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Abstract..By using an unexpected approach it results a general form for the 

electric field lines equation. It is a general formula, a derivative-integral equation 

structured as a multi-pole expansion series. By solving this equation we can find 
the electric field lines expressions for any type of an axially symmetric multi-

pole continuous electric charge distributions we interested in, without the need to 

take again the calculus from the beginning for each case particularly, for instance 

as in discrete charge distribution case.  
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1. Introduction 

From an axially symmetric magnetic multi-pole of arbitrary degree n, 
(Jackson, 1975), we can derive the exact equation for the field lines, (Jeffreys, 

1988). The method presented in (Jeffreys, 1988) deals with spherical harmonics 

in the most general way. Consequently the equation for the field lines is the 
expression of a general case. Another two exact equations for the field lines are 

given in (Willis & Gardiner, 1988). The equations are for two special magnetic 

multi-poles of arbitrary degree with no axial symmetry.  These cases may be 
classified as either symmetric or anti-symmetric sectorial multi-poles. 

By using the above considerations the aim of this paper is to find a 

general form for an exact equation for the field lines of an electric multi-pole 

with axial symmetry. 
 

                                            2. Theory 

 
Let’s consider now a continuous electrostatic charge distribution within a 

spatial volume. We must evaluate the electric potential in a point P outside the 

distribution, as we can see in figure below: 
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The electric field lines equation is the well known expression: 
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By assuming that we have a charge distribution with an axial symmetry with 

respect to z axis, we can explicit the length element and the electric field as:  
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and: 

 

(3)                                


u
V

R
u

R

V
VE R













1
                                                                                                           

The cross product (1) leads after an elementary calculus to the well known 
field lines equation written in polar coordinates: 
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For a continuous charge distribution the electric potential V can be 

expanded as a Legendre series, according to (Eyges, 1980): 

                                 rdrrP
R

V m

m

m
mR

3

0
1

0

, cos
1

4

1



 






  

Consequently the potential derivatives from equation (3) can be written as: 
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and: 
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By introducing these results within equation (3) and considering the 
property: 

                              rdrrPrdrrP m

m

m

m

33 coscos 



  







 



                                                
 

the electric field lines equation can be expressed as: 

(5)                     0cos
1

cos
1

0
2

0
1






















m

m
mm

m
m

P
R

m
RdP

RR

dR
                                                            

This is a general expression for the electric field lines equation under 
continuous charge distribution hypothesis. At first sight it exhibits a complicate 

form which requires for solving a derivative-integral equation method. Despite 

this appearance the solutions can be obtained in a simple and direct manner, as 

its show in the following examples. 
It is useful for our calculations to consider the Rodrigues representation of 

Legendre polynomials: 
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Under these circumstances equation (5) became more explicit and simple. 

The derivative with respect to θ of expression (6): 
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leads to an important observation that we can make the derivatives with respect 

to cosine before we make the integration, and thus the equation (5) became only 
an integral equation, more simpler to solve. 

It is obvious that the case m=0 doesn’t exist because the derivatives (7) don’t 

exist. More interesting is the dipole case: 

                                                         1m  

By taking into account the expressions (6) and (7), the equation (5) can be 
written as:  
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After trivial simplification and obvious derivatives we obtain the equation: 
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which can be directly integrated as: 
 

(8)                                             2sinCR                                                                                                                                               

and it is the well-known expression, in polar coordinates, of the field lines for 
an electric dipole. 

  The mathematical treatment of the case 2m  is the same as the previous 

case. We obtain the equation:  
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from which is deduced the most simplest form: 
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Finally, after integrating equation (9), we are obtaining the following 

relation: 

(10)                                      cossin 22 kR                                                                                                                                 

which is the well-known expression of the field lines for an electric 4-pole. 

Equation (5) is the direct consequence of the equation (3). If the electric 

field couldn’t be an expression of a scalar potential, then all the above 

mathematical statement has no basis. The magnetic analog for V doesn’t 
support sources. Subsequently the magnetic analog for equation (3) can be 

written only with the vector potential A. The vector potential is defined in terms 

of current density. Under axial symmetry and continuous distribution of current 
density hypothesis, A can also be expanded in Legendre series. But compared 

with the electric field this is the only similarity. The magnetic field lines 

equation appears in a double cross-product form. The solutions of this equation 
are more complicate than equation (5), (see (Jeffreys, 1988)). 

 

                                          3. Conclusions 

 
The aim of this paper is to deduce a new form for the electric field lines 

equation. We obtain a general formula, a derivative-integral equation structured 

as a multi-pole expansion series. The equation has exact solutions 
corresponding to an axially symmetric electric multi-pole continuous charge 

distribution, without the need to consider special assumptions for 0m . 

Equation (5) can be the starting point of the entire section 2., because is valid in 

mentioned approximations, without the need to deduce it from equation (1) for 

each case from the beginning, for instance as in discrete charge distribution 
case.   
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