents on the scatterer, some scattering sources will be 
excited on the scatterer, and then the scattering field scaF  is 
generated by the scattering sources, here ,F E H= . The field 
generated by the scattering sources on the metal part is denoted 
as sca

metF , and the field generated by the scattering sources on the 
material part is denoted as sca

matF ; it is obvious that 
sca sca sca

met matF F F= + , because of the superposition principle [11]. 
The summation of the incF  and scaF  is the total field totF , i.e., 

tot inc scaF F F= + . 
In addition, it is restricted in this paper that the source of incF  

doesn’t distribute on the scatterer. 

A. Various domains and scattering sources. 

For the metal-material combined scatterers, the scattering 
currents include the following kinds: the line electric current 

lJ  on the metal line part, the surface electric current ,
s
met surfJ  on 

the metal surface part, the surface electric current ,
s
met volJ  on the 

boundary of the metal volume part, the volume ohmic electric 
current voJ  on the material part, the volume polarized electric 
current vpJ  on the material part, and the volume magnetized 
magnetic current vmM  on the material part [12]-[14]. In 
addition, the summation of the voJ  and vpJ  is denoted as vopJ  
in this paper. Various scattering charges are related to the 
corresponding scattering currents by current continuity 
equation, so the scattering field can be uniquely determined by 
the scattering currents mentioned above. 

The domains occupied by the metal line part, the metal 
surface part, the metal volume part, and the material part are 
respectively denoted as ,met lineD , ,met surfD , ,met volD , and ,mat volD , 
and their boundaries are correspondingly denoted as ,met lineD∂ , 

,met surfD∂ , ,met volD∂ , and ,mat volD∂  respectively. In the 
three-dimensional Euclidean space 3 , it is obvious that [15] 
 
 , ,met line met lineD D= ∂  (1.1) 
 , ,met surf met surfD D= ∂  (1.2) 
 
To simplify the symbolic system of this paper and to efficiently 
distinguish the different domains from each other, the ,met lineD  
and ,met surfD  are respectively denoted as metL  and metS , and 
their boundaries have the same symbolic representations as 
themselves because of the relations in (1); the ,met volD , ,mat volD , 

,met volD∂ , and ,mat volD∂  are respectively denoted as metV , matV , 
metV∂ , and matV∂ . 

When the magnetized magnetic current model is utilized to 
describe the magnetization phenomenon of material part, there 
doesn’t exist the material-based surface electric current on 

matV∂  [12]-[14]. In addition, it is obvious that only the case 
( )cl \ clmet met metS V S=  is necessary to be considered, so the 

metal-based surface electric currents ,
s
met surfJ  and ,

s
met volJ  can be 

uniformly denoted as the sJ , i.e., 
 

 ( )
( ) ( )
( ) ( )

( )

,

,

, \

,

0 ,

s met met
met surf

s s met
met vol

met met

J r r S V

J r J r r V

r S V

 ∈ ∂
= ∈∂


∉ ∂ 

 (2) 

 
The symbol “ clS ” represents the closure of set S , and 
cl intS S S S S= ∂ = ∂   for any set S  [15]; the symbol “ int S ” 
represents the interior of set S , and int \S S S= ∂  [15]. In fact, 
the above-mentioned relation ( )cl \ clmet met metS V S=  is equivalent 
to that ( )int cl \met met met met metS V S V S= ∅ ∧ ∂ = ; the relation 

intmet metS V = ∅  means that the metal surface part is neither 
completely nor partially submerged into the metal volume part; 
the relation ( )cl \met met metS V S∂ =  means that the set met metS V∂  
can only be the ∅  or some lines, but cannot contain any 
surface. Based on that ( )cl \ clmet met metS V S= , the domain 

met metS V∂  in (2) can be equivalently rewritten as follows [15] 
 
 ( ) ( ), ,met met met met met surf met volS V S V D D∂ = ∂ = ∂    (3) 

 
so the domain met metS V∂  in (2) can also be simply denoted as 

,met svD∂ , and then the domain met metS V  is simply denoted as 
,met svD . 

Similarly to the relation ( )cl \ clmet met metS V S= , only the case 
( ),cl \ clmet met sv metL D L=  is necessary to be considered, and this 

means that the metal line part is neither completely nor partially 
submerged into the metal volume part, and that the set 

,met met svL D∂  can only be the ∅  or some points but cannot 
contain any line. 

Some typical examples of the various scattering currents, 
domains, and boundaries mentioned above are illustrated in the 
Fig. 1. In addition, the cases plotted in the Figs. 2 and 3 are not 
considered in this paper.  

Material Part

vopJ
vmM

incF

Metal Volume Part

matV

matV∂

Metal Line Part

lJ

metL

metV

metV∂

Metal Surface Part

metS

,
s

met surfJ ,
s

met volJ

sJ ,met svD∂

 
Fig. 1. The metal-material combined object excited by incident field. 
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B. The decompositions for the various domains and scattering 
sources. 

Based on the discussions in [10], the metL  can be decomposed 
into two parts, met

freeL  and met
unfreeL ; the ,met svD∂  can be decomposed 

into two parts, ,met sv
freeD∂  and ,met sv

unfreeD∂ ; these domains and 
subdomains satisfy the following relations (4) and (5). 
 
 met met met

free unfreeL L L=  (4.1) 

 met met
free unfreeL L = ∅  (4.2) 

 
and 
 

 , , ,met sv met sv met sv
free unfreeD D D∂ ∂ = ∂  (5.1) 

 , ,met sv met sv
free unfreeD D∂ ∂ = ∅  (5.2) 

 
The met

freeL  and met
unfreeL  in (4) are defined as follows [10] 

 

 
( ){ }
( ){ }

: \ int cl

: \ int cl

met met met mat
free

met mat

L r r L L V

r r L V

∈

= ∈

 
 (6.1) 

 
( ){ }
( ){ }

: int cl

: int cl

met met met mat
unfree

met mat

L r r L L V

r r L V

∈

= ∈

  


 (6.2) 

 
and the ,met sv

freeD∂  and ,met sv
unfreeD∂  in (5) are defined as follows [10] 

 

 
( ){ }
( ){ }

, ,

,

: \ int cl cl

: \ int cl cl

met sv met sv met met mat
free

met sv met mat

D r r D S V V

r r D V V

∂ ∈∂

= ∈∂

  


 (7.1) 

 
( ){ }
( ){ }

, ,

,

: int cl cl

: int cl cl

met sv met sv met met mat
unfree

met sv met mat

D r r D S V V

r r D V V

∂ ∈∂

= ∈∂

   

 
 (7.2) 

 
Based on the (4) and (5), the scattering currents lJ  and sJ  

can be correspondingly decomposed as follows [10] 
 
 ( ) ( ) ( )l l l

free unfreeJ r J r J r= +  (8) 

 ( ) ( ) ( )s s s
free unfreeJ r J r J r= +  (9) 

 
here 
 

 ( )
( ) ( )

( )
( )

,

0 ,

0 ,

l met
free

l met
free unfree

met

J r r L

J r r L

r L

 ∈
 ∈


∉

  (10.1) 

 ( )
( )

( ) ( )
( )

0 ,

,

0 ,

met
free

l l met
unfree unfree

met

r L

J r J r r L

r L

 ∈
 ∈


∉

  (10.2) 

 
and 
 

 ( )
( ) ( )

( )
( )

,

,

,

,

0 ,

0 ,

s met sv
free

s met sv
free unfree

met sv

J r r D

J r r D

r D

 ∈∂
 ∈∂


∉∂

  (11.1) 

 ( )
( )

( ) ( )
( )

,

,

,

0 ,

,

0 ,

met sv
free

s s met sv
unfree unfree

met sv

r D

J r J r r D

r D

 ∈∂
 ∈∂


∉∂

  (11.2) 

 
It is restricted in this paper that met

unfreeL = ∅ , and then 
met met

freeL L=  and l l
freeJ J= . The above restriction implies that the 

metal line part is neither completely nor partially submerged 
into the material part. The reason to do the above restriction is 
that: the case met

unfreeL ≠ ∅  will lead to that the matV∂  is not a pure 
surface, and then leads to that the surface equivalent sources on 

matV

intmet metS V

metV

 
Fig. 2 (a). The case intmet metS V ≠ ∅  which is not considered in this paper.
 
 

metV

met metS V∂

 
Fig. 2 (b). The case ( )cl \met met metS V S∂ ≠  which is not considered in this paper.
 
 

metV

intmet metL V  
 
Fig. 3 (a). The case \ intmet metL V ≠ ∅  which is not considered in this paper. 
 
 

metV

met metL V∂
 

 
Fig. 3 (b). The case ( )cl \met met metL V L∂ ≠  which is not considered in this paper.
 
 

metS

met metL S  
 
Fig. 3 (c). The case ( )cl \met met metL S L≠  which is not considered in this paper.
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matV∂  cannot be easily defined. 
Some typical examples are illustrated in the Figs. 4-6. In 

addition, the case met
unfreeL ≠ ∅  which is not considered in this 

paper is plotted in the Fig. 7.  

C. Surface equivalent sources. 

Based on the discussions in [9]-[10], the surface equivalent 
sources on matV∂  can be defined as follows 
 
 ( ) ( ) ( ) ( ){ }0: , ,SE SE SE SEJ r J r J r J r+ −  (12) 

 ( ) ( ) ( ) ( ){ }0: , ,SE SE SE SEM r M r M r M r+ −  (13) 

 
here 
 

( )
( ) ( ) ( )

( )
,

0 ,

ˆ , \

0 , \

tot mat met met sv
mat unfreer rSE

mat met met sv
unfree

n r H r r V S D
J r

r V S D

→ ′→
 ′ × ∈ ∂ ∂ 


∉ ∂ ∂





 (14.1) 

( )
( ) ( ) ,

,

ˆ ,

0 ,

tot met met sv
unfreeSE r r

met met sv
unfree

n r H r r S D
J r

r S D
+

+ + →
+

 × ∈ ∂ 


∉ ∂





 (14.2) 

( )
( ) ( ) ,

,

ˆ ,

0 ,

tot met met sv
unfreeSE r r

met met sv
unfree

n r H r r S D
J r

r S D
−

− − →
−

 × ∈ ∂ 


∉ ∂





 (14.3) 

 
and 
 

( )
( ) ( ) ( )

( )
,

0 ,

ˆ , \

0 , \

tot mat met met sv
mat unfreer rSE

mat met met sv
unfree

E r n r r V S D
M r

r V S D

→ ′→
 ′ × ∈ ∂ ∂ 


∉ ∂ ∂





(15.1) 

( )
( ) ( ) ,

,

ˆ ,

0 ,

tot met met sv
unfreeSE r r

met met sv
unfree

E r n r r S D
M r

r S D
+

+ + →
+

 × ∈ ∂ 


∉ ∂





 (15.2) 

( )
( ) ( ) ,

,

ˆ ,

0 ,

tot met met sv
unfreeSE r r

met met sv
unfree

E r n r r S D
M r

r S D
−

− − →
−

 × ∈ ∂ 


∉ ∂





 (15.3) 

 
In (14.1) and (15.1), the subscript “ r r′ → ” represents that the 
r′  belongs to set int matV , and that the r′  approaches to the r ; 

 

matV

met met
freeL L=

 
Fig. 4 (a). The metal line and material parts don’t contact with each other. 
 

matV
met met

freeL L=

 
Fig. 4 (b). The metal line and material parts contact with each other. 
 

,met met sv
freeS D= ∂

matV

 
Fig. 5 (a). The metal surface and material parts don’t contact with each other.
 

matV

,met met sv
freeS D= ∂

 
Fig. 5 (b). The metal surface and material parts contact with each other. 
 

matV

,met sv
freeD∂ ,met sv

unfreeD∂

metS

 
Fig. 5 (c). The metal surface part is partially immerged into the material part.
 

matV

metV

,met met sv
freeV D∂ = ∂

 
Fig. 6 (a). The metal volume and material parts don’t contact with each other.
 

matV metV

,met sv
freeD∂

,met sv
unfreeD∂

metV∂

 
Fig. 6 (b). The metal volume and material parts contact with each other. 

met
freeL

met
unfreeL

matV metL

 
 
Fig. 7. The case met

unfreeL ≠ ∅  which is not considered in this paper. 

 

( ),\mat met met sv
unfreeV S D∂ ∂

,met met sv
unfreeS D∂

,SE SEJ M+ +

n̂+

n̂−

,SE SEJ M− −

ˆ matn→
0 0,SE SEJ M

 
 
Fig. 8. The sectional view of the Fig. 5 (c), and the surface equivalent sources 
on matV∂ .
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the ˆ matn→  is the normal direction vector of surface 
( ),\mat met met sv

unfreeV S D∂ ∂ , and it points to the interior of material 
part. The two sides of surface ,met met sv

unfreeS D∂  are in the material 
part, and they are respectively called as the “ + ” side and the 
“ − ” side of ,met met sv

unfreeS D∂ ; in (14.2), (14.3), (15.2), and (15.3), 
the subscript “ r r± → ” represents that int matr V± ∈ , and that the 
r±  approaches to the r  from the “ ± ” side. 

Taking the Fig. 5 (c) as a typical example, the surface 
equivalent sources corresponding to this example are illustrated 
in the Fig. 8.  

Because of the (14) and the magnetic field boundary 
condition on surface ,met sv

unfreeD∂  [12], [14], it can be found out that 
 

 ( )
( ) ( )
( ) ( ) ( )

( )

,
0

,

,

,

,

0 ,

SE met sv met
unfree

s SE SE met sv met
unfree unfree

met sv
unfree

J r r D V

J r J r J r r D S

r D

+ −

 ∈∂ ∂
= + ∈∂


∉∂



  (16) 

 
In fact, the (16) can be concisely written as the following 
operator form. 
 
 ( ) ( ) ( ),,s s SE met sv

unfree unfree unfreeJ r J r D= ∈∂  (17) 
 

Based on the discussions in [9], the SEJ  and SEM  are not 
independent of each other; in this paper, the SEJ  is selected as a 
part of basic variable [8] because of (17), i.e., the SEM  is 
expressed as the function of SEJ  based on the method given in 
[9], so 
 
 ( ) ( ) ( ),SE SE SE matM r J r V= ∈∂  (18) 
 
The specific mathematical expression for the operator (18) can 
be found in [9]. 

D. The mathematical expressions of various fields. 
Due to the above (18), the totF  on int matV  and the sca

matF  on 
3 \ matV∂  can be expressed as the functions of SEJ , and their 

operator forms are as follows [9] 
 
 ( ) ( ) ( ), inttot tot SE mat

int intF r J r V= ∈  (19) 

 ( ) ( ) ( )3, \sca sca SE mat
mat matF r J r V= ∈ ∂  (20) 

 
here ,F E H= , and correspondingly ,=   . To use the 
subscript “ int ” in (19) is to emphasize that the operator (19) is 
only suitable for the total field on int matV . 

Based on the (20), the scattering field scaF  on 3 \ D∂  can be 
expressed as the following linear operator form. 
 

 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )

,

,

, 0,

, 0,

sca sca sca
met mat

l s sca SE
mat

l s s sca SE
free free unfree mat

l s s sca SE
free free unfree mat

l s s SE sca SE
free free unfree mat

F r F r F r

J J J

J J J J

J J J J

J J J J

= +

= +

= + +

= + +

= + +

 

 

  

   

 (21) 

In (21), 3 \r D∈ ∂ ; ,F E H= , and correspondingly ,=   ; 
the operator ( ),l sJ J  represents the field generated by the line 
current lJ  and the surface current sJ  in vacuum, and its 
mathematical expression can be found in [12] and [14]; the 
third equality is based on the (9) and that l l

freeJ J=  as explained 
in the Sec. II-B; the fourth equality is due to the superposition 
principle [11]; the fifth equality originates from the (17). 

Considering of the above (21), the incF  on int matV  can be 
expressed as the function of l l

freeJ J= , s
freeJ , and SEJ  as 

follows 
 

 
( ) ( ) ( )

( )
( ) ( )( ) ( ), 0,

inc tot sca
int int

tot SE
int

l s s SE sca SE
free free unfree mat

F r F r F r

J

J J J J

= −

=

− − −



   

 (22) 

 
here int matr V∈ ; ,F E H= , and correspondingly ,=   . 

Because the vopJ  and vmM  in int matV  are uniquely 
determined by the totF  in int matV  [8]-[9], [12]-[14], they can be 
expressed as the following operator forms. 
 
 ( ) ( ) ( ), intvop vop SE matJ r J r V= ∈  (23.1) 

 ( ) ( ) ( ), intvm vm SE matM r J r V= ∈  (23.2) 
 
The specific mathematical expressions for the operators in (19), 
(20), and (23) can be found in [9], and then the specific 
mathematical expressions for the operators in (21) and (22) can 
be easily obtained, and they are not specifically provided here. 

E. Basic variable. 
As pointed out in [8]-[9], to express the various scattering 

sources as the functions of some independent variables is 
indispensable for the EMP-CMT, and the independent 
variables are called as basic variables. Based on the discussions 
in [9]-[10] and the discussions in the above Sec. II-D, it is 
obvious that the basic variables for the LS-MM-EMP-CMT can 
be selected as the { }, ,l l s SE

free freeJ J J J= , and they can be 
uniformly written as follows 
 

( )

( ) ( ) ( )
( ) ( )
( ) ( )

( )

,

,

,

,
Basic Variable

,

0 ,

l l met met
free free

s met sv
free free

SE mat

met met sv mat
free

J r J r r L L

J r r D
V r

J r r V

r L D V

 = ∈ =

 ∈∂


∈∂


∉ ∂ ∂



 

 (24) 

 
Because ,met sv mat

unfreeD V∂ ⊆ ∂  and , , ,met sv met sv met sv
free unfreeD D D∂ = ∂ ∂  and 

,met met lineL D= ∂  and mat matV D∂ = ∂ , the set ,met met sv mat
freeL D V∂ ∂   

in (24) can also be equivalently denoted as the 
, ,met line met sv matD D D∂ ∂ ∂  , or more simply denoted as the D∂ , 

i.e., 
 

 

, ,

,

,

met line met sv mat

met met sv mat

met met sv mat
free

D D D D
L D V
L D V

∂ ∂ ∂ ∂
= ∂ ∂

= ∂ ∂

  
 
 

 (25) 
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Inserting the (24) into the (9), (17), and (19)-(23), the various 
fields and scattering currents can be further written as the 
following linear operator forms. 
 
 ( ) ( ) ( ), intX X mat

int intF r V r V= ∈  (26) 

 ( ) ( ) ( )3, \sca scaF r V r D= ∈ ∂   (27) 

 
and 
 
 ( ) ( ) ( ),l l metJ r V r L= ∈  (28) 

 ( ) ( ) ( ),,s s met svJ r V r D= ∈∂  (29) 

 ( ) ( ) ( ), intvop vop matJ r V r V= ∈  (30.1) 

 ( ) ( ) ( ), intvm vm matM r V r V= ∈  (30.2) 

 
here ,X inc tot= ; ,F E H= , and correspondingly ,=   . 

In fact, the tangential component of scaE  on the domain D∂  
can be determined as the following (31), because there don’t 
exist the line and surface magnetic currents on D∂ . 
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

1,2

ˆ ˆlim ,

ˆ ˆlim , \

sca tan sca tan

l l sca met

r r

s s sca met
i i

r r
i

E r V

r r E r r L

r r E r r D L

τ τ

τ τ
′→

′→ =

=

 ′ ⋅ ∈ =  ′ ⋅ ∈∂  






 (31) 

 
here r D′∉∂ ; the ˆlτ  is the tangential direction of metL ; the 1̂

sτ  
and 2ˆ

sτ  are parallel to the surface ,\ met met sv matD L D V∂ = ∂ ∂ , and 
they are orthogonal to each other. 
 
 

III. INTERACTION, OUTPUT POWER, AND INPUT POWER 

In this section, the mathematical expression and physical 
meaning of the interaction between the incident field and the 
metal-material combined scatterer is discussed, and then the 
mathematical expressions for the output and input powers are 
provided. 

A. Interaction. 

The interaction between incident field and scatterer is just the 
interaction between incF  and { }, , ,l s vop vmJ J J M , and its 
mathematical expression is as follows 
 
 , ,met line met sv mat= + +     (32) 

 
The ,met line  in (32) is the interaction between incE  and lJ , and 
 

 

, ,

,

1 1
, ,

2 2
1 1

, ,
2 2

met met

met met

met line l inc l inc tan

L L

l sca tan l sca

L L

J E J E

J E J E

= =

= − = −


 (33.1) 

 
here ,inc tanE  is the tangential component of the incE  on metL ; the 
inner product is defined as ,g h g h d∗

Ω Ω< >  ⋅ Ω , and the 

symbol “ ∗ ” denotes the complex conjugate of relevant quantity, 
and the symbol “ ⋅ ” is the scalar product for field vectors. The 

,met sv  in (32) is the interaction between incE  and sJ , and [7] 
 

 
, ,

, ,

, ,

,

1 1
, ,

2 2
1 1

, ,
2 2

met sv met sv

met sv met sv

met sv s inc s inc tan

D D

s sca tan s sca

D D

J E J E

J E J E

∂ ∂

∂ ∂

= =

= − = −


 (33.2) 

 
here ,inc tanE  is the tangential component of the incE  on ,met svD∂ , 
and the third equality is based on the surface EFIE [12], [14]. 
The mat  in (32) is the interaction between { },inc incE H  and 
{ },vop vmJ M , and [8]-[9] 
 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

int int

int int

int int

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2

mat mat

mat mat

mat mat

mat mat

mat mat

mat

mat vop inc inc vm

V V

vop inc inc vm

V V

vop tot tot vm

V V

vop sca sca vm

V V

vop sca sca vm

V V

vop tot to

V

J E H M

J E H M

J E H M

J E H M

J E H M

J E H

= +

= +

= +

− −

= − −

+ +



,
mat

t vm

V
M

 (33.3) 

 
here the second equality is due to that 
( ) ( )1 2 , 0 1 2 ,mat mat

vop inc inc vm

V V
J E H M

∂ ∂
< > = = < > , because there 

doesn’t exist the material-based surface scattering current on 
matV∂  [12]-[14]; the third equality is due to that 

inc tot scaF F F= − ; the fourth equality is due to the same reason as 
the second equality. The reason to use the second equality in 
(33.3) is that the specific mathematical expressions for the totF , 

scaH , and , ,sca norm sca sca tanE E E= −  on matV∂  are not provided in 
this paper. 

Inserting the last equalities of (33) into the (32), the 
interaction   can be written as follows 
 

 

( )
( )
( ) ( )
( ) ( )

,

1 2 ,

1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

met

met sv

mat mat

mat mat

l sca

L

s sca

D

vop sca sca vm

V V

vop tot tot vm

V V

J E

J E

J E H M

J E H M

∂

= −

−

− −

+ +



 (34) 

 
Based on the source Poynting’s theorem, the first three lines in 
(34) can be rewritten as follows 
 

 

( )
( )
( ) ( )

,

, , ,

1 2 ,

1 2 ,

1 2 , 1 2 ,

met

met sv

mat mat

l sca

L

s sca

D

vop sca sca vm

V V

sca rad sac react vac

J E

J E

J E H M

P j P

∂

−

−

− −

= +

 (35) 

 
here 
 

 ( ), 1

2
sca rad sca sca

S
P E H dS

∞

∗ = × ⋅    (36.1) 
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3 3

3 3

, ,
0 0

0 0\ \

1 1
2 , ,

4 4

1 1
2 , ,

4 4

sac react vac sca sca sca sca

sca sca sca sca

D D

P H H E E

H H E E

ω μ ε

ω μ ε
∂ ∂

 = −  
 = −  

 

 

 (36.2) 

 
The symbol “ S∞ ” in (36.1) represents a closed spherical 
surface at infinity; the second equality in (36.2) is due to that 
( ) ( )0 01 4 , 0 1 4 ,sca sca sca sca

D DH H E Eμ ε∂ ∂< > = = < > . 
Based on that vop tot

cJ j Eω ε= Δ  and vm totM j Hω μ= Δ  on matV  
[8]-[9], and employing that c jε ε σ ω= +  and 0c cε ε εΔ = −  and 

0ε ε εΔ = −  and 0μ μ μΔ = − , the fourth line in (34) can be 
rewritten as follows 
 

 
( ) ( )

, , ,

1 2 , 1 2 ,
mat mat

vop tot tot vm

V V

tot loss tot react mat

J E H M

P j P

+

= +
 (37) 

 
here 
 

,

int

1
,

2
1

,
2

mat

mat

tot loss tot tot

V

tot tot

V

P E E

E E

σ

σ

=

=
  (38.1) 

, ,

int int

1 1
2 , ,

4 4

1 1
2 , ,

4 4

mat mat

mat mat

tot react mat tot tot tot tot

V V

tot tot tot tot

V V

P H H E E

H H E E

ω μ ε

ω μ ε

 = Δ − Δ  
 = Δ − Δ  

 (38.2) 

 
In (38.1), the second equality originates from that 
( )1 2 , 0mat

tot tot

V
E Eσ

∂
< > = . The second equality in (38.2) is due 

to that ( ) ( )1 4 , 0 1 4 ,mat mat

tot tot tot tot

V V
H H E Eμ ε

∂ ∂
< Δ > = = < Δ > . 

Inserting the (35) and (37) into the (34), the interaction   
can be written as follows 
 
 ( ), , , , , ,sca rad tot loss sca react vac tot react matP P j P P= + + +  (39) 

 

B. Output power and input power. 

Based on the discussions in above Sec. III-A and the 
conclusions given in [7]-[10], the output power outP  and input 
power inpP  are respectively as follows 
 

 

( )
( )
( )
( ) ( )
( ) ( )

,

, , , , , ,

,

,

int int

int int

1 2 ,

1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

met

met sv

mat mat

mat mat

out sca rad tot loss sca react vac tot react mat

l sca tan

L

s sca tan

D

vop sca sca vm

V V

vop tot tot vm

V V

P P P j P P

J E

J E

J E H M

J E H M

∂

= + + +

= −

−

− −

+ +

 (40) 

 
and 
 

 

( )
( )
( ) ( )

,

1 2 ,

1 2 ,

1 2 , 1 2 ,

met

met sv

mat mat

inp l inc

L

s inc

D

vop inc inc vm

V V

P J E

J E

J E H M

∂

= =

+

+ +



 (41) 

and the conservation law of energy [11] corresponding to the 
electromagnetic power version is as follows 
 
 out inpP P= =  (42) 

 
Inserting the (26)-(31) into the (40)-(41), the output and 

input powers can also be written as the following operator 
forms. 
 
 ( )out outP V=   (43) 

 ( )inp inpP V=   (44) 

 
 

IV. THE MATRIX FORM FOR OUTPUT POWER 

The basic variable V  can be expanded in terms of the basis 
function set ( ){ }b rξ  as follows 
 

 ( ) ( ) ( )
1

,V r a b r B a r Dξ ξ
ξ

Ξ

=

= = ⋅ ∈∂  (45) 

 
here ( ) ( ) ( )1 2, , ,B b r b r b rΞ =   , and [ ]1 2, , ,

T
a a a aΞ=  , and the 

superscript “ T ” represents matrix transposition; the symbol “ ⋅ ” 
represents matrix multiplication. 

Inserting the (45) into (43) and employing that 
inc tot scaF F F= − , the matrix form for output power outP  can be 

written as follows 
 

 ( )out out H outP B a a P a= ⋅ = ⋅ ⋅  (46.1) 

 
here out outP pξζ Ξ×Ξ

 =   , and 
 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
,

,

,

int int

1
,

2
1

,
2
1 1

, ,
2 2

met

met sv

mat mat

out l sca tan

L

s sca tan

D

vop inc inc vm
int int

V V

p b b

b b

b b b b

ξζ ξ ζ

ξ ζ

ξ ζ ξ ζ

∂

= −

−

+ +

 

 

   

 (46.2) 

 
for any , 1,2, ,ξ ζ = Ξ . The superscript “ H ” in (46.1) is the 
transpose conjugate of relevant matrix. 

The matrix outP  in (46.1) can be decomposed as [7]-[10] 
 

 out out outP P j P+ −= +  (47.1) 

 
here 
 

 
( )
( )

1

2

1

2

H
out out out

H
out out out

P P P

P P P
j

+

−

 = +  
 = −  

 (47.2) 

 
Obviously, the matrices outP+  and outP−  are Hermitian, so the 

H outa P a+⋅ ⋅  and H outa P a−⋅ ⋅  are always real numbers for any 
vector a Ξ∈  [16], and then [8]-[9] 
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( ){ }

( ) ( ), ,

ReH out out

sca rad tot loss

a P a B a

B a B a

+⋅ ⋅ = ⋅

= ⋅ + ⋅



 
 (48.1) 

 
( ){ }

( ) ( ), , , ,

ImH out out

sca react vac tot react mat

a P a B a

B a B a

−⋅ ⋅ = ⋅

= ⋅ + ⋅



 
 (48.2) 

 
In (48), the ( ),sca rad B a⋅  is the operator form of the power 

,sca radP  generated by the currents corresponding to the V B a= ⋅ , 
and the other symbols can be similarly explained. 
 
 

V. OUTPUT POWER CM (OUTCM) SET AND OUTCM-BASED 

MODAL EXPANSION 

Similarly to the PEC-EMP-CMT [7], the Mat-EMP-CMT 
[8]-[9], and the LSV-MM-EMP-CMT [10], a new line-surface 
formulation of the Output power CM (OutCM) set and the 
corresponding modal expansion method for the metal-material 
combined objects are discussed in this section. 

A. Output power CM (OutCM) set. 

When the matrix outP+  is positive definite at frequency f , the 
OutCM set can be obtained by solving the following 
generalized characteristic equation [7]-[10], [16]. 
 

 ( ) ( ) ( ) ( ) ( )out outP f a f f P f a fξ ξ ξλ− +⋅ = ⋅  (49.1) 

 
When the matrix outP+  is positive semi-definite at frequency 0f , 
the modal vectors can be obtained by using the following 
limitations for any 1,2, ,ξ = Ξ  [7]-[10]. 
 
 ( ) ( )

0
0 lim

f f
a f a fξ ξ→

=  (49.2) 

 
The modal basic variables are as follows for any 1,2, ,ξ = Ξ  

 
 ( ) ( ),V r B a r Dξ ξ= ⋅ ∈∂  (50) 

 
The modal scattering currents are as follows 
 
 ( ) ( ) ( ),l l metJ r V r Lξ ξ= ∈  (51) 

 ( ) ( ) ( ),,s s met svJ r V r Dξ ξ= ∈∂  (52) 

 ( ) ( ) ( ), intvop vop matJ r V r Vξ ξ= ∈  (53.1) 

 ( ) ( ) ( ), intvm vm matM r V r Vξ ξ= ∈  (53.2) 

 
for any 1,2, ,ξ = Ξ , and the relevant operators are defined as 
(28)-(30). 

The various modal fields corresponding to the above modal 
currents are as follows 
 
 ( ) ( ) ( ), , intX X mat

int intF r V r Vξ ξ= ∈  (54) 

 ( ) ( ) ( )3, \sca scaF r V r Dξ ξ= ∈ ∂   (55) 

 

for any 1,2, ,ξ = Ξ . In (54) and (55), ,X inc tot= ; ,F E H= , 
and correspondingly ,=   ; the relevant operators are 
defined as (26) and (27). Based on the (31), 
 
 ( ) ( ) ( ), , ,sca tan sca tanE r V r Dξ ξ= ∈∂  (56) 

 
for any 1,2, ,ξ = Ξ . In addition, the following relation (57) is 
valid for the modal fields for any 1,2, ,ξ = Ξ . 
 
 ( ) ( ) ( ) ( ), , , intinc tot sca mat

int intF r F r F r r Vξ ξ ξ= − ∈  (57) 

 
The above modal currents and modal fields satisfy the 

following power orthogonality [7]-[10]. 
 

( ); , ; , ; , , ; , ,

out out

out out out out
sca rad tot loss sca react vac tot react mat

P P

P P j P P

ξ ξζ ξζ

ξζ ξζ ξζ ξζ

δ =

= + + +
 (58) 

 
In (58), the ξζδ  is Kronecker delta symbol, and 
 

 
{ } { }

( ); , ; , ; , , ; , ,

Re Imout out out

out out out out
sca rad tot loss sca react vac tot react mat

P P j P

P P j P P

ξ ξ ξ

ξ ξ ξ ξ

= +

= + + +
 (59) 

 
and 
 

 
,

,

,

, ,int int

1
,

2
1

,
2
1 1

, ,
2 2

met

met sv

mat mat

out l sca tan

L

s sca tan

D

vop inc inc vm
int intV V

P J E

J E

J E H M

ξζ ξ ζ

ξ ζ

ξ ζ ξ ζ

∂

= −

−

+ +

 (60) 

 
and 
 

( ); ,

1

2
out sca sca

sca rad S
P E H dSξζ ζ ξ

∞

∗ = × ⋅    (61.1) 

; , , , int

1
,

2 mat

out tot tot
tot loss int int V

P E Eξζ ξ ζσ=   (61.2) 

3 3; , , 0 0\ \

1 1
2 , ,

4 4
out sca sca sca sca

sca react vac D D
P H H E Eξζ ξ ζ ξ ζω μ ε

∂ ∂

 = −   
 (61.3) 

; , , , , , ,int int

1 1
2 , ,

4 4mat mat

out tot tot tot tot
tot react mat int int int intV V

P H H E Eξζ ξ ζ ξ ζω μ ε = Δ − Δ  
(61.4) 

 
In the (59), ; , ; ,

out out
sca rad sca radP Pξ ξξ= , and ; , ; ,

out out
tot loss tot lossP Pξ ξξ= , and 

; , , ; , ,
out out

sca react vac sca react vacP Pξ ξξ= , and ; , , ; , ,
out out

tot react mat tot react matP Pξ ξξ= . 

B. OutCM-based modal expansion. 

Because of the completeness of the OutCM set [7]-[10], the 
basic variable V  on D∂ , the scattering currents 
{ }, , ,l s vop vmJ J J M  on scatterer, the scattering fields { },sca scaE H  
on 3 \ D∂ , the tangential scattering electric field ,sca tanE  on 

D∂ , and the fields { },inc incE H  and { },tot totE H  on int matV  can be 
expanded in terms of the OutCM set as follows 
 

 ( ) ( ) ( )
1

,V r c V r r Dξ ξ
ξ

Ξ

=

= ∈∂  (62) 
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and 
 

 ( ) ( ) ( )
1

,l l metJ r c J r r Lξ ξ
ξ

Ξ

=

= ∈  (63) 

 ( ) ( ) ( ),

1

,s s met svJ r c J r r Dξ ξ
ξ

Ξ

=

= ∈∂  (64) 

 ( ) ( ) ( )
1

, intvop vop matJ r c J r r Vξ ξ
ξ

Ξ

=

= ∈  (65.1) 

 ( ) ( ) ( )
1

, intvm vm matM r c M r r Vξ ξ
ξ

Ξ

=

= ∈  (65.2) 

 
and 
 

 ( ) ( ) ( )3

1

, \sca scaF r c F r r Dξ ξ
ξ

Ξ

=

= ∈ ∂   (66) 

 ( ) ( ) ( ), ,

1

,sca tan sca tanE r c E r r Dξ ξ
ξ

Ξ

=

= ∈∂  (67) 

 
here ,F E H= , and 
 

 ( ) ( ) ( ),
1

, intX X mat
int intF r c F r r Vξ ξ

ξ

Ξ

=

= ∈  (68) 

 
here ,X inc tot= , and ,F E H= . 

Based on the power orthogonality (58) for OutCM set, the 
system output power outP  can be expanded in terms of the 
modal powers as follows 
 

 

2

1

2 2

; , ; ,
1 1

2 2

; , , ; , ,
1 1

out out

out out
sca rad tot loss

out out
sca react vac tot react mat

P c P

c P c P

j c P c P

ξ ξ
ξ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ ξ

Ξ

=

Ξ Ξ

= =

Ξ Ξ

= =

=

 
= + 

 
 

+ + 
 



 

 

 (69) 

 
In (69), the terms corresponding to loss will disappear, if the 
material part is lossless. 

C. Expansion coefficients. 

When the external excitation is given, the interaction   and 
output power outP  can be respectively written as the following 
(70) and (71) based on the discussions in Sec. III. 
 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

int int

1 2 , 1 2 ,

1 2 , 1 2 ,

met met sv

mat mat

l inc s inc

L D

vop inc inc vm

V V

V

V E V E

V E H V

∂

=

= +

+ +



 

 

 

 (70) 

( )out outP V=    (71) 

 
In (70), the incE  and incH  are known. 

Based on the conservation law of energy (42) and the 
variational principle [17], the V  will make the following 
functional F  be zero and stationary. 
 
 ( ) ( ) ( )outV V V= − F  (72) 

 
Inserting the (62) and (70)-(71) into the (72) and employing 

the Ritz’s procedure [18], the following simultaneous equations 
for the expansion coefficients { }cξ  in (62)-(69) are derived for 
any 1,2, ,ξ = Ξ . 
 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( )

,

, ,

int int

, ,

1 1

, ,

1 1

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 ,

met met sv

mat mat

met met

met sv met sv

l inc s inc

L D

vop inc inc vm

V V

l sca tan l sca tan

L L

s sca tan s sca tan

D D

vop

J E J E

J E H M

J c E c J E

J c E c J E

J c

ξ ξ

ξ ξ

ξ ζ ζ ζ ζ ξζ ζ

ξ ζ ζ ζ ζ ξζ ζ

ξ ζ

∂

Ξ Ξ

= =

Ξ Ξ

= =∂ ∂

+

+ +

= − −

− −

+

 

 
( )

( ) ( )

, ,1 1int int

, ,1 1int int

1 2 ,

1 2 , 1 2 ,

mat mat

mat mat

inc vop inc
int int

V V

inc vm inc vm
int int

V V

E c J E

H c M c H M

ζ ζ ζ ξζ ζ

ξ ζ ζ ζ ζ ξζ ζ

Ξ Ξ

= =

Ξ Ξ

= =

+

+ +

 

 

 (73.1) 

 
and 
 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( )

,

, ,

int int

, ,

1 1

, ,

1 1

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 ,

met met sv

mat mat

met met

met sv met sv

l inc s inc

L D

vop inc inc vm

V V

l sca tan l sca tan

L L

s sca tan s sca tan

D D

vop

J E J E

J E H M

J c E c J E

J c E c J E

J c

ξ ξ

ξ ξ

ξ ζ ζ ζ ζ ξζ ζ

ξ ζ ζ ζ ζ ξζ ζ

ξ ζ

∂

Ξ Ξ

= =

Ξ Ξ

= =∂ ∂

− −

− +

= −

+ −

−

 

 
( )

( ) ( )

, ,1 1int int

, ,1 1int int

1 2 ,

1 2 , 1 2 ,

mat mat

mat mat

inc vop inc
int int

V V

inc vm inc vm
int int

V V

E c J E

H c M c H M

ζ ζ ζ ξζ ζ

ξ ζ ζ ζ ζ ξζ ζ

Ξ Ξ

= =

Ξ Ξ

= =

+

− +

 

 

 (73.2) 

 
In (73), the relation (57) has been utilized. 

By solving the (73), the coefficient { }cξ  can be determined. 
If the orthogonality of (58) is utilized in (73), the coefficient 
{ }cξ  can be concisely written as the (74) for any 1,2, ,ξ = Ξ . 

 

 

( )

( )

,

,

,

int

1 1 1
, , , , 0

2 2

1 1 1 1 1
, , , , 0, 0

2 2 2

1 1 1 1
, , ,

2 2 2

met met sv

met met sv mat

met met sv

l inc s inc
cout L D

l inc s inc inc vm
cout outL D V

l inc s inc vop
out L D

J E J E
P

J E J E H M
P P

c

J E J E J E
P

ξ ξ
ξ

ξ ξ ξ
ξ ξ

ξ

ξ ξ ξ
ξ

μ ε

μ ε

∂

∗

∂

∂

 ⋅ + Δ Δ =  

  ⋅ + = ⋅ Δ ≠ Δ =      =
⋅ + + ( )

( ),

int

int int

, 0, 0

1 1 1 1 1 1
, , , , , , 0

2 2 2 2

mat

met met sv mat mat

inc
cV

l inc s inc vop inc inc vm
cout outL D V V

J E J E J E H M
P Pξ ξ ξ ξ

ξ ξ

μ ε

μ ε
∗

∂










  Δ = Δ ≠   
    ⋅ + + = ⋅ Δ Δ ≠       

 (74)
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The symbol “ ⋅ ” in (74) represents the ordinary scalar 
multiplication. 
 
 

VI. IMPEDANCE AND ADMITTANCE OF METAL-MATERIAL 

COMBINED ELECTROMAGNETIC SYSTEMS 

In this section, the field-based definitions for the impedance 
and admittance introduced in [7] and [9] are generalized to the 
metal-material combined electromagnetic systems. 

A. System impedance and admittance. 

Following the ideas of [7] and [9], the field-based definitions 
for the system impedance Z  and the system admittance Y  of 
the metal-material combined electromagnetic systems are 
defined as follows 
 

 ( ) ( ) ( )inp out

J J

V V
Z V

N N
= =

 
   (75.1) 

 
here 
 

 ( )

,

,

, ,

0 0 \

1 1
, ,

2 2
1

,
2
1 1

, ,
2 2

met svmet
free

met svmat met
unfree

met sv met svmet met
unfree unfree

J l l s s
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J J
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+
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 (75.2) 

 
and 
 

 ( ) ( ) ( )inp outV V
Y V

N Nρ ρ= =
 

   (76.1) 

 
here 
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(76.2) 

 
In the (75) and (76), the L  is the length of metL ; the lρ  is the 
line electric charge on metL , and the s

freeρ  is the surface electric 
charge on ,met sv

freeD∂ , and the 0
SEρ  and SEρ±  are respectively the 

surface equivalent electric charges on ( ),\mat met met sv
unfreeV S D∂ ∂  and 

,met met sv
unfreeS D∂ ; the various charges and the related currents 

satisfy the corresponding current continuity equations; the 
inner product for the scalars is defined as 

,g h g h d∗
Ω Ω< >  ⋅ Ω . 

The system resistance, reactance, conductance, and 
susceptance of metal-material combined systems are 
respectively as follows 

 ( ) ( ){ }ReR V V= =   (77.1) 

 ( ) ( ){ }ImX V V= =   (77.2) 

 
and 
 

 ( ) ( ){ }ReG V V= =   (78.1) 

 ( ) ( ){ }ImB V V= =   (78.2) 

 

B. Modal impedance and admittance. 

The field-based definitions for the modal impedance, 
resistance, reactance, admittance, conductance, and 
susceptance introduced in the papers [7] and [9] can be 
generalized to the OutCMs of metal-material combined objects 
as follows 
 
 out JZ P Nξ ξ ξ  (79) 

 { }ReR Zξ ξ=  (80.1) 

 { }ImX Zξ ξ=  (80.2) 

 
here 
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 (81) 

 
here ,

s s
freeJ Jξ ξ=  on ,met sv

freeD∂ , and 
 
 outY P N ρ

ξ ξ ξ  (82) 

 { }ReG Yξ ξ=  (83.1) 

 { }ImB Yξ ξ=  (83.2) 

 
here 
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 (84) 

 
In (84), the l

ξρ  is the modal line electric charge on metL , and the 

,
s
free ξρ  is the modal surface electric charge on ,met sv

freeD∂ , and the 

0,
SE

ξρ  and ,
SE

ξρ±  are respectively the modal surface equivalent 
electric charges on ( ),\mat met met sv

unfreeV S D∂ ∂  and ,met met sv
unfreeS D∂ ; the 

various modal charges and the related modal currents satisfy 
the corresponding current continuity equations. 
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VII. MODAL QUANTITIES CORRESPONDING TO THE OUTCM 

SET OF METAL-MATERIAL COMBINED OBJECTS 

In fact, the introductions for the modal impedance (79) and 
admittance (82) provide an efficient way to define the various 
modal quantities (introduced in [7]-[8]) for the OutCM set of 
metal-material combined objects, and they are discussed in this 
section. 

The 0cεΔ ≠  case is considered here, so the formulation 
( ) ( ) ( ) ( ), int
1 1 2 , 1 2 , 1 2 ,met met sv mat

out l inc s inc vop inc

L D V
c P J E J E J Eξ ξ ξ ξ ξ∂

 = ⋅ < > + < > + < > 
is utilized in the following discussions. Of cause, the case 
( )0, 0cμ εΔ ≠ Δ =  can be similarly discussed, but it will not be 
repeated in this paper. 

A. Modal normalization. 

The field-based expression for the normalized basic variable 
is as follows 
 

 ( ) ( ) ( ),
J

V r
V r r D

N

ξ
ξ

ξ

= ∈∂  (85) 

 
for any 1,2, ,ξ = Ξ . The field-based expressions for the 
normalized modal currents and fields can be similarly obtained. 

B. Modal quantities. 

The normalized version of expansion formulation (69) is as 
follows 
 

 
,

2

1

1

2

int

1 1 1
, ,

2 2

1
,

2

met met sv

mat

out

l inc s inc

L D

vop inc

V

P c Z

J E J E
Z

Z
J E

Z

ξ ξ
ξ

ξ ξ
ξ ξ

ξ
ξ

ξ

Ξ

=

Ξ

∂=

=

= ⋅ +


+ ⋅ 








 



 (86) 

 
Based on the above (86), the various modal quantities can be 

defined for the metal-material combined objects as the 
following (87)-(92) for any 1,2, ,ξ = Ξ  [7]-[8]. 
 

 , 1
GMSsys tot

Z
ξ

ξ

  (87) 

 
and 
 

 
,

2

int

MACE

1 1 1
, , ,

2 2 2met met sv mat

mod

l inc s inc vop inc

L D V
J E J E J E

ξ

ξ ξ ξ
∂

+ +  
 (88) 

 
and 
 

 ,MAOPmod act R

Z
ξ

ξ
ξ

  (89.1) 

 ,MAOPmod react X

Z
ξ

ξ
ξ

  (89.2) 

 
and 
 
 , ,SMS GMS MACEsys tot sys tot mod

ξ ξ ξ⋅  (90) 

 
and 
 
 , , ,SMS SMS MAOPsys act sys tot mod act

ξ ξ ξ⋅  (91.1) 

 , , ,GMS GMS MAOPsys act sys tot mod act
ξ ξ ξ⋅  (91.2) 

 
and 
 
 , , ,SMS SMS MAOPsys react sys tot mod react

ξ ξ ξ⋅  (92.1) 

 , , ,GMS GMS MAOPsys react sys tot mod react
ξ ξ ξ⋅  (92.2) 

 
The various modal quantities defined in above (87)-(92) and 

the modal component 
2

c Zξ ξ  in (86) satisfy the relation (93) for 
any 1,2, ,ξ = Ξ . 
 
 
 

VIII. CONCLUSIONS 

A new line-surface formulation of MM-EMP-CMT is 
established in this paper, and it is simply denoted as 
LS-MM-EMP-CMT. Just like the previous PEC-EMP-CMT, 
Mat-EMP-CMT, and LSV-MM-EMP-CMT, the CM sets 
derived from LS-MM-EMP-CMT can reveal the inherent 
power characteristics of metal-material combined 
electromagnetic systems. 

The physical effectiveness of LS-MM-EMP-CMT is the 
same as the LSV-MM-EMP-CMT. However, the former is 
more advantageous than the latter in some aspects, such as 
saving computational resources and avoiding to compute the 
modal scattering field in source region etc.  

In addition, a variational formulation for the scattering 
problem of metal-material combined objects is provided based 
on the conservation law of energy, and the unknowns only 
include the line and surface sources; the field-based definitions 
for the impedance and admittance of metal-material combined 
electromagnetic systems are introduced in this paper. 
 
 
 

 

 

, ,
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SMS SMS

2 , , , , , ,

, ,
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SMS SMS MACE GMS MAOP MACE GMS MAOP

MACE GMS MAOP
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c Z j j

ξ ξ
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ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ
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,

, ,

GMS
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ξ
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 (93)
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