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Abstract 

The method of multiple scales is applied and the second order two-scale 
approximation is calculated for a linear dispersive wave equation with a small 
perturbation proportional to the amplitude cubed. 

1. Introduction 

Most of differential equations can’t be solved explicitly, i. e. using elementary 
functions. For this reason, various approximate methods exist, including 
perturbation methods that are used when the equation to be solved is close to a 
solvable equation [1]. 

One of such methods is the method of multiple scales that comprises techniques 
used to construct uniformly valid approximations to the solutions of perturbation 
problems. This is done by introducing fast-scale and slow-scale variables for an 
independent variable, and subsequently treating these variables, fast and slow, as if 
they are independent [2]. 

 

2.    The equation and the first order approximation 

J. Murdock in [1] applies a two-scale method to get an approximated solution of the 
following dispersive wave partial differential equation: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 + 𝜀𝑢3 = 0                 (1) 

with the initial conditions 

𝑢(𝑥, 0) = sin 𝑘𝑥,                      

𝑢𝑡(𝑥, 0) = 𝜔 cos 𝑘𝑥 

where 

𝜔 = √1 + 𝑘2.        

The solution is represented in the two-scale form as 

   𝑢(𝑥, 𝑡, 𝜀) = 𝑢0(𝑥, 𝑡, 𝜏) + 𝜀𝑢1(𝑥, 𝑡, 𝜏) + ⋯.       (2), 

where 

𝜏 = 𝜀𝑡.        

The next usual differentiation rules are used: 
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ⅆ

ⅆ𝑡
=

𝜕

𝜕𝑡
+ 𝜀

𝜕

𝜕𝜏
, 

ⅆ2

ⅆ𝑡2
=

𝜕2

𝜕𝑡2
+ 2𝜀

𝜕2

𝜕𝜏𝜕𝑡
+ 𝜀2 𝜕2

𝜕𝜏2
 .     (3) 

 

It is found that  

𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 + 𝑢1 =
1

4
sin 3 (𝑘𝑥 + 𝜔𝑡 +

3

8𝜔
𝜏)   (4) 

𝑢1(𝑥, 0,0) = 0,      (5) 

𝑢1𝑡(𝑥, 0,0) = −𝑢0𝜏(𝑥, 0,0),    (6) 

and the first order approximation is  

𝑢0(𝑥, 𝑡, 𝜀𝑡) = sin (𝑘𝑥 + 𝜔𝑡 +
3

8𝜔
𝜏) =  sin (𝑘𝑥 + 𝜔𝑡 +

3

8𝜔
𝜀𝑡).  (7) 

3. The second order approximation 

As for higher order approximations, it is stated [1,  part 5.3] that this strategy  
requires solving certain differential equations that may not have explicit solutions, 
and for this reason such calculations are not always possible in practice. 

In this paper we will find the second order approximation for equation (1) that is 
fully expressed in terms of elementary functions. 

To find 𝑢1, we need also equations for 𝑢2. Substituting (2) to (1) and using (3), we 
get: 

𝜀(𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 … )3 + 𝑢0𝑡𝑡 + 2𝜀𝑢0𝜏𝑡 + 𝜀2𝑢0𝜏𝜏 − 𝑢0𝑥𝑥 + 𝑢0  

+ 𝜀(𝑢1𝑡𝑡 + 2𝜀𝑢1𝜏𝑡 + 𝜀2𝑢1𝜏𝜏 − 𝑢1𝑥𝑥 + 𝑢1) + 𝜀2(𝑢2𝑡𝑡 + 2𝜀𝑢2𝜏𝑡 + 𝜀2𝑢2𝜏𝜏 − 𝑢2𝑥𝑥 + 𝑢2)  

+ 𝜀3(𝑢3𝑡𝑡 + 2𝜀𝑢3𝜏𝑡 + 𝜀2𝑢3𝜏𝜏 − 𝑢3𝑥𝑥 + 𝑢3) + … = 0. 

Provided 

(𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 … )3 = 𝑢0
3 + 3𝑢0(𝜀𝑢1)2 + 3𝑢0(𝜀2𝑢2)2 + 6𝑢0𝜀𝑢1𝜀2𝑢2  

+ 3𝑢0
2𝜀𝑢1 + 3𝑢0

2𝜀2𝑢2 + 𝑂(𝜀3) 

let us equate the coefficients of 𝜀2 members: 

𝑢2𝑡𝑡  - 𝑢2𝑥𝑥 + 𝑢2 = - (3𝑢0
2𝑢1 + 𝑢0𝜏𝜏 + 2𝑢1𝜏𝑡).      (8) 

Designating 

z = 𝑘𝑥 + 𝜔𝑡 +
3

8𝜔
𝜏 

we get  

𝑢0 = sin 𝑧,          

𝑢0𝜏 =
3

8𝜔
cos 𝑧,         

and from (4), (5),(6) 
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𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 + 𝑢1 =
1

4
sin 3𝑧  ,     (9), 

𝑢1(𝑥, 0,0) = 0,        (10), 

𝑢1𝑡(𝑥, 0,0) = = −𝑢0𝜏(𝑥, 0,0) =−
3

8𝜔
cos 𝑘𝑥    (11) 

From (9), (10), (11) with the additional condition that the right part of (8) does not 
contain resonant members we can find 𝑢1.  

We will search for a partial solution of (9) that is proportional to the right part: 

�̃�1 = 𝑝 sin 3 𝑧, 

substituting this to (9) we get 

−(3𝜔)2𝑝 sin 3𝑧 + (3𝑘)2𝑝 sin 3𝑧 + 𝑝 sin 3𝑧 + 
1

4
sin 3𝑧, 

𝑝 = −
1

32
  , 

�̃�1 = −
1

32
sin 3𝑧.   (12) 

Now we add solutions of the homogeneous equation. As it known, they are 

cos(𝑙𝑥) [𝐴 cos(𝑤𝑡) + 𝐵 sin(𝑤𝑡)], 

sin(𝑙𝑥) [𝐴 cos(𝑤𝑡) + 𝐵 sin(𝑤𝑡)] 

that can be represented also as 

𝐴 sin 𝑙𝑥  cos(w𝑡 + 𝜓), 

𝐵 cos 𝑙𝑥  sin(w𝑡 + 𝜓), 

for any A, B, 𝜓 , l and 𝑤 = √1 + 𝑙2. 

The first solution that we add is 

S1 =𝐴 sin 3𝑘𝑥  cos(𝜔3𝑡 + 𝜓𝐴𝜏),       (13) 

where 𝜔3 = √1 + (3𝑘)2.         

Its purpose is to compensate the effect of �̃�1 on (10). 

The second solution is 

    S2 = 𝐵 cos 3𝑘𝑥  sin(𝜔3𝑡 + 𝜓𝐵𝜏),    (14) 

whose purpose is to fulfil (11). 

Also we add solutions  

S3 =  𝐾1 cos 𝑘𝑥 sin(𝜔𝑡 + 𝜑) + 

+ 𝐾2 sin 𝑘𝑥 cos(𝜔𝑡 + 𝜑) + 

+ 𝐾3 sin 𝑘𝑥 sin(𝜔𝑡 + 𝜑) + 

+ 𝐾4 cos 𝑘𝑥 cos(𝜔𝑡 + 𝜑),                         (15) 
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where 𝜑 =
3

8𝜔
𝜏. 

These expressions are used to fulfil (11), because of (8) and especially of 𝑢0
2𝑢1 term. 

𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝜓𝐴, 𝜓𝐵 can depend on 𝜏. A and B also can depend on 𝜏, but at the end 
they will be found to be constant. The phases in (13), (14) can depend on 𝜏 in more 
general way, but the linear dependency was found to be enough. The phases in (15) 
are left like (7) because of interaction with 𝑢0

2𝑢1 term. 

Now 

𝑢1= �̃�1 + S1+ S2 + S3      (16) 

and by differentiation we get 

𝑢1𝑡= −
1

32
⋅ 3𝜔 cos 3𝑧  

−𝐴𝜔3 sin 3𝑘𝑥 sin(𝜔3𝑡 + 𝜓𝐴𝜏) 

+𝐵𝜔3 cos 3𝑘𝑥 cos(𝜔3𝑡 + 𝜓𝐵𝜏) 

+ 𝐾1 𝜔 cos 𝑘𝑥 cos(𝜔𝑡 + 𝜑) + 

- 𝐾2 𝜔 sin 𝑘𝑥 sin(𝜔𝑡 + 𝜑) + 

+𝐾3 𝜔 sin 𝑘𝑥 cos(𝜔𝑡 + 𝜑) + 

- 𝐾4𝜔 cos 𝑘𝑥 sin(𝜔𝑡 + 𝜑)           (17) 

From (10) for t = 𝜏 = 0 we get  

𝐴 =
1

32
.      (18) 

From (11), (17)  for t = 𝜏 = 0 we get 

𝐵 =
3𝜔

32𝜔3
.      (19) 

Differentiating (17) by 𝜏, we get 

𝑢1𝑡𝜏= 
27

256
sin 3𝑧 

−𝐴𝜓𝐴𝜔3 sin 3𝑘𝑥 cos(𝜔3𝑡 + 𝜓𝐴𝜏) 

−𝐵𝜓𝐵𝜔3 cos 3𝑘𝑥 sin(𝜔3𝑡 + 𝜓𝐵𝜏) 

−
3

8
𝐾1 cos 𝑘𝑥 sin(𝜔𝑡 + 𝜑) 

+𝐾1
′ 𝜔 cos 𝑘𝑥 cos(𝜔𝑡 + 𝜑) 

−
3

8
𝐾2 sin 𝑘𝑥 cos(𝜔𝑡 + 𝜑) 

−𝐾2
′ 𝜔 sin 𝑘𝑥 sin(𝜔𝑡 + 𝜑) 

−
3

8
𝐾3 sin 𝑘𝑥 sin(𝜔𝑡 + 𝜑) 
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+𝐾3
′ 𝜔 sin 𝑘𝑥 cos(𝜔𝑡 + 𝜑) 

−
3

8
𝐾4 cos 𝑘𝑥 cos(𝜔𝑡 + 𝜑) 

−𝐾4
′ 𝜔 cos 𝑘𝑥 sin(𝜔𝑡 + 𝜑). 

Now we check all possible sources of resonant terms of kind l = 3k in the right part 
of (8). 

Transform 

3𝑢0
2𝑢1= 3 sin2 𝑧 ⋅ 𝑢1= 3 ⋅

1−cos 2𝑧

2
⋅ 𝑢1= 

3

2
𝑢1 - 

3

2
cos 2𝑧 ⋅ 𝑢1. 

The multiplication of (13), (14) with cos2z cannot produce resonant members 
because these trigonometric functions are based on different values of l and hence 
the coefficients of x and t are not proportional. Hence the only possible sources of 

resonant terms are 2𝑢1𝜏𝑡  and  
3

2
𝑢1. 

Let’s sc be sin 3𝑘𝑥 cos(𝜔3𝑡 + 𝜓𝐴𝜏) and cs be cos 3𝑘𝑥 sin(𝜔3𝑡 + 𝜓𝐵𝜏). 

All resonant members are shown in the next table: 

 

coefficient source sc cs 

2 𝑢1𝜏𝑡 −𝐴𝜓𝐴𝜔3 −𝐵𝜓𝐵𝜔3 

3

2
 

𝑢1 𝐴 𝐵 

 

From this, 

−2𝐴𝜓𝐴𝜔3 +
3

2
𝐴 = 0, 

−2𝐵𝜓𝐵𝜔3 +
3

2
𝐵 = 0, 

𝜓𝐴 = 𝜓𝐵 =
3

4𝜔3
  .        

As for �̃�1, that was defined in (12), it can’t create terms of l=3k type. 

Now we will check (8) for l=k resonances to find 𝐾1, 𝐾2, 𝐾3, 𝐾4. 

Let’s sc be  sin 𝑘𝑥 cos(𝜔𝑡 + 𝜑) and we designate other similar expressions as sc, ss, 
cc. 

All resonant members of this type are shown in the next table: 

 

Source Coefficient Resonant members 

Interaction 
of l=k 

−
3

2
⋅

1

4
 

(-sc –cs) 𝐾1 (-sc –cs) 𝐾2 (-cc +ss) 𝐾3 (cc -ss) 𝐾4 
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members 
with cos2z 

3

2
𝑢1 

3

2
 

cs 𝐾1 sc 𝐾2 ss 𝐾3 𝑐𝑐 𝐾4 

2𝑢1𝜏𝑡 2 𝐾1
′𝜔𝑐𝑐 

− 𝐾1𝜔
3

8𝜔
𝑐𝑠 

−𝐾2
′𝜔𝑠𝑠 

− 𝐾2𝜔
3

8𝜔
𝑠𝑐 

𝐾3
′𝜔𝑠𝑐 

− 𝐾3𝜔
3

8𝜔
𝑠𝑠 

𝐾4
′𝜔𝑐𝑠

− 𝐾4𝜔
3

8𝜔
𝑐𝑐 

𝑢0𝜏𝜏 
−

9

64𝜔2
 

cs + sc 

Interaction 
of �̃�1 with 
cos2z 

−
3

2

⋅ (−
1

32
) ⋅

1

2
 

cs + sc 

 

For checking interactions with cos2z we used identities like  

sin 𝛼 cos 𝛽= 
1

2
[sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)] 

and 

sin(𝛼 + 𝛽)=sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 

and chose only potentially resonant members. 

Now we separate members for cs, sc, ss, cc. 

3

8
𝐾1+

3

8
𝐾2+

3

2
𝐾1 −

2⋅3

8
𝐾1 − 2𝐾4

′𝜔 − 
9

64𝜔2 + 
3

128
 = 0 (for cs), 

3

8
𝐾1+

3

8
𝐾2+

3

2
𝐾2 −

2⋅3

8
𝐾2 + 2𝐾3

′𝜔 − 
9

64𝜔2 + 
3

128
 = 0 (for sc), 

−
3

8
𝐾3+

3

8
𝐾4+

3

2
𝐾3 − 2𝐾2

′𝜔  −
2⋅3

8
𝐾3= 0 (for ss), 

3

8
𝐾3 −

3

8
𝐾4+

3

2
𝐾4 + 2𝐾1

′𝜔  −
2⋅3

8
𝐾4= 0 (for cc), 

From here 

𝐾1
′ = −

3

16𝜔
𝐾3 −

3

16𝜔
𝐾4, 

𝐾2
′ = +

3

16𝜔
𝐾3 +

3

16𝜔
𝐾4, 

𝐾3
′ = −

9

16𝜔
𝐾2 −

3

16𝜔
𝐾1 − 𝑏, 

𝐾4
′ =

9

16𝜔
𝐾1 +

3

16𝜔
𝐾2 + 𝑏, 

where 𝑏 = (
3

128
−

9

64𝜔2) ⋅
1

2𝜔
.       (20) 

Substituting (17) to (11) and equating like terms we find 
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𝐾1(0) = −
3

8𝜔2,   

𝐾3(0) = 0 , 

and substituting (17) to (10) we find 

𝐾2(0) = 0, 

𝐾4(0) = 0.                                       (21) 

Now (20), (21) is a system of 1st order linear equations with constant coefficients. 

The solution of the system is: 

𝐾1(𝜏) = −
3

8𝜔2, 

𝐾2(𝜏) = 0, 

𝐾3(𝜏) = −
3(𝜔2−24)𝜏

256𝜔3 , 

𝐾4(𝜏) =
3(𝜔2−24)𝜏

256𝜔3 . 

Substituting  (12), (13),(14),(15),(18),(19) to  (16), we finally get 

𝑢1(𝑥, 𝑡, 𝜏)=−
1

32
sin 3 (𝑘𝑥 + 𝜔𝑡 +

3

8𝜔
𝜏) 

+ 
1

32
sin 3𝑘𝑥 cos (𝜔3𝑡 +

3

4𝜔3
𝜏) 

+ 
3𝜔

32𝜔3
cos 3𝑘𝑥 sin (𝜔3𝑡 +

3

4𝜔3
𝜏) 

- 
3

8𝜔2 cos 𝑘𝑥 sin (𝜔𝑡 +
3

8𝜔
𝜏) 

- 
3(𝜔2−24)𝜏

256𝜔3 sin 𝑘𝑥 sin (𝜔𝑡 +
3

8𝜔
𝜏) 

+ 
3(𝜔2−24)𝜏

256𝜔3 cos 𝑘𝑥 cos (𝜔𝑡 +
3

8𝜔
𝜏) = 

= −
1

32
sin 3 (𝑘𝑥 + 𝜔𝑡 +

3

8𝜔
𝜏) 

+ 
1

32
sin 3𝑘𝑥 cos (𝜔3𝑡 +

3

4𝜔3
𝜏) 

+ 
3𝜔

32𝜔3
cos 3𝑘𝑥 sin (𝜔3𝑡 +

3

4𝜔3
𝜏) 

- 
3

8𝜔2
cos 𝑘𝑥 sin (𝜔𝑡 +

3

8𝜔
𝜏) 

+ 
3(𝜔2−24)𝜏

256𝜔3 cos (𝑘𝑥 + 𝜔𝑡 +
3

8𝜔
𝜏), 

where 

 𝜔 = √1 + 𝑘2,  𝜔3 = √1 + (3𝑘)2 

and the full second order approximation according to (2) is  
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  𝑢(𝑥, 𝑡, 𝜀) = 𝑢0(𝑥, 𝑡, 𝜏) + 𝜀𝑢1(𝑥, 𝑡, 𝜏). 
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