A Simple Proof of the Collatz-Gormaund Theorem (Collatz Conjecture)

Caitherine Gormaund

October 2016

1 Definitions

We define a function $c(n) \quad(n \in \mathbb{N})$ such that

$$
c(n)= \begin{cases}\frac{n}{2} & n \text { even } \\ 3 n+1 & n \text { odd }\end{cases}
$$

Furthermore, we define $c_{i}(n)$ such that

$$
c_{i}(n)=\underbrace{c(c(c(\ldots c(n) \ldots)))}_{i \text { times }}
$$

We now define a statement $P(n)$, meaning

$$
P(n): \exists i \in \mathbb{N} . C_{i}(n)=1
$$

Thus, we can state the Collatz Conjecture in the following way

$$
\forall n \in \mathbb{N} . P(n)
$$

2 Proof

$$
\begin{aligned}
& c(1)=1 \\
& \therefore P(1)
\end{aligned}
$$

Now, assume $P(n) \forall n<k$ for some $k \in \mathbb{N}$ (Complete Induction)
If k is even:

$$
\begin{gathered}
c(k)=\frac{k}{2} \\
\frac{k}{2}<k
\end{gathered}
$$

$$
\begin{gathered}
P\left(\frac{k}{2}\right) \text { is assumed. } \\
\therefore P(k)
\end{gathered}
$$

If k is odd:

$$
k=2 m-1 \text { for some } m \in \mathbb{N}
$$

$c(2 m-1)=3(2 m-1)+1=6 m-2=2(3 n-1)$, which is even.
$P(k)$ has already been shown for even k
$\therefore P(k)$
$P(1)$ and $P(n<k) \Longrightarrow P(k)$
Hence, by complete induction, $P(n) \forall n \in \mathbb{N}$
Q.E.D

