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Abstract

In this paper, we propose and test an intuitive assumption that the pres-

sure field in single conduits and networks of interconnected conduits adjusts

itself to minimize the total energy consumption required for transporting

a specific quantity of fluid. We test this assumption by using linear flow

models of Newtonian fluids transported through rigid tubes and networks

in conjunction with a simulated annealing (SA) protocol to minimize the

total energy cost. All the results confirm our hypothesis as the SA algorithm

produces very close results to those obtained from the traditional determin-

istic methods of identifying the flow fields by solving a set of simultaneous

equations based on the conservation principles. The same results apply to

electric ohmic conductors and networks of interconnected ohmic conductors.

Computational experiments conducted in this regard confirm this extension.

Further studies are required to test the energy minimization hypothesis for

the non-linear flow systems.

Keywords: fluid dynamics; pressure field; tube; network; porous media; en-

ergy minimization; simulated annealing; stochastic method; electric conduc-

tor; electric network.

1 Introduction

One of the fundamental physical principles that regulate Nature’s behavior is opti-

mization which reflects a prejudice that leads to minimizing or maximizing selected

physical quantities. For instance, Nature has a tendency to maximize the entropy

of dynamic systems, as given by the second law of thermodynamics, but to min-

imize the passage time of light as summarized by Fermat’s least time principle.

Many physical laws have been deduced or derived from optimization arguments

and hence it is one of the main pillars of modern science. As a result, extensive

1



branches of mathematical and computational disciplines have been developed to

deal with modeling and quantifying optimization problems with widespread appli-

cations in physical and social sciences.

One of the powerful and widely used optimization methods is simulated an-

nealing [1–3] which is a stochastic computational technique based on the physical

principles of statistical mechanics. The essence of this method is to emulate the

process of controlled and slow cooling of liquified substances so that they reach

their minimal energy configuration in their solid state. The main advantages of

simulated annealing are its simplicity and wide applicability to large classes of op-

timization problems as well as its high success rate of avoiding traps of local minima

which other deterministic and stochastic methods are more likely to fall in. Fur-

thermore, in many cases it is the only viable method as combinatorial enumeration

and other analytical or conceptually-based methods are not viable or available in

those circumstances.

The main disadvantage of simulated annealing is its generally high computa-

tional cost in terms of CPU time. Although this is true for commonplace problems

where alternative methods are available, in some cases simulated annealing is more

efficient even in terms of CPU time when the computational cost grows exponen-

tially and hence the cost of traditional methods, assuming their viability, becomes

much higher than the cost of SA. In fact this is one of the main reasons why sim-

ulated annealing and similar stochastic methods are invented and widely used in

all sorts of optimization problems as can be inferred, for instance, from the num-

ber of citations of the SA founding papers [1–3]. Regardless of this, nowadays the

computational cost is a trivial factor in many cases considering the huge advances

over the last few decades in the hardware and software development and the avail-

ability of multi-processor platforms, even for personal use, with relative ease of

parallelization.

In the present paper we suggest and examine a hypothesis that the driving field,

like pressure and potential difference, in conducting elements and networks of in-

terconnected elements will adjust itself to minimize the energy cost of transporting

a given quantity of fluid through the transport device. We use simulated annealing

with supporting arguments to achieve the minimization objective and establish the

energy minimization hypothesis. We restrict our attention in the current inves-

tigation to the linear transport systems where the driving and induced fields are

linearly correlated, such as the flow of Newtonian fluids in rigid tubes and networks

of interconnected rigid tubes and the flow of electric current in ohmic components
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and networks of interconnected ohmic components, although we will briefly discuss

some issues related to the non-linear systems for the sake of completeness. The

case of non-linear flow systems requires further investigation to reach definite con-

clusions although initial examination indicates that they are also subject to the

energy minimization rules.

The model that is used in the current investigation to present the energy min-

imization principle and elaborate the SA optimizing algorithm is from fluid me-

chanics, namely the aforementioned example of the flow of Newtonian fluids in

rigid tubes and networks. However, since this flow model is mathematically equiv-

alent to the flow model of electric current in ohmic devices, our investigation and

conclusions will naturally extend to this case as well.

2 Method

In this study we assume a laminar, incompressible, isothermal, time-independent,

pressure-driven, fully-developed flow with minor entry and exit effects. Our plan

for establishing the energy minimization principle through solving the flow fields

by simulated annealing is summarized in the following points

1. We establish the existence and uniqueness of the flow solution in general.

2. We explain how to adapt simulated annealing to find a flow solution in single

conduits and networks of interconnected conduits.

3. We demonstrate that the solution found by simulated annealing is a correct

one, it minimizes the total energy of fluid transportation, and this minimum

is a global rather than a local one.

As for the first point, the existence and uniqueness of flow solutions for sin-

gle conduits is a thorny issue from the theoretical and mathematical viewpoint.

However, it can be established by the forthcoming physical argument which we

presented in the context of network discussion. Regardless of this, we can take this

for granted by claiming it is an intuitive assumption. In fact most of the ongoing

studies in this field should be based explicitly or implicitly on such an assumption

especially the purely theoretical ones which are not supported by experimental or

observational evidence.

With regard to networks, the existence and uniqueness conditions can be es-

tablished by the following argument assuming the existence and uniqueness of the
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solution on their individual conduits. For the linear case, to describe such flow net-

works we set a system of N simultaneous linear equations in N unknowns where

N is the total number of nodes in the network which includes the boundary as well

as the internal nodes. The equations of the inlet and outlet nodes are derived from

the boundary conditions while the equations of the internal nodes are derived from

the mass conservation principle in conjunction with the characteristic flow relation

that correlates the driving and induced fields, like p and Q in Hagen-Poiseuille

law. Since these equations are linearly independent, due to the fact that no two

equations share the same sequence of conducting elements and hence they cannot

be represented as scalar multiples of each other, we have a system of N linearly

independent equations in N unknowns and hence a solution does exist and it is

unique according to the rules of algebra.

With regard to the non-linear systems, there is no general condition that guar-

antees the existence or uniqueness of solution. However, physical rather than math-

ematical arguments can be proposed to establish the existence and uniqueness of

solutions even for the non-linear systems in case such an extension is required. It

can be argued that for both the linear and non-linear systems a solution should

exist and it should be unique regardless of all these elaborate mathematical consid-

erations because as long as our mathematical models reflect the essential features

of the reality of these classical deterministic systems, the soundness and accuracy

of these models will guarantee the existence and uniqueness conditions. Such line

of reasoning should be sufficient for the purpose of establishing our energy mini-

mization argument since we have no interest in those theoretical and mathematical

subtleties.

As for the second point, the time rate of energy consumption, I, of fluid

transport through a conducting device considering the type of flow systems that

meet our stated assumptions, is given by

I = ∆pQ (1)

where ∆p is the pressure drop across the conducting device and Q is the volumetric

flow rate of the transported fluid. For a single conduit that is discretized into n

sections indexed by i, the total energy consumption rate, It, is given by

It =
n∑

i=1

∆piQi (2)
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A similar equation applies for a network of n interconnected conduits, with n

standing for the number of conduits rather than sections, if only the nodal pressure

values are required. If the axial pressure values at the midpoints of conduits are also

required, a discretization scheme, similar to the one used for single conduits, can

be used where it is needed. However, for the linear systems, only nodal pressures

are necessary to compute since the midpoint values can be obtained by a simple

linear interpolation scheme.

The role of the simulated annealing protocol then is to find the set of pressure

values, pk where k indexes the discretization and nodal points, that minimizes the

rate of total energy consumption, given by Equation 2. Accordingly, the pk values

can be freely adjusted by the SA routine to satisfy the minimization requirement.

The exception to this is the boundary values which are held constant in all SA

iterations to satisfy the imposed boundary conditions. As for the Qi values, they

are computed in each SA iteration from the analytical expression of the model that

correlates the volumetric flow rate to the pressure drop, i.e. Hagen-Poiseuille law

in the case of Newtonian flow systems, using the most recent values of pk. Unlike

the traditional solution methods, such as the residual-based Newton-Raphson tech-

nique, no conservation principle, such as mass continuity, is needed in the proposed

SA solution scheme.

Regarding our simulated annealing algorithm, we use a standard scheme as

described by many papers and monographs written on simulated annealing and

stochastic methods. Briefly, we start by initializing the pressure values, pk, ran-

domly except the boundary ones which are set to the values required by the imposed

boundary conditions. We then compute the cost function, which is initially set to

a very high value, as given by Equation 2. The new pressure field solution, as

defined by the set of pk values, is then accepted if the cost function obtained from

the current iteration is less than the cost function of the most recently accepted

solution. If the cost function of the new solution is higher, it may also be accepted

but with a probability P given by

P = e
Itm−1

−Itm
Tc (3)

where m is an index for the current iteration and Tc is the current value of the

annealing parameter (temperature) which we assume to have the same units as

I. The pk values are then adjusted randomly using a random number generator

and the cycle is repeated. The annealing control parameter, T , is decremented

persistently as the annealing goes on. The algorithmic procedure will terminate
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when the annealing control parameter reaches its lower limit which is normally set

to virtually zero, and hence the final solution will be taken as the last accepted set

of pk values according to the minimization criterion.

By finding the pressure field, the volumetric flow rate field will be easily obtained

from the analytical expression of the flow in single conduits that links Q to ∆p.

For networks, the total inflow/outflow can be obtained by computing and summing

the volumetric flow rates of the inlet/outlet boundary conduits.

As well as implementing this standard SA scheme, we experimented with a

number of similar SA schemes which differ in elaboration and complexity, for in-

stance by the way that T varies or by the accepted exit condition from the interim

cycles, but since they all produce very similar results we decline to include these

irrelevant details.

As for the third point, the verification of the single conduit solution is triv-

ial since the axial pressure varies linearly with the conduit axial coordinate. For

the networks, the obtained solution from the simulated annealing procedure can

be checked for correctness by simultaneously satisfying the analytical flow relation

that links Q to ∆p on each conduit plus the mass conservation principle on each

internal node. Detailed explanations about these verification conditions and other

related issues are given in [4]. The simulated annealing solution can also be veri-

fied more easily by comparison to the solution found by other methods, mainly the

deterministic ones such as the residual-based Newton-Raphson scheme which orig-

inates from the existence and uniqueness proof that we outlined earlier. Further

details about this can also be found in [4].

Since simulated annealing is essentially a minimization algorithm, the minimal

energy principle is established by finding the optimal solution so no further proof

is required to establish the fact that the obtained solution is not a maximum or a

stationary inflection point, unlike solutions obtained by other methods where such

a proof may be needed. Since this minimizing solution is the only possible solution,

as established by the uniqueness condition, it should be a global rather than a local

minimum since no other solution, minimizing or non-minimizing, is possible.

3 Results

The simulated annealing algorithm, which is described in the last section, was

implemented in a computer code and results were obtained and analyzed using

various models of fluid transport devices including rigid tubes, one-, two- and
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three-dimensional networks of interconnected rigid tubes. The multi-dimensional

networks include fractal, cubic and orthorhombic lattice models; the detailed de-

scription of these networks is given, for instance, in [4, 5]. These model tubes

and networks vary in their size, geometry, connectivity, number of nodes and seg-

ments, and statistical distributions. Various boundary conditions and discretiza-

tion schemes with different model Newtonian fluids were also employed in these

computations. A sample of these results is given in Figures 1 and 2 and Table 1.

All the results represent averaged data over many similar runs where no run has

failed to meet the rigorous criteria set for accepting the solutions.

As seen, the SA results agree very well with the verified deterministic solutions.

One thing that should be highlighted is the general trend of increasing the size

of the errors with increasing the size of the networks. The main reason is our

tendency to reduce the required CPU time and hence the results can be improved

if longer CPU time is allowed and more elaborate simulated annealing schemes are

employed. The size of the errors in these results, nonetheless, does not affect the

definite conclusion that can be drawn from this investigation about the validity of

the energy minimization principle as a governing rule in determining the flow fields

(p and Q) in the fluid transport systems. After all, such errors, and even larger ones,

are expected to contaminate the results obtained by stochastic methods. In fact

significant errors can occur even in the numerical deterministic methods although

the size of the errors in the latter is usually less than that in the former.

These results do not only establish the energy minimization principle but also es-

tablish a novel way for solving the flow fields in conduits and networks by stochastic

methods in general and by simulated annealing in particular. Most of the reported

results are obtained within seconds or minutes of CPU time on a normal laptop

computer where the length of the CPU time mainly depends on the number of

discretized elements in the transport device assuming the employment of the same

SA parameters and scheme. Although the proposed stochastic method is generally

slower than the traditional deterministic methods, it may be possible to compete

with the traditional deterministic methods even in speed for very large networks

especially if more elaborate SA schemes are employed. A big advantage, however,

of the proposed stochastic method is the trivial memory cost; a factor based on its

serial nature and the redundancy of employing a numerical solver that is usually

needed in the deterministic methods. Anyway, the proposed stochastic method is a

tool that is advantageous to be available to scientists and engineers and it definitely

can have useful applications in some exceptional circumstances at least.
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Figure 1: Comparison between the pressure field solution, as a function of the ax-
ial coordinate for a single tube, as obtained from the simulated annealing method
based on the energy minimization principle and the solution obtained by interpo-
lation or from the classical deterministic residual-based Newton-Raphson method.
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Figure 2: Comparison between the pressure field solution, as a function of the
axial coordinate for a one-dimensional network of five serially-connected tubes with
different lengths and radii, as obtained from the simulated annealing method based
on the energy minimization principle and the solution obtained from the classical
deterministic residual-based Newton-Raphson method.
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Table 1: Statistical distribution parameters of the percentage relative difference of
the nodal pressures between the Newton-Rapson deterministic solutions and the
simulated annealing solutions for a number of 2D fractal (F) and 3D orthorhombic
(O) networks with the given number of segments (NS) and number of nodes (NN).
The results represent averaged data over multiple runs for each network. The
meaning of the statistical abbreviations are: Min for minimum, Max for maximum,
SD for standard deviation, and Avr for average.

Index Type NS NN Min Max SD Avr
1 F 15 16 -0.42 0.35 0.15 -0.06
2 F 31 32 -0.70 0.67 0.22 -0.16
3 F 63 64 -0.79 0.75 0.24 -0.05
4 F 127 128 -0.77 0.85 0.27 0.19
5 F 255 256 -1.29 1.15 0.25 0.07
6 F 511 512 -1.87 1.74 0.35 -0.06

7 O 72 45 -0.51 0.58 0.20 0.10
8 O 99 60 -0.89 0.78 0.22 -0.11
9 O 136 80 -1.11 1.12 0.26 0.23
10 O 176 96 -1.42 1.37 0.32 -0.17
11 O 216 112 -1.65 1.57 0.37 -0.29
12 O 275 140 -1.74 1.68 0.44 0.35

4 Conclusions

We demonstrated, through the use of simulated annealing, the validity of the as-

sumption of energy minimization principle as a governing rule for the flow systems

in the context of obtaining the driving and induced fields in single conduits and

networks of interconnected conduits where the driving and induced fields are lin-

early correlated, e.g. the flow of Newtonian fluids through rigid tubes and networks

or the flow of electric current through ohmic devices. All the results support the

proposed energy minimization principle.

There are two main outcomes of this investigation. First, a novel method for

solving the flow fields that is based on a stochastic approach is proposed as an

alternative to the traditional deterministic approaches such as the residual-based

Newton-Raphson and finite element methods. Although this new numerical method

may not be attractive in most cases where it is outperformed in speed by the

traditional methods, it can surpass the other methods in other cases and may even
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be the only viable option in some circumstances where the flow networks are very

large.

The second outcome, which in our view is the most important one, is the the-

oretical conclusion that energy minimization principle is at the heart of the flow

phenomena and hence it governs the behavior of flow systems; the linear ones at

least. This is inline with our previous investigations [6, 7] which are based on

minimizing the total stress in the flow conduits. The current investigation may be

extended in the future to the non-linear case.

Nomenclature

I time rate of energy consumption for fluid transport

It time rate of total energy consumption for fluid transport

P probability of accepting non-minimizing SA solution

p pressure

∆p pressure drop across flow conduit

Q volumetric flow rate

T annealing control parameter (temperature)

Tc current value of annealing control parameter
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