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Mass, Force, and Energy: A New Formulation 

Stanley James Speck 

 
Part 1 

 

 The concepts of Mass, Force, and Energy are notoriously obscure.  What is Mass?  What 

is Force? What is Energy?  These questions are still alive now at the opening of the twenty first 

century. 

 The three concepts are fundamental.  They form a sort of three-legged stool upon which 

all of classical and modern physics rests, yet strangely enough, the exact way in which they 

should finally be understood is still open to question. 

 Richard Feynman characterized energy as “a numerical quantity, which does not change 

when something happens.  It is not a description of a mechanism, or anything concrete; it is just a 

strange fact that we can calculate some number, and when we finish watching nature go through 

her tricks and calculate the number again, it is the same.” 

 But what exactly does that number represent?  According to Feynman, “It is important to 

realize that in physics today, we have no knowledge of what energy is.  We do not have a picture 

that energy comes in little blobs of a definite amount.” 

 Energy is often thought of as something which ‘makes things move.’  But does it make 

things move, or is it simply a measure of the motion that things have? 

 Energy is said to exist in two general forms, kinetic and potential.  Kinetic energy is 

sometimes called ‘the energy of a moving body.’  It is the product of one half the mass of the 

body times its velocity squared.  Potential energy can be computed as the product of a 

gravitational constant times the mass of a body times the height the body will fall.  This is the 

gravitational ‘potential energy’ of a body near the earth’s surface. These simple formulas and 

others can be used to compute quantities of the two ‘forms’ of energy, but what is the essential 

difference between the two?  And how is that seemingly odd notion of potential energy to be 

understood?  Can there be energy which is ‘potential’ but not ‘actual?’  All of this is still 

obscure. 

 Energy is sometimes defined as the ‘capacity to do Work.’  James Clerk Maxwell 

described Work in this way: “Work, therefore, is a transference of energy from one system to 

another; the system which gives out energy is said to do work on the system which receives it, 

and the amount of energy given out by the first system is always exactly equal to that received by 

the second.”  Incorporated in this description is the well known ‘conservation of energy’ 

principle.  Yet Work is here described in terms of energy transfer.  If our goal is to understand 

the nature of energy, it does us little good to characterize Work in terms of energy and energy in 

terms of Work, a circular conundrum.  Sir Joseph Larmor, mindful of that dilemma, added this 

clarifying footnote: “The work done is a quantitative measure of the effort expended in 

deranging the system in terms of the consumption of energy that is required to give effect to it.”  

If this comment is at all helpful in understanding ‘Work,’ it is due that essential word ‘effort.’   

Work is defined as a ‘quantitative measure of effort.’   Yet the concept of ‘effort’ is nowhere 

defined as a physical concept.  Larmor seems to have tacitly introduced an apparently 

anthropomorphic concept.  All of this is evidence of how difficult it is to construct a non-circular 

definition and to avoid importing anthropomorphic notions of agency.  Physicists often speak of 
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bodies ‘acting upon’ other bodies.  The notion of ‘agency’ seems to be critical to our usual 

understanding of the concept of ‘force’ (and by extension ‘energy’), yet the concept of ‘agency’ 

(if it is a physical concept) is left vague and undefined. 

 Surely the most famous energy equation is E = mc2, the epic-making linking of mass and 

energy.  What seems especially peculiar and unexpected is not simply the apparent reduction of 

mass to energy but the incorporation in that equivalence of a definite finite speed, the speed of 

light.  The suggestion that energy ultimately has something to do with a specific speed (c) and a 

specific constant (c2) seems particularly puzzling. 

 

 It could be argued that all physical concepts, and all concepts of any kind, are ultimately 

obscure at some deepest level, that in some Hegelian sense every concept must be defined in 

terms of other concepts and those concepts in terms of still others.  We can never become 

completely clear about the meaning of any single concept, so this argument goes, without 

engaging some larger, ever expanding “totality” of concepts.  Whatever the merits of this 

argument (and I think it has some) we need not pursue it.  Our aim is more limited and concrete: 

can energy be characterized in some way which is both useful and illuminating?  Can it be made 

more accessible to the understanding than is currently the case?   

 Certain fundamental physical concepts seem intuitively clear and arouse little if any 

controversy as to their nature.  These include, for example, the concepts of ‘speed,’ ‘velocity’ 

and ‘acceleration.’  Physicists are not likely to ask ‘what is speed?’ or ‘what is velocity?’ in the 

way they might ask ‘what is mass?’  Speed is the rate at which something is moving relative to 

some frame of reference.  Velocity is the speed at which something is moving in a certain 

direction relative to some frame of reference.  Acceleration is the rate at which a speed or a 

velocity is changing, namely, how fast something is speeding up or slowing down.  These 

concepts are familiar and seem unproblematic.   Of course, our intuitive grasp may be 

misleading.  We know that these concepts depend upon the more fundamental concepts of 

distance and time, and no one since 1905 can regard even ‘distance’ and ‘time’ as unproblematic.  

Still, our experience with speeding automobiles and flying baseballs gives us an intuitive sense 

of what it means to say that something has a certain speed or that it is undergoing acceleration. 

 Is there some way in which the concepts of mass, force, and energy can be made 

similarly accessible to the understanding?  Can they be given a new formulation which strips 

away some of their mystery?  Is there a concept, perhaps surprisingly simple, which will explain 

and unite them?  

 The answer offered here may seem at first sight implausible or perhaps even absurd, but 

our effort is speculative and therefore requires a certain leniency on your part.  Speculation is the 

father of invention.  It is not required of speculation that it provide a fully satisfactory or well 

developed theory.  It seeks, at the minimum, a pathway not a destination.  Yet it carries with it 

the responsibility to be definite and not hopelessly vague.  To paraphrase Wolfgang Pauli, the 

ideas must be clear enough and definite enough to be wrong.  They must also be rich enough to 

provide a clear path to development.  Such is our aim. 

 

 Consequently, we begin this endeavor by noting that the modern science of physics 

beginning with Galileo and his contemporaries seems to be primarily a study of motion.  The 

careful observation of the motion of bodies rolling down inclined planes allowed Galileo to 

abstract precise relationships between distance and time that laid the foundation for classical 

physics.  Newton extended these ideas and formulated his remarkable ‘laws of motion’ which 
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became the basis for all subsequent inquiry.  The development of thermal mechanics in the 

nineteenth century brought the concept of ‘thermal energy’ into the picture and ultimately led to 

energy’s preeminent role in the science.  Statics, as one physicist put it, is merely a special case 

of dynamics.  One might say with little exaggeration that physics is ‘the science of motion.’  

 James Clerk Maxwell wrote a little book called ‘Matter and Motion’ in which he 

succinctly sums up the core notions as he saw them.  He was a great synthesizer and had an 

uncanny ability, like all great thinkers, to abstract essential notions from the inessential chaos of 

experience.  He did not go so far as to say that ‘matter is motion’ – surely a paradoxical or even a 

seemingly far-fetched idea – but he did focus on and understand the primacy of motion. 

 Yet in spite of all this emphasis on motion, there is one concept which might be said to be 

conspicuously absent.  It is the elephant not in the room.  We use concepts like speed, velocity, 

and acceleration to measure the movement of things, but they measure only rates of movement 

and not what we might call ‘quantities of movement.’  If motion is the subject of our study, and 

if our study is a rigorously quantitative one, the single concept which might be expected lie at the 

center of this endeavor is the concept of ‘quantity of motion.’ 

 The term ‘quantity of motion’ cropped up early in the modern history of physics when 

Descartes used it to refer to what we now call kinetic energy.  ‘Quantity of motion’ has also been 

used to label or describe Momentum.  Both descriptions are essentially correct.  But the insight 

contained in this choice of terminology was never developed.  Perhaps for good reason, for it 

makes sense to say that objects have motion, or that matter has motion, or even that “masses” 

have motion, but to say that matter is motion seems nonsensical. 

 Yet this strange and startling idea is our subject.  We hypothesize the ontological primacy 

of motion.  In our ontology, motion is not an ‘accidental’ property of matter but the essential 

constituent.  We assert the ultimate reduction of matter to motion.  “Quantities of motion” are 

thus not missing in the centuries-long enterprise of natural philosophy; they are there but in 

disguise.  The concepts of Mass, Force, Energy, Momentum, and Work all relate to the 

quantification of motion.  Energy is a “quantity of motion.” 

 

 What is a quantity of motion?  It is, to be somewhat more precise, the sum of the speeds 

of all the ‘particles’ in the system.  This idea will require considerable refinement, but at this 

juncture, let us change our approach and proceed by way of illustration.  This will be the most 

effective and dramatic way to convey the essential ideas we wish to put forward.  We will begin 

with a rather crude but simple illustration in order to convey the ideas in as simple and direct a 

manner as possible.  We will then incrementally refine these ideas by adding the complexities 

which would be difficult to handle all at once. 

 Consequently, you are asked to imagine a billiard table and a set of billiard balls.  We 

stipulate that the billiard balls are the ‘same’ in every respect relevant for our purposes (weight, 

size, and shape).  We further stipulate that the table is frictionless and the balls and table are 

perfectly elastic.  We do this in order to eliminate complicating and irrelevant variables.  There 

are no such things as frictionless tables and perfectly elastic billiard balls (except in the domain 

of the imagination) but that should not invalidate our “thought experiment.”   If there were such 

things, we can inquire as to how these moving bodies might behave.  Having accomplished that, 

we will extend our analysis to account for friction and elasticity.  But initially, we simply want to 

stipulate that no energy is to be gained or lost once the balls are set in motion. 

 Under these somewhat artificial conditions, let us say that a billiard ball is struck with the 

cue stick and accelerated to a speed of ten meters per second.  It will cross the table, rebound, 
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and return with the same speed that was initially imparted to it.  Since no energy is gained or 

lost, the ball will continue in motion indefinitely, crossing the table with the same exact speed: 

ten meters per second.  Since no energy is gained or lost, the speed of the ball is “conserved.” 

 Now let us add one further condition to our experiment.  We ask you to imagine that this 

table exists in an ‘alternative universe’ where the laws of physics are somewhat simpler than in 

our own.  You might object that this is a rather large concession; anything seems permissible in 

such a so-called universe.  But our purpose is merely instructional.  Once the central concepts we 

wish to illustrate have become clear, we will adjust the conditions back to our own universe to 

discover in what way they can be adapted to a real world. 

 So this time we place several balls on our frictionless table in our fanciful world.  We 

strike the cue ball and again impart to it a speed of ten meters per second.  The ball travels a 

short distance and strikes a second ball slightly off center.  Immediately after this collision we 

measure the instantaneous speeds of the two balls now in motion, the cue ball and the struck ball.  

We find that one is traveling six meters per second and the other four meters per second.   Each 

of these two balls then travels a short distance and strikes another ball.  Again we measure the 

speeds of the four balls now in motion.  The speeds are four, two, three, and one meters per 

second.  A few moments later we again measure the speeds of all the balls in motion. We find 

that eight are in motion: six are traveling at one meter per second and two at two meters per 

second.  (The nice round numbers used in this illustration are merely for ease of computation and 

have no other significance.) 

 Now we discover in our fanciful universe an interesting phenomenon: the value of the 

speed of the initial ball is conserved (given the conditions of our experiment).  Whenever the 

speeds of the balls in motion are summed, we arrive at the same number, in this case, ten.  Yet, 

except for the initial instance of the cue ball, this number does not represent the speed of any 

single ball.  Subsequent to the cue off, it does not represent a speed at all.  It is a combination of 

speeds.  What it represents, we suggest, is a ‘quantity of motion.’  In our fanciful universe, we 

call it the energy of the system. 

 So we say that the energy of the system is the sum of the motion of all the particles in the 

system (the particles in this case are the billiard balls), and we draw this conservation law:  the 

sum of speeds of the (ultimate) particles in any isolated system is always conserved.  This is the 

conservation is energy. 

 Energy is not, consequently, some invisible and mysterious “I-know-not-what.” It is not 

some vague essence or hidden “something” which causes things to move.  Energy is motion 

itself.   Or more properly stated: it is a quantity of motion.  Energy is visible in the motion of 

things, but only by careful measurement and abstraction can its quantification be understood. 

 We noticed that the quantity of motion represented by the sum of the speeds of the balls 

on our hypothetical billiard table was conserved, but also conserved in a particular way.  That is 

to say, the speed of the initial ball became ‘spread out’ or shared amongst the other balls.  We 

began with one ball traveling at ten meters per second and ended with eight balls with speeds in 

the low digits.  No matter how long we observe this system, it would be highly unlikely that we 

will again see a single ball moving at ten meters per second due to probability.  The initial 

motion is ‘shared out.’   The ‘sharing out’ is a concomitant of the fact that when balls collide, 

they will interact, that is, motion will be divided to one extent or another.  In time, all or most of 

the stationary balls will be struck and will begin to move.  In time, they will all move at more or 

less the same speed (if never exactly the same speed).  The likelihood for the initial motion to 

dissipate amongst the balls due to probability of collision is something we label ‘entropy.’ 
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 Now let us return to the billiard table and confront this situation: a billiard ball traveling 

at two meters per second due east (as we shall label this direction) collides head-on with a 

billiard ball traveling in the opposite direction, due west, at the same speed.  The two balls (equal 

in weight) rebound equally, reversing direction due to the fact that they are perfectly elastic.  

They travel away from each other at the same speed that they approached.  The motion is 

ultimately conserved.  It is as if the motion had traveled on through the two balls or as if the two 

balls had “passed through” each other, metaphorically speaking.  The motion was perfectly 

exchanged. 

 Nevertheless, there seems to be a significant problem here.  For we know that the two 

balls, in order to exchange their motion, had to come to a complete stop, if only for an instant.  If 

they came to a complete stop to reverse the direction of their motion, what happened to their 

motion in that brief moment? 

 We have hypothesized that motion is strictly conserved.  We mean by this that motion, 

the total quantity of motion in any (hypothetical) “isolated” system, is a fundamental and 

irreducible entity.   As a sum, it never shows gain and never shows loss.   Motion is exchanged 

but not augmented or diminished.   It is not an accidental quality, but primary and essential, a 

universal constant.  But if this is the case, how can we account for the missing motion at the brief 

moment of collision?  Where does it go? 

 The answer is that it is converted to ‘Mass.’ 

 When the two balls initially slow down on impact, their former translational motion is 

converted to mass which increases.   The mass of the balls increases until the balls come to a 

complete stop.  Then, as the balls rebound and accelerate, the mass decreases correspondingly.  

The mass ‘gives up’ the motion which is returned to the balls in the form of translational motion 

across the table, or as physicists would say, in the form of ‘kinetic energy.’ 

 What, then, is this thing called Mass?   What is this thing which receives and gives up 

motion? 

 The answer can only be one thing: mass is itself a ‘quantity of motion.’  It is the same 

thing as energy.  It is, in other words, a sum of the motion of particles.  There is, however, this 

one difference: mass is a quantity of motion bound or confined to a certain ‘region of space.’  

The difference is primarily a matter of how it is measured. 

 The relevant ‘region of space’ in this particular case is the billiard ball itself.  We must 

think of the billiard ball in our fanciful world not as a solid block of ‘substance’ but as a region 

of space which contains a vast quantity of motion within it.  It contains an extraordinary 

multitude of particles and particles-within-particles, all in motion.   It is a vast bee hive of 

motion.  And the sum of this motion contained in the ball is what we call its mass.  This motion 

includes that of the molecules as they agitate (thermal motion), the motion of the electrons, the 

motion of the constituents of the electrons, and most significantly, the vast motion contained in 

the interior of the nucleons. 

 Consequently, when the ball rolls across the table, each particle within the ball is given a 

very slight incremental increase in its translational motion.  Compared to the motion contained in 

the ball itself, this incremental increase contributed by the ball’s translational movement across 

the table is infinitesimally small.  Consequently, the increase in the mass of the balls in collision 

is similarly small at normal billiard ball speeds.   It would take a very delicate process to measure 

the increase in mass of the two balls at their moment of collision as compared to two stationary 

balls not in collision.  The motion delivered to the system by the cue can thus be measured as 

mass or computed as kinetic energy.   In both cases, what is being measured is same thing: 
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energy - which is to say, the total quantity of motion in the system. 

 If we think of billiard balls (and all other massive objects) as containing quantities of 

motion, then it is apparent that the moving billiard ball is a ‘quantity-of-motion in motion.’  

 Now let us backtrack for a moment.  Consider the case of the collision of a billiard ball 

traveling at two meters a second (on our fanciful table) with another ball stationary on the table.  

Suppose the entire translational motion of the moving ball is transferred to the stationary ball.  

Since the two balls are identical, and since the moving ball loses its motion completely, and since 

the stationary balls gains the entirety of this motion, it seems intuitively persuasive to believe 

that the second ball will then accelerate to a speed of two meters per second.  The quality of 

motion in this case is conserved.  The speed (two meters per second) is simply transferred from 

the first ball to the second. 

 Now let us work a slight variation on this case.  Suppose instead of a single stationary 

ball, two balls are stationary but linked together by some means.  Now when this two-ball 

combination is struck by the single ball traveling at two meters per second, what will be the final 

speed of the two-ball combination?  The answer seems intuitively clear and follows implicitly 

from our initial formulations.  The final speed of the two-ball combination will be one meter per 

second. 

 When a billiard ball with a mass of one unit traveling at two meters per second strikes a 

second, stationary billiard-ball-combination with a mass of two units, the second ball 

(combination) will move at one meter per second if all the motion of the first ball is transferred 

to it.  (This is simply equivalent to two balls traveling at one meter per second.) 

 Now let us imagine that the two balls are compressed into the space of one ball.  A 

billiard ball made of heavy wood, twice as dense as a billiard ball made of light wood, will act 

‘as if’ it were two balls as far as our computations go.  The heavy ball has twice as much motion 

contained within it, and will thus move only half as fast when the same amount of motion is 

transferred to it as opposed to the lighter ball.  Thus we multiply ‘mass times speed’ to find the 

correct quantity of motion. 

 We can compute mass in “billiard ball units” if we choose.  We can also label these units 

as “kilograms” or “pounds”.  The label is not important but we must be careful to keep the 

proportions consistent.  For instance, let us specify that each of our ‘billiard-ball-units’ 

corresponds to one tenth ‘kilogram’ units, and one kilogram unit corresponds to 2.2 ‘pound’ 

units. 

 Initially, we stipulated that all the balls in our experiment were the same weight and thus 

the same mass.  But it is now apparent that for balls of different mass, we need only compute the 

‘units of mass’ in each ball to compute the ultimate quantity of motion, whether we choose to 

label these units “kilograms,” “pounds,” or “billiard-ball-units.” 

 

 We hypothesized that when the two billiard balls collided head on and came to a 

complete stop, the translational motion of the balls (their ‘kinetic energy’) was conveyed to the 

interior of the balls and thus became added mass.  Yet it was not “permanent” mass.  It was 

immediately “given up” in the form of kinetic energy when the balls rebounded.  But at the 

moment before the motion was given up, it can be termed “potential energy.”  Potential energy, 

loosely speaking, is potential motion but not in the sense that the motion comes from something 

other than some other motion in the system.  It is simply a transfer or transmutation of one form 

of motion into another.   The motion contained in the two balls (momentarily stationary under 

impact) is transferred or transmuted into translational motion when the balls rebound and 
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accelerate.  The difference between potential energies and other energies is again mostly a matter 

of how we go about our measurements.  “Potential energy” can be regarded as ‘hidden motion’ 

in that it is often not obvious where the motion resides when it is hidden.  But hidden does not 

mean nonexistent.  Consequently, the distinction between potential and “actual” energy is 

somewhat artificial although this does not diminish the utility of the concept of ‘potential energy’ 

in our computations.  (Interestingly, the idea that the motion is not lost, but simply internalized in 

collision, goes back at least to Leibnitz.) 

 It is obvious that the transfer and transmutation of motion in this scheme (or in any other) 

is a complicated business.  Why do the two billiard ball absorb and then quickly ‘give up’ most 

of their motion in the collision?  We know much about these interactions, but the notion of 

‘elasticity’ is still not fully understood.  It is usually understood in terms of ‘forces’ acting upon 

the bodies in motion.  However, in our formulation we will draw a sharp distinction between 

‘forces’ as agents and Force (denoted here with the capital ‘F’).  For us, Force refers a calculable 

quantity.  Given our formulation, energy does not cause things to move any more than ‘velocity’ 

causes things to move.  And given our formulations, ‘Force’ does not cause things to move any 

more than ‘acceleration’ causes things to move.  Nevertheless, when motion is exchanged, we 

can measure the accelerations and the Force.   Thus it is apparent that Force must be understood 

as the ‘rate of change of a quantity of motion.’  In the language of calculus, it is the derivative of 

that quantity of motion which we described as ‘mass times speed.’ Consequently, Force is mass 

times acceleration. 

 To understand what we mean here, consider the acceleration of the cue ball.  When the 

ball is accelerated, a certain quantity of motion (measurable as mass times speed) is transferred 

to it from the cue.  However, the rate of transfer can vary.  If the cue ball is accelerated slowly to 

its final speed (say, to ten meters per second) by a lazy player, the rate of transfer is less than if 

the ball is accelerated quickly, even if the same final speed is obtained.  It is apparent that Force 

does not “cause” things to move in this interpretation.  Rather, it is simply used to describe the 

rate of exchange of motion.  As such, it is a useful and essential concept.  However, we have 

capitalized the term ‘Force’ to distinguish this concept from ‘forces’ - those hypothetical entities 

which are said to cause attractions and repulsions, that is, to cause exchanges of motion.  We will 

look into this idea later.  For our present purposes, we need only note that for whatever reasons 

motions transfer, the rate of transfer can be denoted with the concept of Force, equivalent to 

mass times the acceleration of the body. 

 Nevertheless, there are certain general and evident conclusions (given our formulations) 

that can be made concerning the question of what causes things to move.  Given our formulation, 

things move when motion is added to them.  And things stop when motion is taken away.  We 

are interested here in finding the ‘rules’ or ‘laws’ (the ‘logic’) by which these transfers of motion 

take place. An object in motion will continue in motion until the motion is taken away and 

transferred to something else because if it stopped without such a transfer, motion would have to 

disappear from the system (go out of existence) which is impossible.  Similarly, an object cannot 

begin to move unless motion is added to it from somewhere else, for if it did, the motion would 

have to come into being from nothing, which we deem impossible.  If the quantity of motion in 

any isolated system is an inalterable sum, which is our interpretation of the conservation of mass 

and energy, then to suggest that something can begin to move without motion from somewhere 

else being transferred to it, would be equivalent to an effect without a cause.   Consequently, 

things do not “resist” moving, nor do they “resist” stopping.  A locomotive does not resist 

moving any more than a billiard ball.  When we say that the locomotive has more ‘inertia’ we 
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simply mean that the equivalent amount of motion added to the locomotive will impart a smaller 

speed to it than to a single billiard ball because the locomotive has more units of motion which 

must be accelerated.  (This is equivalent to saying that a certain amount of motion transferred to 

a single billiard ball will result in a greater subsequent speed than if the same amount were 

divided among thousands of balls.  The locomotive contains the equivalent of thousands of 

billiard-ball-units of motion.) 

 Inertia is sometimes interpreted as a ‘something’ which ‘causes’ a body to stay at rest and 

which must be ‘overcome’ in order for the body to move.  Curiously, inertia is also sometimes 

thought of as something which keeps a body moving once it is set in motion.  There is no such 

‘something’ in our formulation, unless one simply means by it, that motion must be supplied to, 

or removed from a body for it to move or to stop moving. 

 Now let us eliminate some of the restrictions placed on our experiment in order to 

complete this preliminary sketch.  If the billiard table is not frictionless, some motion will escape 

from the ball as it moves across the table.   A certain increment of motion will be transferred 

from the moving ball to the molecules in the table top (and to the molecules in the air above it).  

Similarly, if the balls are not perfectly elastic, some of the motion of collision will be retained in 

the balls as increased movement of the molecules and consequently as heat.  We can measure the 

amount of heat in an object with a thermometer.  The thermometer reading indicates a certain 

level of motion in the molecules of the substance.  When a quantity of motion is collectively 

removed from the substance, that is, when a given amount of motion is taken away from the 

molecules and transferred somewhere else, the thermometer will register a lower temperature.  

Temperature is thus a proxy for the motion of the particles in the object.  The differences 

between the two temperature readings is a proxy indicating the how much motion has been 

removed and applied to some other system, in other words, how much “Work” has been done 

(and how much ‘energy’ (motion) has been transferred). 

 There are other potential losses or gains in motion.  A billiard ball continually radiates 

motion away from itself in the form of photons which travel out from its surface.  It also 

continually absorbs similar amounts.  If the absorption exceeds the radiation (say, when placed 

under a heat lamp), the ball heats up, which is to say, it gains internal motion.  Similarly, if 

radiation exceeds absorption, the motion lessens and the ball cools. 

 

 If mass is a quantity of motion (i.e. a quantity of energy), then it has a relative nature 

because motion itself is relative.  If you accelerate a billiard ball relative to some framework 

(say, the billiard table), then the ball will acquire mass by virtue of that motion in proportion to 

the rest mass of the ball.  The ‘rest mass’ does not change.  This is to say that the relative motion 

of the particles within the ball does not change.  If you were moving along with the ball at the 

same speed, its mass would not change, relative to you, because you would observe no additional 

motion.  However, the quantity of motion represented by the motion of the ball across the table is 

equivalent to additional mass measured from the framework of the table. 

 At ordinary speeds the translational motion of the ball across the table makes very little 

difference to its mass (measured from the framework of the table).  But if the ball were to be 

accelerated to very high rates of speed, such that the translational motion contributed a sum of 

motion comparable to that of the motion of the particles within the ball itself, a significant mass 

increase would occur relative to the stationary observer.  We will return to this complicated 

subject later, but we need postulate no fundamental difference between ‘rest mass’ and ‘relative’ 

or ‘kinetic’ mass in this formulation.  Rest mass is a consequence of motion within the object 
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(bound motion) and therefore ‘relative’ in the sense that all motion is relative.   The ultimate 

difference between ‘rest mass’ and ‘relative mass’ is a difference which primarily concerns the 

procedures of measurement. 

 

 This brief and preliminary look at our new formulations cannot be complete unless we 

touch upon a question which will doubtless have occurred to you.  To say that energy (or mass) 

is a quantity of motion does not obviate the need for a ‘something’ which moves.  What could 

that ultimate something possibly be?  What is this entity which moves? 

 We must postulate that it is the smallest conceivable object.  We call it a ‘particle-point.’  

The ‘particle-point’ is similar to the ‘geometric point’ but unlike the geometric point, the 

particle-point exists in time.  Its essence is motion.  It is unobservable and has no inherent (or 

‘intrinsic’) properties.  It is dimensionless, and like the geometric point, knowable only by 

inference.  But unlike the geometric point, it does not exist in any precise or specific ‘place,’ for 

it exists only in motion.  And while there are an infinite number of geometric points in any 

region of space, there are only a finite number of particle-points representing the energy density. 

 Our task is to seek out the principles or ‘rules’ which govern this world, to find the 

‘axioms’ or the ‘logic’ of space and time, much like the mathematicians who discover the axioms 

of a geometry.  In a geometry there are geometric points, lines, and surfaces and volumes.  In 

physics there are particle-points, paths, and material objects.  The analogy is close, but not too 

close. 

 The postulated ‘particle-points’ are found on the sub-subatomic level, if you will pardon 

that expression.  This notion of particle-points would have seemed most likely preposterous prior 

to the twentieth century.  Before then, most physicists took it more or less for granted that nature 

‘at the bottom’ must consist of atoms which were conceived of as tiny units of “matter.”  For 

Newton, atoms were “small, massy, and impenetrable.”  The question of what, precisely, these 

impenetrable units are made of haunts this formulation.  In the twentieth century, the notion of an 

impenetrable ‘substance’ more or less gave way to a flux of mathematical equations even if it 

was never precisely clear what these equations ultimately represented.  Yet, underlying even 

these equations is the smallest of all conceivable units, the geometric point.  

 There is more to be said about this subject, but before we venture there, let us return to 

our billiard table and bring it into the ‘real world’ as promised.  While many of the basic ideas 

which we postulated to hold true for our fanciful world will be retained, others must be revised. 

 Let us, then, relocate the billiard table to the real world and run our experiment again.  In 

doing so, we must introduce an essential element of the real world which was neglected or 

glossed over in our fanciful world: the element of ‘direction.’ 

 In our fanciful world, the number ‘10’ represented in our scheme the collective motion of 

the moving balls, the sum of their speeds, a quantity which was conserved.  We know that in our 

real world, this number is also conserved but not in exactly the same way.  In our fanciful world 

we neglected to take into adequate consideration how bodies move.  Bodies do not simply move; 

they move in a certain direction.  They move either this way or that way.  And the way – the 

direction – in which they move is critical.  In order to sum up a quantity of motion, even to 

describe it, careful note must be taken of direction. 

 From any given point on the billiard table (or anywhere else) an infinite number of 

directions can radiate.  A billiard ball at the center of the table can potentially move in any 

direction if given the appropriate impetus.  A billiard ball is normally restricted to two-

dimensional motion if it is not to fly off of the table, but we can easily imagine motion in all 
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other directions as well.  Suppose you are standing in the center of a large field equipped with a 

handgun and unlimited ammunition.  You can fire off bullets in an unlimited number of 

directions (assuming you have unlimited time), including downwards towards your feet and 

upwards into the sky.  Each bullet can travel in a unique direction from the center of the field 

outwards.  Each bullet represents a small mass given a speed by the explosion in the gun.  The 

combination of the two, the quantity of mass in the bullet multiplied by the value of the speed, 

represents in our scheme a quantity of motion in that particular direction.  It is also called 

Momentum. 

 We have no difficulty in imaging these bits of mass being flung out into space from a 

certain position in the field.  However, it difficult to imagine, and seems deeply counter-intuitive 

to suppose that motion has not been created and added to these bullets.  It seems difficult to 

imagine that the motion was always ‘there’ and always there in that particular direction.  Surely, 

the powder which exploded in the bullet must have created this motion which now expresses 

itself as an object flying rapidly skyward?  This is certainly a reasonable interpretation, but not 

true as it happens.  Motion in that particular direction was not created, but only ‘borrowed’ once 

we take the recoil of the gun into consideration.  We can say that it was simply ‘reassembled’ or 

transmuted into a different configuration.  Odd as this may sound, the quantity of motion in 

every direction is strictly conserved, one of the most arresting insights of classical physics. 

 To make sense of this claim, let us first ask: ‘how would it ever be possible to keep track 

of quantities of motion in an infinite number of directions’?  This daunting task would surely 

defeat the efforts of any man or machine.  But Nature has made the task immensely easier.  She 

has allowed us to configure all directions in terms of only six.  We will label these directions: 

east, west, north, south, up and down.  These, in terms, can be resolved into three familiar axis’s: 

east-west, north-south, and up-down, the three “dimensions” of our real world.  It should be 

understood that the geographic labels used here do not refer to geographical directions.  We 

simply borrow the idea of geographical directions for our labels because it is simple and familiar, 

and it is also more economical (in an exposition such as this) to say that a ball is traveling ‘west,’ 

than to say it is traveling ‘in a positive direction along the x-axis.’  Unlike geographical 

directions, we can orient our three-dimension scaffold in any arbitrary manner for our 

convenience.  We ask you to understand the three axis’s we have labeled with directions is the 

same as that labeled x, y, and z or labeled anything else.  The only requirement is that the three 

axis’s are kept at right angles. 

 Now to say that motion is conserved in every single direction is logically equivalent to 

the idea that motion is conserved in each of the three dimensions, or in each of the six directions.  

This immensely reduces the difficulty of computation in our three dimensional world.  We shall 

return to this idea.  We should add another idea to this preamble.  Contained implicitly in the 

notion of direction is another fundamental notion, that of ‘straight.’  You can travel between two 

points, say points A and B, by means of an infinite number of different paths, but only one of 

those paths can be uniquely described as a ‘straight line’ or ‘straight path.’  It is also the shortest 

path.  We cannot describe the ‘speed’ or ‘velocity’ of an object without implicit use of the notion 

of the straight line.  In physics, as in geometry, it is fundamental.  And it is also axiomatic in that 

it cannot be defined in terms of other concepts.  (The concept of ‘straight’ always re-appears 

implicitly in such “definitions,” for instance, in the notion of ‘shortest.’)   When we say that a 

object travels a certain distance, even along a curve, we can only define (and measure) the notion 

of ‘distance’ by utilizing the concept of ‘straight.’  As a consequence, to measure a quantity-of-

motion requires the underlying idea that the motion is in ‘a straight line,’ and to say that a 
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quantity-of-motion continues in a ‘straight line’ at a constant speed, unless other motion is 

added, is taken here to be axiomatic. 

 The above stated ‘axiom’ (essentially Newton’s first law of motion), must be qualified 

only in regard to the particle-points.  Although we must postulate that ‘freely moving’ particle 

points do move in straight lines, we must also postulate they are can be aggregated at the most 

fundamental level, that is, ‘hooked’ together in some manner.  This is a complicated subject 

which we will return to later.  According to Newton, any time a mass (or in our scheme, a 

quantity-of-motion) is ‘acted upon’ by a ‘force,’ an acceleration occurs and motion is exchanged. 

Can this formulation be stood on its head?  Can we say that anytime motion is exchanged, the 

exchange can describe as a ‘force.’  A force, in this interpretation, simply demarcates or 

categorizes certain types of exchanges.  This idea will likely violate most people’s notion of a 

force as something which ‘causes’ motion or causes alterations in motion.   However, if the 

concept of ‘force’ (with a small ‘f’) is understood as a shorthand description of a principle or law 

of exchange, we need postulate no mysterious ‘agency.’  Physicists can in fact describe the 

motions and the exchanges precisely and in great detail, but the so-called force (as an agent) 

cannot be described or explained in any manner whatsoever except as ‘that which causes 

motions.’  In this regard, it seems of questionable value.  Generally speaking, the task of 

explanation is to reduce (explain) concepts in terms of other more fundamental concepts, until at 

last we arrive at the most fundamental or ‘ultimate’ concepts which must be accepted as 

irreducible.  We are inclined to regard these fundamental concepts as ‘self-evident.’  Of course, 

controversy has always raged about what is or is not ‘self-evident,’ and most likely will continue 

to rage.  Yet over the long millenniums of human investigation, certain concepts have been 

slowly winnowed out, such as the principles of non-contradiction, the principle of sufficient 

reason, and a host of others which are the basic presuppositions underlying present day scientific 

and mathematical investigation. They are widely accepted but not sacred.  (So perhaps we should 

add to them, the ‘principle of fallibility,’ a cautionary heuristic, which as Descartes children, we 

must honor above all others.) 

 We will return this subject momentarily, but let us first return to our billiard table, a real 

world table, ignoring only the effects of friction and inelasticity.  The cue ball is again struck and 

accelerated to a speed of ten meters per second.  We make careful note of its direction.  Assume 

that it travels straight down the center of the table in a direction we label ‘due north.’  It soon 

strikes another stationary ball slightly off-center.  In this particular real-world scenario, assume 

the cue ball moves off on a north-westerly course at 6 meters per second, and the struck ball 

moves off on a north-easterly course at 8 meters per second. 

 Now it is readily apparent that the sum of the speeds of the two balls subsequent to the 

collision is not 10 (as it was in our fanciful world) but 14.  Obviously, the “sum of the speeds” of 

these balls is not conserved in the manner that it was in our fanciful world.  The speed of the cue 

ball in the real world is somehow transmuted into a combination of speeds after the collision that 

has a value greater than 10. 

 Nevertheless, we can perform certain observations.  Given the frame of reference that we 

have imposed, we notice that the ball traveling northwest can be said to be traveling in two 

directions simultaneously, the direction of ‘north,’ and the direction of ‘west.’  In other words, 

the direction of the balls can be ‘decomposed’ into a combination of the fundamental directions.  

The cue ball began its journey by traveling ‘due north’ at a speed of 10 meters a second, which is 

to say, it traversed 10 meters on the billiard table in one second.  (Assume the billiard table is 

very large.)  After the collision it changed course and traveled northwest a distance of 6 meters in 
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each second.  However, we can also measure the distance that this ball travels in the strictly 

north direction in each second and the distance it travels in the strictly west direction in each 

second, each measured separately.  We find that it travels a distance of 3.6 meters north and a 

distance of 4.8 meters west.  We have separated the direction “northwest” into its two directional 

components, the north and the west.  Physicists refer to these components as ‘vectors.’  (You can 

confirm these measurements with the Pythagorean Theorem: the sum of the squares of 3.6 and 

4.8 is equivalent to the square of 6, the hypotenuse.) 

 Now if we measure the motion of the other ball (the stuck ball) which is traveling with a 

speed of 8 meters per second in a northeasterly direction, we find that it is traveling with a speed 

of 6.4 meters per second in the north direction and 4.8 meters per second in the east direction. 

 Certain observations can now be made concerning this idealized real world experiment.  

If the two north components (or vectors) of the two balls (3.6 and 6.4) are summed, the result is 

10.  The two components sum to the same value as the speed of the cue ball.  We cannot say that 

the components represent the speeds of the balls, only that they represent the speeds in the north 

direction.  We can say that the sum of the speeds of all the north-vectors is equivalent to the 

speed of the originating cue ball.  In other words, the sum of the speeds is directionally 

conserved. 

 Notice also that the speed in the west direction is equivalent to the speed in the east 

direction, both being 4.8.  If we perform the ‘trick’ of assigning a negative number to one of 

these directions, they will sum to zero.  This is to say, that the net speed in the east and west 

direction of the entire assemblage after collision is exactly equivalent to that before the collision, 

namely zero. 

 These findings will hold true no matter what the masses of the balls, so long as we 

multiply mass time speed to find what we have termed a ‘quantity-of-motion.’  That quantity is 

conserved, and it is known as the conservation of momentum.  We can refer to it as the 

conservation of a ‘quantity of motion’ directionally, which is to say that the net motion in each 

direction has not changed after the collision. 

 Another observation can make this idea more compelling.  Suppose the collision involved 

a cue ball and a cluster of nine other balls at the center of the table (as in a cue-off).  The nine 

balls clustered together (combined with the cue ball at the moment of collision) have what is 

called a ‘center of mass.’  The concept of ‘center of mass’ can be easily understood with the help 

of a simple illustration.  Suppose you pack a box full of china somewhat carelessly.  The box is 

not evenly packed but heavier on one end than on the other, heavier on one side than the other, 

and heavier at the top than at the bottom.  Since weight is proportional to mass, you can easily 

find the ‘center of mass’ of the packed box by placing the box on ‘knife edge’ parallel to one of 

its sides.  The box will not balance at the center but tip toward the heavier side.  You move the 

box until it balances.  Then you extend an imaginary plane through the box, as if the knife edge 

were to slice it in two.  Now you rotate the box ninety degrees and perform the same operation.  

Then tip the box on one of its ends, perform the same operation again, and extend another 

imaginary plane through the box.  These three planes will intersect within the box at a certain 

point, the center of mass.  This point may not correspond with any object in the box, but it 

represents the point at which the mass is equally placed about this center point. 

 Every object, large or small, has a ‘center of mass.’  And in a like manner, the cluster of 

balls has a center of mass.  The cluster will have a center of mass even after it is struck by the 

cue ball.  Let us say that after the cluster is stuck by the cue ball (traveling at 10 meters a second 

due north), the balls (including the cue ball) fly off in all directions on the table.  Some may even 
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rebound southward.  Yet if all the resulting motions are summed, those vectors in the east 

direction will equal (and exactly cancel) those in the west direction.  And the vectors in the south 

direction when subtracted from those in the north, will leave a net north motion of 10, exactly the 

original motion (speed) of the cue ball.  And if we locate the center of mass of this spreading 

cluster of balls, we can observe that it will be traveling due north at a speed of 1 meter per 

second.  The original motion of ten meters a second for the single cue ball has transmuted to the 

final motion 1 meter per second for the mass of ten balls (the 9 in the cluster plus the cue ball) 

for a total motion of 10 units.  In other words, if we could ‘freeze’ the motions of the cluster of 

balls as they spread outward on the table at each succeeding second, and compute the center of 

mass, that center would move just as described.  It would act as if it were a single spreading 

object with a mass of 10 which, receiving the motion of the cue ball, moved north exactly as 

would a single ball of mass 10 (the 9 balls in the cluster plus the cue ball).  If we are allowed to 

think of the spreading cluster of balls not as an array of objects, but as a single object spreading 

outward or growing in size, its ‘essential’ motion (that of the center of mass) would exactly 

mimic that of a single (none spreading) object.  And if that is the case, we can conclude that 

motion is in fact conserved directionally.  A certain amount of motion north will always remain a 

certain amount of motion north whatever the permutations and transmutations that may occur 

within the particles of the larger whole. 

 

 Perhaps you will object at this point.  This is all well and good, you might say, but surely 

some additional motion has mysteriously appeared.  Notice that in the case of the collision of the 

cue ball with the stationary ball, two vectors (east and west, both of which were 4.8) were 

subtracted to sum to zero.  But can they not also be added to sum to 9.6?  Surely the ball 

traveling west involves a certain quantity of motion, and the ball traveling east involves a certain 

quantity of motion.  Subtracting these motions enables us realize that the net quantity of motion 

is conserved, but that should not obscure the fact that these two vectors, considered individually, 

both represent a quantity of motion which must be accounted for.  How can the quantity of 

motion (as we have so far defined it) be conserved if there is an additional sum of 9.6? 

 Nature has her way and her reasons.  We can begin to understand this if we first examine 

a fatal shortcoming of our fantasy universe.  Like all such fantasy universes it is unworkable.  It 

is easy to create superficial, unworkable fantasy universes, but to create a universe that is 

logically consistent and that will account for the diverse phenomena of the real universe is no 

easy matter.  The ‘rules’ which govern our real universe are being slowly unraveled by 

investigations beginning a few millennia ago.  We still have far to go.  Some researchers believe 

that there is only one set of rules that will create a real universe and that no other workable set 

exists or could exist, but we need not delve into that proposition here.  However, a working 

presupposition for all physicists is that a set of rules exists for the real world.  It is their job to 

find them, similar to what mathematicians do.  Mathematicians and physicist both investigate the 

same universe but different landscapes. 

 As for our fantasy universe, consider this case: a one kilogram billiard ball traveling at 10 

meters a second collides ‘head on’ with a 5 kilogram stationary ball.  Since the collision was not 

at an angle, the two balls will travel after the collision along the same axis.  Suppose the first ball 

conveys all it motion to the second ball.  The second ball would then have to travel at 2 meters 

per second.  A 5 kilogram ball traveling at 2 meters per second has the equivalent motion of a 

single ball one kilogram ball traveling at 10 meters per second. 

 But the question which arises is not what will happen if all the motion is transferred, but 
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more simply: what will happen?  For there seems to be quite a few possible outcomes.  For 

instance, if after the collision the 5 kilogram ball moves at 1.8 meters a second (1.8x5 = 9) and 

the one kilogram ball travels in the same direction at one meter a second (1x1= 1), the sum will 

also be 10.  Or if the 5 kilogram ball travels at 1.9 meters a second (1.9x5= 9.5) and the other 

ball at .5 meters a second (1x.5=.5), the sum will again equal 10.  It turns out that there are an 

infinite number of possible combinations of speeds which will sum to 10.  So what will be the 

actual outcome?  Nature cannot allow the billiard balls to freely decide this matter for 

themselves.  Nature is determined, a fundamental presupposition of all scientific enquiry whether 

or not you subscribe to it as a metaphysical proposition.  It turns out, somewhat counter-

intuitively, that the 1 kilogram ball will rebound and travel in the opposite direction of the 5 

kilogram ball. 

 In our fantasy world we can state the dilemma with this equation: 

 

 (mass1)(speed0) = (mass1)(speed1) + (mass2)(speed2) 

 

 or more succinctly: 

 

 m1s0 =  m1s1 +  m2s2  

 

 or:  1 x 10 = 1 x s1 + 5 x s2 

 

where mass1 is the one kilogram ball and speed0 is the original speed of 10 m/s, and mass2  is the 

5 kilogram ball.  Speed1 and speed2 are the two unknown speeds after collision.  But this one 

equation has two unknowns.  It cannot be solved for a unique solution.  Something more is 

needed to determine the outcome. 

 It is evident that the conservation of directional motion (momentum) imposes a constraint 

on the motion of the balls.  If motion is directionally conserved, the additional motion to the east 

and west must be equivalent in order for them to cancel out.  This imposes a constraint absent in 

the unreal fantasy world discussed earlier.  We can formulate this constraint with the following 

simple formula: 

 

 m1v0  =  m1v1 + m2v2  

 

where m1 is one (the mass of the first ball), v0 is 10 (the initial velocity), and m2 is 5 (the mass of 

the second ball).  The values of v1 and v2 are the two unknowns.  We term them ‘velocities’ and 

not ‘speeds’ because we have incorporated the directional constraint.  Yet, as illustrated before, 

this single equation cannot be solved to yield a unique value for these final velocities.  In other 

words the single constraint is not sufficient to determine the outcome. 

 So let us look again at the numbers involved in the real world case.  The cue ball had an 

original speed of 10.  Subsequent to the collision, the speeds of the two balls were 8 and 6.  

There is relationship between these three numbers which is not difficult to spot.  The square of 6 

is 36, and the square of 8 is 64.  The square of 10 is 100.  The sum of 36 and 64 is 100.  The 

squares of the speeds of the two balls after collision is equal the square of the original speed. 

 

 m1v0
2
  =  m1v1

2
 + m2v2

2
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In this peculiar way, the sum of the speeds is conserved.  It is conserved as the sum of the 

squares.  This is a second ‘constraint’ placed upon possible motion.  The first constraint was that 

the motion must be conserved directionally; the second constraint is that it must be conserved as 

a sum of the square of the speeds.  We now have two equations for the two unknowns which can 

be solved for a unique real value.   

 

 m1v0  =  m1v1 + m2v2  

 m1v0
2
  =  m1v1

2
 + m2v2

2
  

 

When the one kilogram ball strikes the 5 kilogram ball (under the conditions prescribed), we find 

that the final velocities are: v1 = -6.7 m/s, and v2 = 3.3 m/s.   In other words, the 1 kilogram ball 

will rebound. 

 The sum of the velocities squared (equivalent to the sum of the speeds squared) provides 

us with a second conservation rule which allows motion to be uniquely determined.  Yet it seems 

intuitively less obvious than the sum of the speeds proposed in our fanciful universe.  Why do 

the speeds need to be squared and added, rather than just added?  What is the intuitive basis for 

this necessity? 

 There are two answers.  For one thing, if there existed only directional conservation of 

motion, that alone would be unable to generate our universe.  If the initial motion of the cue ball 

(due north) was conserved without the additional motions (east and west), all collisions could 

only result in subsequent motion in the original line of travel.  This is a problem recognized (in a 

sense) by Democritus and Lucretius two thousand years ago.  Democritus proposed that at the 

beginning of time, atoms were “raining” straight downward in a great homogenous mass.  You 

might imagine a rain storm on a calm day.  Since the atoms were dropping vertically and 

uniformly, they did not touch.  And since they did not touch, they could not combine.  Nothing 

could come of such a world.  So Lucretius introduced a ‘swerve.’  In the course of the fall, an 

atom that swerved sideways could collide with another atom.  This would upset the equilibrium 

and result in a concatenation of collisions from which all objects of the world would be 

assembled.  The collisions produced material objects because the atoms became ‘hooked’ 

together.  These early day theorists did not explain the origin of the ‘swerve,’ nor were they very 

clear about the nature of the ‘hooks.’  We can forgive them for the problem of the ‘hooks’ 

because science still struggles with it. 

 A certain view of modern cosmology has some parallels with this vision of Democritus. 

In this view, there was in the beginning a great rainstorm call the Big Bang.  The “Atoms” – 

which is to say, the initial constituents of matter - rained ‘outward’ in equilibrium in a great 

homogenous flux.  This equilibrium was then quickly broken by a “swerve-like” dis-equilibrium 

called a ‘quantum fluctuation’ which resulted in the condensing and assembly of the initial 

constituents.  What allowed the constituents to coalesce into macro objects were “hooks” – now 

called ‘forces.’  The forces are said to ‘act’ upon the constituents of matter, holding them 

together in a hierarchy of ever larger macro objects. 

 For present purposes, we suggest that “swerve” (or its functional equivalent) is provided 

by the two principles of the conservation of motion working in tandem.  The directional 

conservation of motion provides order. This means that the particles (whatever they may be: 

billiard balls or atoms or anything else) cannot travel in any old way.  If they could travel in any 

old way, the universe would be unordered, chaotic, unpredictable and unintelligible.  Instead 

they are constrained to travel in a straight line in a definite direction (other things being equal).  
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Order and predictability is established.  Nevertheless, if they could only travel in a single 

direction (raining straight “downward” or “outward”), nothing could assemble.  Orderable 

deviation from the straight directional path is required (the ‘swerve’) if particles are to combine.  

The order is provided by the principle of the conservation of the sum of the velocities squared – 

the ‘total’ motion. 

 

 Before we delve a bit further into this explanation, let us examine some simple equations 

of motion which will help set the stage.  We begin with the simple equation for velocity which is 

given by the formula: 

 

 vf = at   

 

Here, vf is velocity, a is acceleration, and t is time.  Our formula says that velocity is equal to the 

rate of acceleration multiplied by the time over which the acceleration occurs (assuming uniform 

acceleration).  For instance, if a body is accelerating uniformly at 10 meters per second per 

second for 5 seconds, then the final velocity obtained will be 10x5 = 50 meters per second.   This 

seems physically as well as mathematically almost self evident.  It can be empirically confirmed.  

For instance, if an object is dropping (and accelerating) at 10 meters a second per second near the 

earth’s surface, it will obtain a final velocity of 50 meters per second after 5 seconds. 

 It seems odd to say that the formula can be empirically confirmed.  Let us say the object 

drops for 5 seconds and accelerates at exactly 10 meter/s2.  Now let us say that physicists 

measure the velocity at the terminus of the fall with the most accurate instruments available, and 

determine that the final velocity is not 50 m/s but, say, 60 m/s.  This would be quite stupefying, 

not only to physicists, but to mathematicians as well.  They would both passionately insist that 

some measurement was wrong, not that the formula vf = at is wrong.  Does this mean that nature 

‘obeys’ mathematics?  Or should we ask: does mathematics ‘obey’ nature?  Our answer is that 

the two cannot be separated.  They are two aspects of the same reality. 

 But let us return to our formulas.  If velocity is equal to acceleration multiplied by time 

(vf = at), then we can rearrange terms to give: 

 

  t = vf / a 

 

Here, time is equal to velocity divided by acceleration.  For instance, if a body is traveling at 50 

meters a second and has been accelerated from rest at 10 m/s2, then the time of acceleration can 

be computed as 5 seconds. 

 A simple formula for the distance traveled by such a body is given by:    

 

 d = vat 
 

Here, d is the distance.  This formula says the distance traveled is equivalent to the velocity 

multiplied by the time.  We have placed the subscript (a) to indicate that this is an average 

velocity, to distinguish it from vf where the subscript (f) indicates final velocity.  In other words,  

if a body is accelerated to a final velocity of 50 meters a second from rest, the average velocity 

over this period of travel will be 25 meters per second, one half of the final velocity, assuming 

uniform acceleration.  The distance traveled will be 125 meters if the time of travel is 5 seconds. 

 Now we can substitute t = vf / a into the equation for distance to give: 
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 d = va vf / a 

 

Rearranging these terms gives the odd looking formula: 

 

 ad = va vf  

 

Here, acceleration multiplied by distance equals the average velocity multiplied by the final 

velocity.  Since va is equal to one half vf , we can re-write the formula: 

 

 ad = ½ vf
2 

 

We shall return to this formula in a moment.  There is another simple formula for distance, only 

slightly more complicated, which will give us the same answer: 

 

 d = ½ at2 

 

In this case, the distance traveled for a body accelerated from rest is equivalent to the 

acceleration multiplied by the time squared.  For instance, if a body accelerates at 10 m/s2, over a 

period of 5 seconds, the distance traveled will be 125 meters (as above).  This formula can be 

easier understood if it is written: 

 

 d = ½ (at)t 

 

In this case, it is apparent that (at) equals the final velocity vf (from above).  Therefore d =  (½ 

vf)t .  Since one half of the final velocity (½ vf) is equal to the average velocity, va , (assuming 

uniform acceleration) the formula reduces to  d = vat,  as above. 

 If we substitute t = vf /a  (which is time equals final velocity divided by acceleration – 

from above) into  d = ½ at2  we have: 

 

 d = ½ a (vf /a)2   or    d = ½ vf 
2/ a 

 

Again, rearranging terms gives the odd looking formula derived above: 

 

 ad = ½ vf
2 

 

If we take the liberty to multiply each side of this equation by a constant - what we have called 

‘units of motion’ or units of mass, designated by the letter ‘m’ - then we have: 

 

 (ma)d = ½ mvf
2  

 

Physicists refer to the term on the left as ‘Work’: 

 

 W= (ma)d 

 

They refer to the term on the right as ‘Kinetic Energy’: 
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 KE = ½ mvf
2 

 

In our scheme, the number given by these terms represents a ‘quantity of motion’.  In the first 

case, it is calculated from acceleration and distance and is called Work; in the second case, it is 

calculated from the final velocity and is called Kinetic Energy. 

 We have already interpreted mass multiplied by acceleration (ma) as Force - the rate at 

which motion is transferred.  So we can interpret the formula for Work in this way: if motion is 

transferred at a certain rate (ma) over a certain distant (d), the resulting quantity-of-motion 

transferred can be calculated with the formula: (ma)d.  This quantity can also be calculated as 

one half of the square of the final velocity obtained over that distance (½ mvf
2 ).   The final 

velocity is obtained by accelerating the mass at the given rate ‘a’ over that distance. 

 For instance, suppose a body of 1 kg is accelerated over a distance of 125 meters at 10 

m/s2.   Calculation gives the quantity-of-motion [(ma)d] as 1250 kg-m2/s2.   The time required 

for travel will be 5 seconds (from d = ½ at2), and the final velocity of the body will be 50 m/s.   

Consequently, the same ‘quantity of motion’ can be calculated using the final velocity (50m/s) 

by the formula KE = ½mvf
2 , which equals  ½ (1) (50)2   or  1250 kg-m2/s2. 

 

 Now let us return to the second answer to the question asked above: why should nature 

use the sum of the velocities squared  to represent this manifestation of total energy rather than 

something ‘simpler’ and more intuitive, like the sum the speeds?  The sum of the speeds squared 

seems intuitively less obvious than the simple addition of speeds.  Yet Nature has a second 

reason which is as much mathematical as it is physical (although we make no sharp distinction 

between the two realms, nor do we believe does Nature).  Let us return to our imaginary billiard 

table for a moment and imagine this situation: a billiard ball is traveling ‘due north’ down the 

center of the table at 8 m/s.  Now imagine that a second identical ball is traveling perpendicular 

to this ball, in a direction due west at a speed of 6 m/s.  Imagine that the second ball collides with 

the first and transfers its entire motion to the first ball.  In this idealized situation, it is now 

apparent that the first ball will have acquired a second component of motion (6 m/s west) and 

will consequently be comprised of two components – one north and one west.  It has the original 

component north of 8 m/s, but also the additional component west of 6 m/s contributed by the 

second ball (which comes to a stop).  Since motion is directionally conserved, the ball must now 

travel 8 m/s in the north direction and 6 m/s in the west direction.  It now ‘contains’ both 

components and must travel accordingly.  If it did not travel in this fashion, motion would be 

lost.  So the ball will consequently continue to travel 8 meters in the north direction in each 

second – and at the same time, 6 meters in the west direction in each second.  The path will be 

northwesterly, a diagonal with respect to the frame of reference of the table.  To calculate the 

speed of the ball, we must find the length of the path traveled in each second.  This can be done 

with the Pythagorean Theorem:  (distance)2  = 82 + 62.  Consequently, the distance actually 

traveled in each second is 10 meters, not 14 meters (the sum of 8 + 6), and the speed is obviously 

10 meters per second. 

 Accordingly, it can be said that the ball traveling in the northwesterly directions 

‘contains’ – in a manner of speaking – the two component speeds, or any other component 

speeds whose squares sum to 100.  This is not merely an empirical relationship but a 

mathematical necessity.  In other words, the directional conservation of motion logically entails 

the conservation of the square of the component velocities.  If the 8 meters-per-second motion is 
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to be conserved, and if the 6 meters-per-second motion at right angles to it is also to be 

conserved, the resulting motion ‘contained in’ the traveling one kilogram mass will require that 

the mass travel northwest at 10 meters a second.  This is to say that the squares of the velocities 

must be conserved if motion can be exchanged and combined. 

 To see this more clearly, imagine that the ball traveling in the northwesterly direction at 

10 m/s strikes another ball off center such that the struck ball travels due west at 6 m/s, and the 

first ball travels onward in a north direction at 8 m/s.  (This is the first collision analyzed above.)  

Here, the original motion of the two balls has returned.  As long as the principle of directional 

conservation of motion is maintained, we can derive the principle that the sum of the speeds of 

all masses in motion can be calculated as the sum of the speeds squared (or equivalently, 

velocities squared) and this sum will also be conserved.  So the total motion – that is, the sum of 

the speeds of all identical masses in any isolated system will be proportional to the sum of the 

speeds squared.  More generally the sum of the masses multiplied by the speeds squared (where 

the masses are unequal) will also be conserved.  (This is true so long as we conceive of masses as 

‘units of motion’ as described earlier.)  The relationship is expressed below: 

 

  m1v0
2
  =  m1v1

2  + m2v2
2  

 

where m1 and m2 are the two masses, v0 the initial velocity, and  v1 and v2 the resultant velocities. 

 The question that remains is why is Kinetic Energy given by the formula KE = ½ mv2, 

not KE = mv2?  Why the ½ ?  The answer can be found is the nature of the exchange of motion.  

Whenever motion is exchanged between two bodies, the motion is not exchanged 

instantaneously.  Instead, the two bodies will accelerate.  The body receiving the motion will 

speed up relative to a given frame of reference, and the body giving up the motion will slow 

down.  The exchange takes place “over time,” not “in an instant.”  This introduces an average 

velocity of ½ times the final velocity into the equation. 

 

 The question of why the exchange does not occur instantaneously is interesting and 

complicated.  It is not something most people would question.  It seems odd to ask why you 

cannot get into your car, turn on the key, and instantaneously transfer to 60 miles per hour.  Such 

a thing is completely foreign to our experience. 

 Isaac Newton postulated that the moon was held in orbit by a force acting instantaneously 

‘at a distance.’  The notion of ‘action at a distance’ was much ridiculed by Newton’s 

contemporaries, for it seems obvious that you cannot push a cart by walking 10 meters behind it - 

exerting “action at a distance.’  Nor can you pull the cart by walking 10 meters in front of it - 

exerting ‘action at a distance.’  In the first case you need to put your shoulder to the cart, and in 

the second case you need a harness.  The notion of action-at-a-distance seemed far-fetched. 

Newton was not happy with it himself, but he could think of nothing better.  As a good practicing 

physicist, he decided to simply accept it and move on. 

 The “far-fetched” notion of ‘action at a distance’ has a curious history.  For it was soon 

pointed out that magnets seem to affect iron particles ‘at a distance,’ and electrostatic forces also 

seem to act ‘at a distance.’  The paradigm changed.  ‘Action at a distance’ no longer seemed far-

fetched.  It appeared that all forces ‘act at a distance,’ at least if the distance is very small.  For 

instance, the distance between molecules in a substance is small, but the molecules must still be 

held together by forces ‘acting at a distance,’ or so it seemed.  ‘Action at a distance’ no longer 

seemed preposterous; it became respectable, even “self-evident.” 
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 The view changed again with the advent of quantum mechanics.  The theory called the 

‘standard model’ postulated that forces are ‘carried’ between objects by special ‘carrier 

particles.’  The carrier particle for the electro-magnetic force is the photon.  The carrier particle 

for the gravitational force is a postulated ‘graviton’ (which so far remains undiscovered).  The 

idea that forces are ‘carried’ by particles may seem as peculiar as action-at-a-distance.  Of 

course, if a billiard ball is struck by the cue stick and rolls across the table to strike another 

billiard ball, it could be said that the ‘force’ (in some loose sense) is carried by the ball as it rolls 

across the table.  The rolling ball is obviously the mechanism by which the energy (or motion) is 

transferred across the table from the cue stick to the second ball.   On collision, however, photons 

deliver the force to the struck ball.  How this occurs, in detail, is problematic.  You might ask: 

what carries the force from the photons to whatever they interact with? 

 Is there a sub-photon which is emitted by the photon at very close range to ‘carry’ the 

force from the photon to the nucleus?  This idea perhaps seems far fetched, but obviously the 

model of ‘force transfer’ cannot continue with ever smaller sub-particles.  If it does not continue 

in this way, at some point the particle must transfer the force.  The force will have to be 

transferred ‘at a distance’ (however small that distance) - or not.  If the force acts at a distance, it 

would have to act instantaneously (at a distance) if there were no intermediaries to carry the 

force the small distance from particle to particle.  (If the force did not act instantaneously, any 

delay would call for an explanation.) Instantaneous action at a distance will have reappeared, 

albeit at a small scale.  On the other hand, if the force does not ‘act at a distance,’ why is it even 

called a ‘force?’ 

 

 Let me add some explanation here.  Setting aside anthropomorphic notions of agency, we 

usually conceive of a force as that which ‘causes’ something to move in the physical world.  In 

this sense, it is an invisible connective.  If you have two magnets which seem to affect each other 

‘at a distance,’ we can explain that by saying that there is something ‘there’ pushing or pulling, 

namely, the ‘force.’   The forces are usually connected with something called a ‘field’ or a 

‘force-field’.  Fields are generally conceived of as ‘something’ which surrounds the object 

emitting the field.  The field will explain (or describe) how forces will act, most notably in which 

direction.  The forces are the things which do the ‘acting’ and which cause motions.  As long as 

the forces are acting ‘at a distance’ this model seems to make some sense, for there must be a 

‘something’ to connect the two bodies, the acted upon and the acting.  But if the two bodies are 

no longer separated by a distance, the question arises as to what exactly do forces do? 

 We do not see the forces, we see only the effects (or the alleged effects) of the forces.  

We see and can study and measure the motions resulting from the alleged forces, but not the 

forces themselves.  We measure the ‘strength and nature’ of the forces only by cataloging the 

effects.  As was mentioned earlier, it could be said that a “force” is nothing but a handy short 

hand description of the motions which occur (or which are liable to occur) when bodies are in 

proximity to other bodies and when motions are exchanged.  In this sense, bodies of a certain 

nature have a propensity to accelerate in proximity to other bodies, and these propensities can be 

‘mapped.” 

 The difficulty is that forces seem to have no ‘intrinsic properties.’  They have only 

‘properties of effect.’  The difference between intrinsic properties and properties of effect can 

illustrated with the concept of ‘wind’.  Wind obviously has properties of effect.  It can billow a 

sail and drive a ship across the ocean.  But wind has intrinsic properties as well.  It consists of 

moving air (atoms of nitrogen and oxygen) and host of other ‘inherent’ properties.  We can 
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measure and study these properties in great detail.  The alleged ‘forces,’ on the other hand, have 

no intrinsic properties that we know of.  If you explain that things move because of a force, and 

then define the force as ‘that which causes something to move,’ the narrow circularity of this 

definition makes it seems as if the force has been defined into existence. 

 If I may digress, there were other alleged entities which were proposed to account for 

effects.  “Phlogiston” was a theoretical ‘substance’ conceived in the seventeenth century to 

explain combustion.  If you put a match to a piece of wood, it will burn, but if you put a match to 

a stone, it will not.  Why the difference?  This is a perfectly good question and the answer 

proposed was that the wood had ‘phlogiston’ and the stone did not.  Phlogiston was the thing 

responsible for the combustion of the wood.  Why did the wood burn: because it had phlogiston.  

What is phlogiston?  Phlogiston is ‘that which causes the wood to burn’!  You can see the 

obvious similarly between the concept of ‘phlogiston’ and the concepts of ‘force’ and ‘field.’  It 

might appear that in both cases, something has been ‘defined into being.’  Of course, phlogiston 

was not imagined in that way.  Rather, it was imagined to be a ‘substance’ of some kind, an ‘air’ 

or ether which inhered in the wood but not in the stone.  (Perhaps much in the way that some 

theorists might imagine ‘forces’ or ‘fields.’)  But no one could discover any intrinsic properties 

of this alleged substance.  It’s only definite property was the alleged property of effect. 

 Another interesting theory proposed in the eighteenth century was the concept of the 

‘caloric fluid’ used to explain the phenomenon of heat.  It was observed that heat seems to flow 

from hot substances to cold ones.  Was this not due to a substance, a fluid, which flowed from 

the one to the other?  Thus was born the concept of ‘caloric fluid.’  It seemed to be a satisfactory 

idea, except that the inherent nature of the fluid was unknown. 

 In the end, it turned out that this theory was substantially correct.  Heat was indeed a fluid 

that flowed from the hot body to the cold ones.  However, the fluid was not ‘caloric’ but a fluid 

called kinetic energy.  One mysterious fluid (energy) was substituted for another (caloric).  

Count Rumford observed that the heat-fluid kept pouring out of canons as they were being bored 

so long as the boring continued.  It was just a short step to see that the fluid was pouring into the 

canon (by the friction of the boring mechanism) as well as out.   

 The concepts of ‘phlogiston’ and ‘caloric fluid’ were steps in the right direction.  If 

matter is conceived in Aristotelian terms as ‘earth, air, fire, and water,’ then it would seem that 

the wood must contain some fire, but not the stone.  The concept of phlogiston pointed the way 

to the recognition that wood has inherent properties responsible for easy combustibility that 

stone lacks.  When it was understood that fire is form of rapid oxidation, the theory of phlogiston 

was simply discarded, but it clearly pointed towards a theory matter at odds with Aristotle’s.  

And the theory of a caloric heat fluid, though wrong in detail, was right is essence.  Incorrect 

theories do not necessarily lead in the wrong direction.  (We hope you will keep this in mind 

regarding our efforts here.) 

 None of this need imply the concept of ‘force’ is illegitimate; only that it should be 

suspect.  If you are philosophically inclined, you might argue that at some ultimate level you 

must find concepts which cannot be ‘reduced’ (explained) in terms of other concepts.  These 

fundamental concepts are ‘irreducible.’   So we again arrive at the question as to whether force 

can be explained in terms of other concepts and principles of a more fundamental nature.  Often 

our satisfaction or dissatisfaction with a concept springs from our intuition that it has or does not 

have that taste of the ultimate 

 

 This philosophical digression, accompanied by more questions than answers, has caused 
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us to stray from the subject at hand: why is kinetic energy measured as ½ the mass times the 

velocity squared.  The answer is closely tied to the exchange of motion.  If motion was 

exchanged instantaneously, nothing would exist, and time would cease.  Instead, motion ‘flows’ 

from one object to another over time.  Since motion is not exchanged instantaneously at anything 

other than possibly the quantum level, the exchange is accompanied by accelerations.  Since the 

quantity exchanged is a function of velocity, and since the velocity continuously changes over 

the period of acceleration, the quantity must be measured as proportional to the average velocity 

and not the final velocity of the accelerated object. The average change in speed under uniform 

acceleration will be one half the final velocity (if accelerated from rest), or the difference 

between the initial velocity (if the object is initially in motion) and the final velocity divided by 

two.  This relationship can be expressed as the integral or ‘summation’ of the momentum 

between two velocities.   In the calculus, the integral is written as: 

 

 mʃv = m[1/2v2 – 1/2v0
2]   (or  1/2mv2  where v0 is zero) 

 

 We must concede that the idea of ‘velocity squared’ has no intuitive counterpart in 

ordinary experience.  The idea is expressed in the dimensions of meters-squared divided by 

seconds-squared (m2/s2).  This can be contrasted to meters-per-second (m/s) which is speed, a 

familiar concept; and meters-per-second-per-second (m/s2) which is acceleration, another 

familiar concept.  According to the scheme proposed here, velocity squared is a mathematical 

relationship which can best be understood as a ‘quantity of motion.’ 

 Of particular note is the fact that the kinetic energy increases as the square of the 

difference in velocity.  For instance, the kinetic energy of a one kilogram ball traveling at 10 

meters per second is four times as great as the kinetic energy of the ball traveling half as fast at 5 

meters per second; (100 kg-m2/s2 versus 25 kg-m2/s2).    Yet the total absolute value of the 

momentum after collision will sum to a value directly proportional to the difference in the 

speeds, not, as with energy, to the difference squared.  In other words, let us say a ball traveling 

at 5 m/s collides with another identical ball.  Suppose the energy is equally divided.  The two 

balls will each travel after collision at 3.54 m/s.  Now a ball traveling at 10 m/s (which has four 

times as much energy) which undergoes a similar collision will result in the two balls traveling at 

7.07 m/s each.  The speeds in second case are twice as great as in the first case, not four times as 

great.  There is no mysterious increase in the resulting speeds of the vectors.  We can say with all 

due justice, that energy (as sum of ‘velocities squared’) is simply nature’s mathematical way of 

conserving the value of the speeds. 

 

 

 Now we shall leap forward over a great deal of intermediary material to arrive at an 

elucidation of Einstein’s famous formula.  We will then step back and fill in some of the large 

gaps left behind and explore some of consequences of this proposition. 

 We ask you to imagine a single stationary billiard ball suspended at the center of a large 

imaginary ‘box.’ Do not worry about the nature of the box.  The box represents a hypothetical 

isolated region of space.  Now imagine that the ball inside the box can be made to “dissolve” into 

all its constituent parts.  Suppose the ‘bonds’ holding the constituents parts together can be 

magically undone.  We do not suggest that this is an actual possibility, but only an imaginative 

possibility.  Suppose the molecules fly apart and dissolve into atoms which dissolve into their 

constituents: the protons, neutrons, electrons, and all other constituents.  These constituents in 
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turn dissolve into their constituents.  The gluons, photons, and all particles of radiation dissolve 

along with the “strings” (if there are such things).  What are we left with? 

 We suggest that in this case the end result will a great rapidly diverging gas of particle-

points.  They are the ultimate constituents of nature.  They will radiate outward from the center 

of this small mass, equally in all directions.  The mass will have been “dissolved” into its most 

fundamental elements.  Total net momentum will be zero with respect to the box because if it 

was not, the ball would not have been at rest.  If there was any net motion in the assembly of the 

constituents, the ball would have been moving in that direction.  Since it was at rest, the net 

motion is zero relative to the box. 

 The number of particle-points will be unfathomably large, but finite.  They will be 

inherently identical in nature.  We assume this to be true from the principle of parsimony and the 

principle of hierarchy which will be discussed later.  This is to say that each of these particle-

points will travel in their free “unbound” state in a straight line with the same identical speed, the 

speed of light (c).  Each particle-point assumes its identity in being a separate and individual 

point in motion traveling at the same identical speed. 

 Of course, the manner in which they move (other than their inherent speed) is the subject 

of physical inquiry.  The general principles of the quantification of motion, which have been the 

subject of this inquiry, must devolve to ‘the general principles of the aggregation of motion’ and 

‘the principles of the exchange of motion.’  These principles are not entirely separate and they 

form the primary subject matter of physical enquiry. 

 The total motion inside the ‘box’ can be summed.  Since each particle-point travels at 

exactly the same speed, we need only sum up (or count) the number of particle-points in the box 

and multiply the sum by the speed squared (c2).  Of course, counting is not practicable; we must 

rely instead on calculation, but here we arrive at the ultimate unity of mass and energy: for each 

unit of mass (each particle-point) is a unit of energy, and each unit of energy (each particle-

point) is a unit of mass.  In other words, what we term “mass” is a proxy for the number of 

particle-points contained in the object whose mass has been determined by other means.  To 

compute energy – the quantity of motion in an aggregation of particle-points, we need only 

multiply that number (the mass) by c2.  In this manner we arrive at the fundamental equation for 

the total energy (or ‘quantity of motion’) in any quantity of mass: 

 

 E = mc2 

 

The appearance of this peculiar constant (c2) is consequently closely related to the familiar 

equation for kinetic energy.  The reason why it is c2 and not ½ c2 in this special case is because   

particle-points do not undergo accelerations.  Accelerations result from the exchange of motion – 

or in the most fundamental terms, the exchange of quantities of particle-points.  But particle-

points cannot themselves be accelerated, an idea that has far reaching consequences which we 

will look into presently. 

 Each fundament increment of motion is thus an increment of mass, and each increment of 

mass in an increment of motion.  Since these increments of motion have an identical speed, it is 

evident that the constant c2 serves to specify the speed squared.   Unlike the variable v2 used in 

the computation of the energy of quantities-of-motion-in-motion, c2 is unchanging.  On the other 

hand, when a quantity-of-motion (a mass) is accelerated, increments of motion are added to it, 

and the velocity is increased as does variable mass (m) (relative to a stationary framework). 

 The particle-point with its sole property of speed is the ultimate Democritean atom, but in 
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a Hericlitean universe.  Just as there is a certain number of molecules in a kilogram of water, or a 

certain number of atoms in a kilogram of hydrogen; there is a certain number of particle points in 

a kilogram of all substances.  The analogy holds. 

 If motion is the ultimate ‘substance’ of our universe, then it is apparent why things move 

– to answer the question posed earlier – they move because motion is their essential nature.   The 

inherent motion of the particle-points is the ultimate ‘something’ that drives all things to their 

destinies 

 Yet could such a spare conception possibly account, in some ultimate reckoning, for all 

things in our universe, all that has ever been and will ever be – from the hydrogen atom to the 

Mona Lisa?  Can these simple objects, the pawns of nature, truly be assembled into the 

extraordinary variety of all that is or will be?  This is a daunting idea.  However, it must be 

stressed that it is not in the simplicity of the ultimate constituents that the answer can be found, 

but in the richness of the logic by which they move and combine. 

 

 Among the many questions that arise: 

 

Why do the particle-points have the same, identical speed? 

Why the speed of light? 

How do the particle-points combine or aggregate? 

How is motion ultimately conveyed or exchanged? 

How is it possible for the particle-point to travel at the speed of light irrespective of the frame of 

reference? 

Is acceleration ‘absolute’ or framework dependent? 

What is the nature of the photon and how does it convey motion? 

What is the ultimate difference between rest mass and relative mass? 

 

These questions are inter-related.  To them we might add what is perhaps the most pertinent 

question of all: whether or not this scheme is compatible with well established physical theory.  

Needless to say, the issues are complicated.  We will take them up beginning in Part 2 of this 

essay. 
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