Applying the second order two-scale approximation to a dispersive wave equation

Yigal Gurevich

igal314@gmail.com

Abstract

The method of multiple scales is applied and the second order two-scale approximation is calculated for a linear dispersive wave equation with a small perturbation proportional to the amplitude cubed.

\section*{1. Introduction}

Most of differential equations can't be solved explicitly, i. e. using elementary functions. For this reason, various approximate methods exist, including perturbation methods that are used when the equation to be solved is close to a solvable equation [1].

One of such methods is the method of multiple scales that comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems. This is done by introducing fast-scale and slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as if they are independent [2].

2. The equation and the first order approximation

J. Murdock in [1] applies a two-scale method to get an approximated solution of the following dispersive wave partial differential equation:

$$
\begin{equation*}
u_{t t}-u_{x x}+u+\varepsilon u^{3}=0 \tag{1}
\end{equation*}
$$

with the initial conditions

$$
\begin{aligned}
& u(x, 0)=\sin k x \\
& u_{t}(x, 0)=\omega \cos k x
\end{aligned}
$$

where

$$
\omega=\sqrt{1+k^{2}} .
$$

The solution is represented in the two-scale form as

$$
\begin{equation*}
u(x, t, \varepsilon)=u_{0}(x, t, \tau)+\varepsilon u_{1}(x, t, \tau)+\cdots \tag{2}
\end{equation*}
$$

where

$$
\tau=\varepsilon t .
$$

The next usual differentiation rules are used:

$$
\begin{align*}
& \frac{d}{d t}=\frac{\partial}{\partial t}+\varepsilon \frac{\partial}{\partial \tau^{\prime}} \\
& \frac{d^{2}}{d t^{2}}=\frac{\partial^{2}}{\partial t^{2}}+2 \varepsilon \frac{\partial^{2}}{\partial \tau \partial t}+\varepsilon^{2} \frac{\partial^{2}}{\partial \tau^{2}} . \tag{3}
\end{align*}
$$

It is found that

$$
\begin{align*}
& u_{1 t t}-u_{1 x x}+u_{1}=\frac{1}{4} \sin 3\left(k x+\omega t+\frac{3}{8 \omega} \tau\right) \tag{4}\\
& u_{1}(x, 0,0)=0 \tag{5}\\
& u_{1 t}(x, 0,0)=-u_{0 \tau}(x, 0,0) \tag{6}
\end{align*}
$$

and the first order approximation is

$$
\begin{equation*}
u_{0}(x, t, \varepsilon t)=\sin \left(k x+\omega t+\frac{3}{8 \omega} \tau\right)=\sin \left(k x+\omega t+\frac{3}{8 \omega} \varepsilon t\right) \tag{7}
\end{equation*}
$$

3. The second order approximation

As for higher order approximations, it is stated [1, part 5.3] that this strategy requires solving certain differential equations that may not have explicit solutions, and for this reason such calculations are not always possible in practice.
In this paper we will find the second order approximation for equation (1) that is fully expressed in terms of elementary functions.

To find u_{1}, we need also equations for u_{2}. Substituting (2) to (1) and using (3), we get:

$$
\begin{aligned}
& \varepsilon\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2} \ldots\right)^{3}+u_{0 t t}+2 \varepsilon u_{0 \tau t}+\varepsilon^{2} u_{0 \tau \tau}-u_{0 x x}+u_{0} \\
& +\varepsilon\left(u_{1 t t}+2 \varepsilon u_{1 \tau t}+\varepsilon^{2} u_{1 \tau \tau}-u_{1 x x}+u_{1}\right)+\varepsilon^{2}\left(u_{2 t t}+2 \varepsilon u_{2 \tau t}+\varepsilon^{2} u_{2 \tau \tau}-u_{2 x x}+u_{2}\right) \\
& +\varepsilon^{3}\left(u_{3 t t}+2 \varepsilon u_{3 \tau t}+\varepsilon^{2} u_{3 \tau \tau}-u_{3 x x}+u_{3}\right)+\ldots=0 .
\end{aligned}
$$

Provided

$$
\begin{aligned}
& \left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2} \ldots\right)^{3}=u_{0}^{3}+3 u_{0}\left(\varepsilon u_{1}\right)^{2}+3 u_{0}\left(\varepsilon^{2} u_{2}\right)^{2}+6 u_{0} \varepsilon u_{1} \varepsilon^{2} u_{2} \\
& +3 u_{0}^{2} \varepsilon u_{1}+3 u_{0}^{2} \varepsilon^{2} u_{2}+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

let us equate the coefficients of ε^{2} members:

$$
\begin{equation*}
u_{2 t t}-u_{2 x x}+u_{2}=-\left(3 u_{0}^{2} u_{1}+u_{0 \tau \tau}+2 u_{1 \tau t}\right) . \tag{8}
\end{equation*}
$$

Designating

$$
\mathrm{z}=k x+\omega t+\frac{3}{8 \omega} \tau
$$

we get

$$
\begin{aligned}
& u_{0}=\sin z \\
& u_{0 \tau}=\frac{3}{8 \omega} \cos z
\end{aligned}
$$

and from (4), (5),(6)

$$
\begin{align*}
& u_{1 t t}-u_{1 x x}+u_{1}=\frac{1}{4} \sin 3 z \tag{9}\\
& u_{1}(x, 0,0)=0 \tag{10}\\
& u_{1 t}(x, 0,0)==-u_{0 \tau}(x, 0,0)=-\frac{3}{8 \omega} \cos k x \tag{11}
\end{align*}
$$

From (9), (10), (11) with the additional condition that the right part of (8) does not contain resonant members we can find u_{1}.

We will search for a partial solution of (9) that is proportional to the right part:

$$
\tilde{u}_{1}=p \sin 3 z
$$

substituting this to (9) we get

$$
\begin{gather*}
-(3 \omega)^{2} p \sin 3 z+(3 k)^{2} p \sin 3 z+p \sin 3 z+\frac{1}{4} \sin 3 z \\
p=-\frac{1}{32} \\
\tilde{u}_{1}=-\frac{1}{32} \sin 3 z \tag{12}
\end{gather*}
$$

Now we add solutions of the homogeneous equation. As it known, they are

$$
\begin{gathered}
\cos (l x)[A \cos (w t)+B \sin (w t)] \\
\sin (l x)[A \cos (w t)+B \sin (w t)]
\end{gathered}
$$

that can be represented also as

$$
\begin{aligned}
& A \sin l x \cos (\mathrm{w} t+\psi), \\
& B \cos l x \sin (\mathrm{w} t+\psi),
\end{aligned}
$$

for any A, B, ψ, l and $w=\sqrt{1+l^{2}}$.
The first solution that we add is

$$
\begin{equation*}
\mathrm{S}_{1}=A \sin 3 k x \cos \left(\omega_{3} t+\psi_{A} \tau\right) \tag{13}
\end{equation*}
$$

where $\omega_{3}=\sqrt{1+(3 k)^{2}}$.
Its purpose is to compensate the effect of \tilde{u}_{1} on (10).
The second solution is

$$
\begin{equation*}
S_{2}=B \cos 3 k x \sin \left(\omega_{3} t+\psi_{B} \tau\right) \tag{14}
\end{equation*}
$$

whose purpose is to fulfil (11).
Also we add solutions

$$
\begin{align*}
& \mathrm{S}_{3}=K_{1} \cos k x \sin (\omega t+\varphi)+ \\
& +K_{2} \sin k x \cos (\omega t+\varphi)+ \\
& +K_{3} \sin k x \sin (\omega t+\varphi)+ \\
& +K_{4} \cos k x \cos (\omega t+\varphi), \tag{15}
\end{align*}
$$

where $\varphi=\frac{3}{8 \omega} \tau$.
These expressions are used to fulfil (11), because of (8) and especially of $u_{0}^{2} u_{1}$ term.
$K_{1}, K_{2}, K_{3}, K_{4}, \psi_{A}, \psi_{B}$ can depend on τ. A and B also can depend on τ, but at the end they will be found to be constant. The phases in (13), (14) can depend on τ in more general way, but the linear dependency was found to be enough. The phases in (15) are left like (7) because of interaction with $u_{0}^{2} u_{1}$ term.
Now

$$
\begin{equation*}
u_{1}=\tilde{u}_{1}+S_{1}+S_{2}+S_{3} \tag{16}
\end{equation*}
$$

and by differentiation we get

$$
\begin{align*}
& u_{1 t}=-\frac{1}{32} \cdot 3 \omega \cos 3 z \\
& -A \omega_{3} \sin 3 k x \sin \left(\omega_{3} t+\psi_{A} \tau\right) \\
& +B \omega_{3} \cos 3 k x \cos \left(\omega_{3} t+\psi_{B} \tau\right) \\
& +K_{1} \omega \cos k x \cos (\omega t+\varphi)+ \\
& -K_{2} \omega \sin k x \sin (\omega t+\varphi)+ \\
& +K_{3} \omega \sin k x \cos (\omega t+\varphi)+ \\
& -K_{4} \omega \cos k x \sin (\omega t+\varphi) \tag{17}
\end{align*}
$$

From (10) for $t=\tau=0$ we get

$$
\begin{equation*}
A=\frac{1}{32^{\circ}} . \tag{18}
\end{equation*}
$$

From (11), (17) for $t=\tau=0$ we get

$$
\begin{equation*}
B=\frac{3 \omega}{32 \omega_{3}} . \tag{19}
\end{equation*}
$$

Differentiating (17) by τ, we get

$$
\begin{aligned}
& u_{1 t \tau}=\frac{27}{256} \sin 3 z \\
& -A \psi_{A} \omega_{3} \sin 3 k x \cos \left(\omega_{3} t+\psi_{A} \tau\right) \\
& -B \psi_{B} \omega_{3} \cos 3 k x \sin \left(\omega_{3} t+\psi_{B} \tau\right) \\
& -\frac{3}{8} K_{1} \cos k x \sin (\omega t+\varphi) \\
& +K_{1}^{\prime} \omega \cos k x \cos (\omega t+\varphi) \\
& -\frac{3}{8} K_{2} \sin k x \cos (\omega t+\varphi) \\
& -K_{2}^{\prime} \omega \sin k x \sin (\omega t+\varphi) \\
& -\frac{3}{8} K_{3} \sin k x \sin (\omega t+\varphi)
\end{aligned}
$$

$$
\begin{aligned}
& +K_{3}^{\prime} \omega \sin k x \cos (\omega t+\varphi) \\
& -\frac{3}{8} K_{4} \cos k x \cos (\omega t+\varphi) \\
& -K_{4}^{\prime} \omega \cos k x \sin (\omega t+\varphi)
\end{aligned}
$$

Now we check all possible sources of resonant terms of kind $l=3 k$ in the right part of (8).

Transform
$3 u_{0}^{2} u_{1}=3 \sin ^{2} z \cdot u_{1}=3 \cdot \frac{1-\cos 2 z}{2} \cdot u_{1}=\frac{3}{2} u_{1}-\frac{3}{2} \cos 2 z \cdot u_{1}$.
The multiplication of (13), (14) with $\cos 2 z$ cannot produce resonant members because these trigonometric functions are based on different values of l and hence the coefficients of x and t are not proportional. Hence the only possible sources of resonant terms are $2 u_{1 \tau t}$ and $\frac{3}{2} u_{1}$.
Let's sc be $\sin 3 k x \cos \left(\omega_{3} t+\psi_{A} \tau\right)$ and $c s$ be $\cos 3 k x \sin \left(\omega_{3} t+\psi_{B} \tau\right)$.
All resonant members are shown in the next table:

coefficient	source	sc	cs
2	$u_{1 \tau t}$	$-A \psi_{A} \omega_{3}$	$-B \psi_{B} \omega_{3}$
$\frac{3}{2}$	u_{1}	A	B

From this,

$$
\begin{gathered}
-2 A \psi_{A} \omega_{3}+\frac{3}{2} A=0, \\
-2 B \psi_{B} \omega_{3}+\frac{3}{2} B=0, \\
\psi_{A}=\psi_{B}=\frac{3}{4 \omega_{3}}
\end{gathered}
$$

As for \tilde{u}_{1}, that was defined in (12), it can't create terms of $l=3 k$ type.
Now we will check (8) for $l=k$ resonances to find $K_{1}, K_{2}, K_{3}, K_{4}$.
Let's $s c$ be $\sin k x \cos (\omega t+\varphi)$ and we designate other similar expressions as $s c, s s$, cc.

All resonant members of this type are shown in the next table:

Source	Coefficient	Resonant members			
Interaction of $l=k$	$-\frac{3}{2} \cdot \frac{1}{4}$	$(-s c-c s) K_{1}$	$(-s c-c s) K_{2}$	$(-c c+s s) K_{3}$	$(c c-s s) K_{4}$

members with $\cos 2 z$					
$\frac{3}{2} u_{1}$	$\frac{3}{2}$	cs K_{1}	sc K_{2}	ss K_{3}	cc K_{4}
$2 u_{1 \tau t}$	2	$\begin{aligned} & K_{1}^{\prime} \omega c c \\ & -K_{1} \omega \frac{3}{8 \omega} c s \end{aligned}$	$\begin{aligned} & -K_{2}^{\prime} \omega s s \\ & -K_{2} \omega \frac{3}{8 \omega} s c \end{aligned}$	$\begin{aligned} & K_{3}^{\prime} \omega s c \\ & -K_{3} \omega \frac{3}{8 \omega} s s \end{aligned}$	$\begin{aligned} & K_{4}^{\prime} \omega c s \\ & -K_{4} \omega \frac{3}{8 \omega} c c \end{aligned}$
$u_{0 \tau \tau}$	$-\frac{9}{64 \omega^{2}}$	$c s+s c$			
Interaction of \tilde{u}_{1} with $\cos 2 z$	$\begin{aligned} & -\frac{3}{2} \\ & \cdot\left(-\frac{1}{32}\right) \cdot \frac{1}{2} \end{aligned}$	$c s+s c$			

For checking interactions with $\cos 2 z$ we used identities like

$$
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]
$$

and

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

and chose only potentially resonant members.
Now we separate members for cs, sc, ss, cc.

$$
\begin{aligned}
& \frac{3}{8} K_{1}+\frac{3}{8} K_{2}+\frac{3}{2} K_{1}-\frac{2 \cdot 3}{8} K_{1}-2 K_{4}^{\prime} \omega-\frac{9}{64 \omega^{2}}+\frac{3}{128}=0(\text { for } c s), \\
& \frac{3}{8} K_{1}+\frac{3}{8} K_{2}+\frac{3}{2} K_{2}-\frac{2 \cdot 3}{8} K_{2}+2 K_{3}^{\prime} \omega-\frac{9}{64 \omega^{2}}+\frac{3}{128}=0(\text { for } s c), \\
& -\frac{3}{8} K_{3}+\frac{3}{8} K_{4}+\frac{3}{2} K_{3}-2 K_{2}^{\prime} \omega-\frac{2 \cdot 3}{8} K_{3}=0(\text { for } s s), \\
& \frac{3}{8} K_{3}-\frac{3}{8} K_{4}+\frac{3}{2} K_{4}+2 K_{1}^{\prime} \omega-\frac{2 \cdot 3}{8} K_{4}=0(\text { for } c c),
\end{aligned}
$$

From here

$$
\begin{align*}
& K_{1}^{\prime}=-\frac{3}{16 \omega} K_{3}-\frac{3}{16 \omega} K_{4}, \\
& K_{2}^{\prime}=+\frac{3}{16 \omega} K_{3}+\frac{3}{16 \omega} K_{4}, \\
& K_{3}^{\prime}=-\frac{9}{16 \omega} K_{2}-\frac{3}{16 \omega} K_{1}-b, \\
& K_{4}^{\prime}=\frac{9}{16 \omega} K_{1}+\frac{3}{16 \omega} K_{2}+b, \\
& \text { where } b=\left(\frac{3}{128}-\frac{9}{64 \omega^{2}}\right) \cdot \frac{1}{2 \omega} . \tag{20}
\end{align*}
$$

Substituting (17) to (11) and equating like terms we find

$$
\begin{aligned}
& K_{1}(0)=-\frac{3}{8 \omega^{2}} \\
& K_{3}(0)=0,
\end{aligned}
$$

and substituting (17) to (10) we find

$$
\begin{align*}
& K_{2}(0)=0, \\
& K_{4}(0)=0 . \tag{21}
\end{align*}
$$

Now (20), (21) is a system of $1^{\text {st }}$ order linear equations with constant coefficients. The solution of the system is:

$$
\begin{aligned}
& K_{1}(\tau)=-\frac{3}{8 \omega^{2}} \\
& K_{2}(\tau)=0 \\
& K_{3}(\tau)=-\frac{3\left(\omega^{2}-24\right) \tau}{256 \omega^{3}}, \\
& K_{4}(\tau)=\frac{3\left(\omega^{2}-24\right) \tau}{256 \omega^{3}}
\end{aligned}
$$

Substituting (12), (13),(14),(15),(18),(19) to (16), we finally get

$$
\begin{aligned}
& u_{1}(x, t, \tau)=-\frac{1}{32} \sin 3\left(k x+\omega t+\frac{3}{8 \omega} \tau\right) \\
& +\frac{1}{32} \sin 3 k x \cos \left(\omega_{3} t+\frac{3}{4 \omega_{3}} \tau\right) \\
& +\frac{3 \omega}{32 \omega_{3}} \cos 3 k x \sin \left(\omega_{3} t+\frac{3}{4 \omega_{3}} \tau\right) \\
& -\frac{3}{8 \omega^{2}} \cos k x \sin \left(\omega t+\frac{3}{8 \omega} \tau\right) \\
& -\frac{3\left(\omega^{2}-24\right) \tau}{256 \omega^{3}} \sin k x \sin \left(\omega t+\frac{3}{8 \omega} \tau\right) \\
& +\frac{3\left(\omega^{2}-24\right) \tau}{256 \omega^{3}} \cos k x \cos \left(\omega t+\frac{3}{8 \omega} \tau\right)= \\
& =-\frac{1}{32} \sin 3\left(k x+\omega t+\frac{3}{8 \omega} \tau\right) \\
& +\frac{1}{32} \sin 3 k x \cos \left(\omega_{3} t+\frac{3}{4 \omega_{3}} \tau\right) \\
& +\frac{3 \omega}{32 \omega_{3}} \cos 3 k x \sin \left(\omega_{3} t+\frac{3}{4 \omega_{3}} \tau\right) \\
& -\frac{3}{8 \omega^{2}} \cos k x \sin \left(\omega t+\frac{3}{8 \omega} \tau\right) \\
& +\frac{3\left(\omega^{2}-24\right) \tau}{256 \omega^{3}} \cos \left(k x+\omega t+\frac{3}{8 \omega} \tau\right),
\end{aligned}
$$

where

$$
\omega=\sqrt{1+k^{2}}, \omega_{3}=\sqrt{1+(3 k)^{2}}
$$

and the full second order approximation according to (2) is

$$
u(x, t, \varepsilon)=u_{0}(x, t, \tau)+\varepsilon u_{1}(x, t, \tau) .
$$

References

[1] James A. Murdock. Perturbations: Theory and Methods: SIAM, Philadelphia, 1999.
[2] "Multiple-scale analysis". Wikipedia, https://en.wikipedia.org/wiki/Multiplescale_analysis.

Acknowledgments

We thank Prof. Steven Schochet who proposed to work on this problem.

