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Abstract  

 In this paper I propose a correction to the well-known Newtonian gravitational potential, a 
correction which explains the form of the radial velocities as a function of the discoid galaxies radii. 
The main scope of this work is to find a correction to the Newtonian gravitational potential which has 
to fulfil two major conditions: a) to take into account the entire amount of the experimental data; b) 
the resulting potential to be a consequence of condition a) from a physical perspective. As a result, the 
corrected form of the Newtonian gravitational potential was found to belong to a physical cause and 
this cause can be the existence of the dark matter, evenly distributed within galaxies. This distribution 

makes dark matter to act as a binder for ordinary matter, so that the discoid galaxies not rotate as a 
fluid (as standard Newtonian theory states), but as some rigid frames (as the observational data state).   

Key words: modified Newtonian dynamics; dark matter; MOND theory; radial velocities curve. 

1. INTRODUCTION 
 

Dynamics of galaxies is currently one of the major problems of the theory of gravity, until its discovery, 

the first half of 20-th century, [1]. Most of the galaxies execute around their centers of mass a rotating 
movement that has some features that distinguish them. If the matter from which the galaxies are consisting 

would be subject only the law of Newtonian gravity, then galaxies would rotate like some ideal fluids, 

increasingly faster towards the center and decreasingly slower towards the edges. But, in reality, the rotation 
of galaxies takes place as if they are some rigid bodies. At a distance from their centers, called critical radius, 

the radial velocity becomes practically independent of the radius.  

Over the time, there have been several attempts to explain the behavior of the rotating galaxies. Firstly, 

we talk about the existence of dark matter, [2]. This exotic matter acts like a bend for ordinary matter and the 
resulting dynamics is the observed one.  

From an experimentally point of view, the empirical Tully-Fisher relation must be valid. Consequently, Mv 

, where β=1/3-1/4, v is the radial velocity and M the galaxy mass. The exponent β represents an interval, not 

the extreme values of an interval. This exponent takes different values when the observations are made in 

different wavelengths, [3]. 
The dark matter theory explains, in principle, the dynamics of galaxies, but not from Tully-Fisher relation 

perspective. 

         Another theory which try to explain this dynamics is based on general relativity, [4]. The dark matter is 
no more considered, but this theory is very general and it has no experimental particularities. 

The Weyl-Dirac based on theory, [5], explains the dynamics of galaxies but, once again, generally and with 

poor references to experimental data. 



 

      From all these theories only the Modified Newtonian Dynamics, MOND, takes into account, with some 
degree of accuracy, the experimental data. MOND considers only β=1/4 as representative value for 

wavelengths which characterize a large variety of galaxy masses, [6]. 

      Excepting this fact, MOND exhibits some major disadvantages. First of all it is an effective theory; it 
brings no causal justifications from physical order to elucidate the behavior of rotating galaxies. MOND only 

postulates the modified dynamics laws and these postulates have not a physical basis. 

The aim of this paper is to correct, somehow, these disadvantages. First of all, we intend to consider the 

entire interval, β= [1/3;1/4], in our theoretical evaluations. Then, we intend to give our theory a physical 
signification.   

 

2. ATTRACTIVE FORCES AND THE DYNAMICS OF THE GALAXIES 
 

In the following we suppose that one can obtain a theory to explain the rotation curves of discoid 
galaxies, a theory based on dark matter. 

Therefore we have a gravitational potential of the form: 
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which is the result of solving Poisson's equation:  

                                                                         )(4 ueG                                                                      (2) 

      The second term on the right side of equation (1) is an empirical term attached to the Newtonian 

gravitational potential, a term that describes the action of an attractive gravitational potential, due to an 

unknown form of energy. We have therefore A> 0. 
      With this potential (1) we try to show that this unknown energy may cause the radial movement of the 

discoid galaxies observed in reality. From (1) we find the expression of the first derivative of this equation, 

the acceleration: 
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which have a great importance in the development of reasoning in the following. The gravitational 

acceleration (3) is entirely attractive and it balances with the centrifugal acceleration of galaxy, which is 
repulsive. Suppose that neither of them tip the balance one way or another, so at equilibrium we must have: 
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which leads after a obvious a multiplication with r to a simpler expression: 
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      From observations made on the motion of galaxies and the Tully-Fisher empirical expression it results

  MLv , where L represent the luminosity and 
4
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So, now we can empirically determine the proper α in two cases corresponding to the two expressions of the 

potential (1) which provide the shape of the rotation curves of discoid galaxies according to observations. 

Therefore we have: 
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and the case in which we have a particular interest: 
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      The critical radius from which the velocity .)( constrv  come from the condition: 
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Thus, expression (5) becomes: 
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and the critical radius is: 
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Then this is the radius from which the velocity is independent from it: 
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To be in accordance with the observations, conditions (6) and (7), we must have:  
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with γ=1/3 and γ=1/4. Under these restrictions we find two values for α, consequently ½ and 0. The case 
corresponding to α=0 leads to: 
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a value independent from radius. Under these conditions equation (10) is valid without the need to consider 

MOND theory. If we admit that 0a  have not the same meaning as in the MOND theory but totally due to 

other causes, having no connection with the expansion of the universe but only with internal dynamics of 
galaxies, is a constant specific to each galaxy in part, then all we have talked so far is valid. Otherwise the 

place of 0a  may be taken by, the general value A which can be determined from experimental curves. 

Amazingly, if we do this we get to the result 04 aA   (which was also determined from experimental 

curves, as a mean value, for discoid galaxies). In this case 0a cannot be conceived as in MOND theory, [6], 

but as a galactic characteristic without any connection with the expansion of the universe. 
The difference from the MOND theory appears to be the double value of the critical radius: 
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But the form (11) can be avoided if we take 0aA  . It leads us unexpectedly closer to the MOND theory, 

from critical radius perspective, but radial velocity is a little bit bigger than the MOND-like velocity. Indeed, 

if we consider 0aA   we obtain from (10) exactly: 
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which is the well-known expression obtained in the MOND theory for the radial velocities independent from 

the galaxies radius, multiplied with four, actually less important. What is important here is that we got these 

results in the approximation: 
                                                                   

0agg N   

and not in the approximation: 

                                                                 2/1
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like in MOND theory, [6]. The difference lies in the fact that our theory has not worked out with an 

expression of a modified inertia like MOND theory does, Newton's Second Law remaining unchanged. So, 

with (1) and (7), some MOND theory results can be obtained without the need to change the law of inertia. 

We just need to change the definition of constant 0a  as an artifact of galaxies, supposed due to an unknown 

energy and its distribution into each galaxy in part. If this acceleration is directly connected with dark matter, 

as a property of dark matter, than  0a  should be a universal constant. It is independent of quantity of dark 



 

matter existent in a galaxy. We could think, the small deviations from this value can be assigned to the form 
of each galaxy in part. How dark matter is distributed in galaxy differ from another galaxy, so the constant A 

(or 0a ) could be different.  

      This acceleration could explain the anomaly of Pioneer 10 spacecraft, also. There is an attractive constant 

force in our galaxy, supplementary to the Newtonian one, which is directly due to compression trend of the 
galaxy caused by the amount of dark matter uniformly spread in it. Equation (4) is valid because dark matter 

is opposing to the trend of the dispersion caused by the rotation of the galaxy. But all these comments are 

valid only if dark matter is the origin of the potential (1) for α=0.  
 

3. POSSON’S EQUATION VERIFICATION 

 
      The second case we discuss now is corresponding to α=1/2. Following the same steps as in previous case, 

from (8) we find: 
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for critical radius, and from (9): 
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for radial velocity, results that should fit the observational data. The constant A is, this time, no more 

acceleration. The acceleration induced by the unknown energy is now increasing with radius. For the same 

magnitude of constant A as in previous case, it results increased values for critical radius and radial velocity.  
      The question now is which one of the tow cases is correct from Poisson’s equation point of view. The 

potential (1) for α=0 has no source, except the normal matter. Even if it verifies the Poisson’s equation (2), 

so it is a valid gravitational potential, it can be created from normal matter only. Ironically we find 
approximately the same results in MOND theory and we have to conclude that the Modified Newtonian 

Dynamics is correct. The absence of a physical cause and validity of case (7) make this possible. 

Consequently, there is an equivalence between MOND theory and the theory of modified Newtonian 
potential (1) for α=0 we previously present. That’s why the MOND theory is an effective theory and not a 

physical theory, the potential (1) for α=0 has source normal matter only. 

      Therefore, if we want to take into account the effects of an unknown energy to galactic normal matter we 

must consider the second case, the potential (1) for α=1/2. It could have dark matter as source; otherwise the 
Poisson’s equation (2) would have no sense. This is the reason why a Newtonian theory based on a modified 

Newtonian potential that can describe the motion of galaxies due to dark matter is valid only in this case, for 

which: 

                                                                       2/14 rGA dm                                                                 (15) 

The constant A is decreasing/increasing proportionally to the density of dark matter, hence is a feature of 

each galaxy in part. And we have finally a Newtonian theory which describes close to reality the effects of 

dark matter in terms of dynamics of galaxies. But the sign minus from equation (15) seems to contradict this 

affirmation. The only physical justification of it is that the dark matter density comes from a negative 
pressure: 

                                                                         2vp dm                                                                        (16) 

as a result of self interaction between dark matter’s particles in motion into a homogenous compressible 
fluid, with negative compressibility. The expression (16) is an intuitive one, because the gravity normal force 

should be a result of ordinary matter motion through the dark matter fluid: 

                                                                         2vp                                                                            (17) 

This is the reason why the velocity in equations (16) and (17) could not be the same. 



 

 
 

4. REPULSIVE FORCES AND THE DYNAMICS OF THE GALAXIES 

      If the nature is more surprising than we expect and ordinary matter somehow succeeds to generate a 

gravitational potential in form (1) for α=0, then it will produce the observational data which are wrongly 

interpreted as dark matter effects. Fact is, the observational data we have, in both forms (6) and (7), can so 
easily give rise to misinterpretations. According to this model only the observational data in form (6) can be 

attributed to dark matter. The rest of it is due to other causes. Which are these causes, we don’t know. But in 

the following considerations we will show that the cause for all observational data could be the dark matter. 
      Assume this time that ordinary matter succeeds to describe the dynamics of discoid galaxies in absence 

of dark matter, through a repulsive gravitational potential. This potential is equivalent with: 
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for some values α which will be calculated to accomplish the observational requirements. The equation (18) 

is the result of solving Poisson’s equation: 
                                                                     )(4 ueG   

      The term ue  is generally called it unknown energy. Concerning the potential (18) the balance of 

accelerations is: 
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which is different from (3). In order to write correctly the balance of all accelerations involved in dynamics 
of a galaxy in this case, we must consider, again, the contribution of dark matter. If we conceive a galaxy full 

of some sort of matter that react with an opposite acceleration to the expansion trend of the galaxy, than this 

matter could be the dark matter. Therefore we have: 
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At a=0, after we reached a critical radius value: 
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we can find the equilibrium conditions from which we can determine the critical radius expression and the 

radial velocity expression. Hence, from: 

                                                                       
c

c

br
r

GM


2
                                                                          (21) 

the expression of this critical radius will be: 
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      On reaching the critical radius, the equilibrium of the galaxy will not be complete unless we consider: 
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result which leads, by taking into account (22), to: 
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The experimental restrictions (6) and (7), in equation (23), lead to the same cases, α=0 and α=1/2. If Bb  , 

the equations (22) and (23) have no sense. The general constant 
Rb indicates an additional repulsive 

force except the assumed repulsive force
Br . Hence the case b=B is the only valid. 

Whence, after we replace the constant B with 0a  and α=0, we can determine the radial velocity of the galaxy 

as: 
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which is the well-known expression obtained in the MOND theory for the radial velocities independent from 

the galaxies radii, and the critical radius from which the small accelerations approximation occurs in the 

MOND theory: 
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      The case corresponding to α=1/2 is not a valid one because it is expressing, through (18), a repulsive 

action which cannot be attributed to dark matter.  

 

5. DISCUSSIONS 

      The results obtained in the previous section are specific to MOND theory. So we must conclude that our 

goal, to find a Newtonian theory for describe the dynamics of the galaxies due to dark matter, is reached if 
we consider both potentials, (1) and (18) simultaneously, (1) for α=1/2 and (18) for α=0 More than that, the 

observational data we have are in form of an interval, β=1/3-1/4, i.e. ]2/1,0[ , 
R  . The above 

discussed cases refer to the limits of this interval, β=1/3 and β=1/4. In order to provide an accurate 

description of the dark matter action we must to establish what are the limits for which the cases 

corresponding to (1) for α=1/2 and (18) for α=0 are valid. To do this we must solve the Poisson’s equation 
(2) with the potential (1). It results: 
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      From this equation we observe that the potential (1) has sources for ]2/1,0( . Only for α=0 the 

potential (1) has no sources and the potential (18) is more proper to describe the dark matter action in this 

case. Therefore, the dark matter effects are described completely by the potential: 
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It is an empirical potential, because there is theory created only for observational data fitting. It is obvious 

that the gravitational potential which describes properly the action of dark matter is the form (24), without 
the value corresponding to α=0. A gravitational potential due to some physical causes cannot generate 

simultaneously an action and a reaction. 

      The theory presented in [5] deduces only a potential like (24) for α=0. It is produced by ordinary matter, 
like in our theory. The effects could not be those presented above, because its effects are much smaller than a 

potential 
2 r , generated by the same ordinary matter.  

If we approximate the Yukawa gravitational potential, [7]: 
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in terms of power series with respect to the galaxy radius 0r  than we find a gravitational potential like (24), 

for α=0. The equation (25) represents the potential per mass unit, therefore we meet serious obstacles to 

properly calibrate the constants in order to make (24) looks like (25). If we take the constant C in the form 

GM than the constant B must be fourteen times bigger than the constant 0a  (for our galaxy).  

      Taking into account the above considerations we must admit that the form (24) cannot momentary be 

reproduced by a physically grounded mathematically correct theory. Under these conditions equation (24), 



 

 
 

without the form corresponding to α=0, is valid without MOND theory’s confirmation. In this final case the 
general constant A can be determined from experimental curves. 

      Our theory is only an effective theory, not better than MOND theory, and nothing more. But it involves 

dark matter in galaxies’ dynamics. Instead, it has the same disadvantages as MOND theory: it doesn’t solve 
the mass discrepancies problem. The constant A from (24) depends on the galaxies radii, therefore in the 

case of some small spherical galaxies and some big galactic clusters, an anomalous mass discrepancy will 

occur: too large for small spherical galaxies and moderate for big galactic clusters, [6]. Perhaps, more 

accurate measurements of mass/luminosity conversion factor M/L, will clarify this problem. 
 

 

6. CONCLUSIONS 

 

 

      In this paper we propose an alternative Newtonian theory for MOND, a theory which describes the 
effects of dark matter in the dynamics of galaxies. Under the hypothesis that for the shape of the radial 

velocity curves of galaxies are responsible an attractive and a surprising repulsive form of energy, this 

influence is found to be expressed by a supplementary potential which it must be added to the Newtonian 

gravitational potential. Somewhat surprising, we found the results specific to MOND theory, but this time 
with a modified Newtonian potential. 
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