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In this paper the spatial two-body problem in a Newtonian non-inertial frame of reference 

is analyzed. The Lagrange’s equations of elliptical movement are established and applied 

to estimate the advance of perihelion in this case. Finally the theoretical results are 

compared with the observational results.  

 

Introduction 
 

The theory of non-inertial frames of reference, [1], is a recently proposed Newtonian 

theory which is attempting to compete general relativity theory of gravitation. Moreover, 

it seems to capitalize some local academic recognition and it seems , unless for a few, a 

very reliable line of research, [2]. In two previous papers, [3,4], the author of the present 

one showed some results, with reference at planar movement, which contradict the 

statements of this proposed theory. This paper is inscribed in the same argumentation and 

try to develop a correct modality of thinking, or unless a point of view much closer to 

reality. 

 

Lagrange’s equations 

 

In order to this purpose let we first consider the spatial movement. Schematically it can 

be represented as Fig.1 does. 
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Where: 

NxXN -perihelion longitude 

 Nx  

XNt   -node longitude 

i  - the slope 



  - perihelion passing time 

are the movement parameters. 

According to [5] the kinetic energy to mass ratio in polar coordinates is: 
2222'22 cos2   rrrT  

where into  is considered the influence of rotating non-inertial frame of reference too . 

By introducing the following canonical variables : 
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the Hamiltonian function will be: 

rrr

AR
UT









22

2

2

22

cos222
 

With this function we can find then the Hamilton-Jacobi equation: 
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where S is the solution. 

The term 
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is depending on two variables. Thus to find an appropriate 

solution is difficult. Therefore we have to neglect it and search a solution as a sum 

between a term depending on  and the other depending on function: 
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The solution will be then: 
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with G a constant. Unknown function S must satisfy the relations: 
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which are of course much easier to solve. The last one is simpler and it can be written as: 
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where the derivative is a function of slope angle, in an infinitesimal aproach:  
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We have then: 
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By making the derivative of equation (2) we obtain: 
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which represent the classical equation of planar elliptical movement. The study of second 

degree right side polynomial give the well known relations between roots and 

coefficients, from celestial mechanics: 
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Integral (2) solution it results after the change of variable: 
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and it is: 
  g  

By introducing this result in previous equation it follows immediately the parametric 

equation of ellipse: 
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Taking into account the origin conditions, in particular we may have:  
' g , 

so we have found another solution. 

To solve the first equation (1): 

 










t
hrrG

rdr
r

ea 1
22 22

 

it is necessary to operate another change of variable: 

 uear cos1  

After we integrate the expression: 
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we find Kepler’s equation: 

  tnueu sin  

According to the previous calculations we have found the following constants: 
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which in fact are a complete set of canonical elements: 
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and the solutions obtained through Lagrange’s variation of constants method from a 

general canonical equations system: 
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The general function ),,( tFF ii   is the derivative of a potential function R. 

Thus we can write the system (3), after we have been operated the required 

simplifications , as: 
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where 
3a

n


  is a notation. 

The system of equations (a-f) represent the Lagrange’s perturbations equations for a non-

inertial frame of reference spatial two body problem. The equations (c) and (d) are the 

difference between inertial and non-inertial cases. As we can observe from above, the 

parameter t   contains the case of inertial movement as a particular case when 

0 , according to [5]. 
 

The advance of perihelion 
 

Finally, using the above equations let we estimate now the advance of perihelion as an 

application. We have: 
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where F and R are the gravitational force and de gravitational potential  which appear in 

non-inertial frames of reference, as it result from [4]. 

From equation (e), taking into account (d), we obtain the intermediate result: 
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The derivative er  /  is established from expression  uear cos1 : 
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and from Kepler’s equation we can write now: 
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result which replaced in the previous expression it gives: 
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Equation (e) become therefore: 
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Replacing the variable u with t it follows: 
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and: 
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Considering then: 
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the advance of perihelion can be written as: 
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where the three I are the three resulted integrals corresponding the right hand terms.The 

first one is the most complicated and it can be solved as it follows: 

 
 
 

du
ue

eue

ae

e
du

ue

eu

ae

e
I 











 2

0

3

222

0

3

2
1

cos1

1cos11

cos1

cos1
 

Or: 

  3

2

22

2
1 1

1
IeI

ae

e
I 


  

The right hand integrals can be calculated from general formula: 
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making the changes of variable: 
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Consequently: 
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The other two integrals are solved more straightforward: 
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Finally the expected result is: 
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Comparison with observational data 

 

Considering KM  , with 111067.6 K 22 / kgmN   and kgM 3010989.1  , the 

slow rotation of our galaxy 0068.0  arcsec/year and the following data from 

Astronomical Data Center : 

 

planets a( 910 m)         e Rev/cent    Slope 

(degrees) 

Observed 

Advance 

(arcsec/ 

century) 

GR 

Advance 

(arcsec/ 

century) 

Mercury 57.9 0.206 414.9378 7.004 43.1+/-0.5 43.09 

Venus 108.2 0.0070 162.6016 3.394 8.4+/-4.8 8.78 

Earth 149.6 0.0170 100 0 5.0+/-1.2 3.89 

 

For Mercury, taking into account (4), we find a very disturbing value for advance of 

perihelion. 181095.1   arcsec/century. This result is due to the middle right side term. By 

observing the fact that all data are the same order of magnitude we can conclude without 

doubt that something is wrong with this non-inertial frame of reference theoretical model. 

 

Conclusions  
 

The observational results don’t fit at all theoretical results. These results corroborated 

with those regarding to planar movement, [3,4], give rise a great doubt concerning the 



correctness of non-inertial frames of reference theory. In all cases the theoretical results 

are too far from reality and therefore there is no question about the truthfulness of general 

relativity.  
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